ΕΛΛΗΝΙΚΟ ΑΝΟΙΧΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
|
|
- Ζένα Αξιώτης
- 9 χρόνια πριν
- Προβολές:
Transcript
1 ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Συνδυαστικής και των Σχέσεων-Συναρτήσεων. Η εργασία πρέπει να γραφεί ηλεκτρονικά και να σταλεί µε στον Σύµβουλο Καθηγητή σας το αργότερο µέχρι την ευτέρα 10 Νοεµβρίου 2003, ώρα 13:00. Πρωτού αποστείλετε την εργασία στο Σύµβουλο Καθηγητή σας, βεβαιωθείτε ότι έχετε συµπληρώσει το ειδικό έντυπο (ΕΝΤΥΠΟ Α) στην επόµενη σελίδα. Οδηγίες προς τους φοιτητές: Στο έντυπο αυτό πρέπει να προσθέσετε τις απαντήσεις σας στο χώρο κάτω από το εκάστοτε ερώτηµα εκεί όπου περιέχεται η φράση: την οποία µπορείτε να σβήσετε. Μπορείτε να διαµορφώσετε το χώρο όπως επιθυµείτε, και δεν υπάρχει περιορισµός στο πόσο χώρο θα καταλάβει η απάντησή σας.
2 ΕΛΤΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ Το έντυπο αυτό που συµπληρώνεται και υπογράφεται από τον καθηγητή σύµβουλο για κάθε γραπτή εργασία, αποστέλλεται στο φοιτητή µαζί µε α) αντίγραφο της διορθωµένης εργασίας και β) ξεχωριστό φύλλο µε Σχόλια προς τον Φοιτητή. Αντίγραφο του ελτίου Αξιολόγησης και των Σχολίων στέλνεται και στο Ε.Α.Π. Επίσης, ο καθηγητής κρατά για το δικό του αρχείο: α) την διορθωµένη εργασία και β) το φύλλο µε τα Σχόλια. Σε περίπτωση που υπήρξε καθυστέρηση µεγαλύτερη των 7 ηµερών για την παράδοση της γραπτής εργασίας, επισυνάπτεται το γραπτό σηµείωµα του Συντονιστή της Θ.Ε. Ονοµατεπώνυµο Φοιτητή <Όνοµα> <Επώνυµο> Προσωπικός Αριθµός Φοιτητή <ΑΜ> Ηµεροµηνία Αποστολής της Εργασίας από το Φοιτητή Ηµεροµηνία Αποστολής Εργασίας στο Φοιτητή Βαθµολογία 0 Υπογραφή Καθηγητή Ονοµατεπώνυµο Καθηγητή Σχολή Θετικών Επιστηµών και Τεχνολογίας Θεµατική Ενότητα ιακριτα Μαθηµατικα και Μαθηµατικη Λογική Κωδικός Θεµατικής Ενότητας ΠΛΗ 20 Άυξων Αριθµός Γραπτής Εργασίας 1η Ακαδηµαϊκό έτος
3 Κ Ρ Ι Τ Η Ρ Ι Α Α Ξ Ι Ο Λ Ο Γ Η Σ Η Σ Ερώτηµα Μέγιστος βαθµός Βαθµός Συνολικός Βαθµός: Γενικά Σχόλια: <γενικά σχόλια για την εργασία από το Σύµβουλο-Καθηγητή>
4 Ε ρ ω τ ή µ α τ α Ερώτηµα 1. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών) που ορίζονται ως εξής: f ( x) = x 1 g( x) = 3x 0, αν ο x είναι άρτιος h( x) = 1,αν ο x είναι περιτός Να εξετάσετε αν κάθε µία από τις παραπάνω συναρτήσεις είναι 1-1 ή/και επί και να προσδιορίσετε τις συναρτήσεις που προκύπτουν από τις παρακάτω συνθέσεις: a) f ο g, g ο f, g οh, h οg, f ο( g οh), ( f οg) οh b) f ο f, f ο f ο f, g οg, g οg οg, h οh, h οh οh : / 10 Ερώτηµα 2. Θεωρείστε το σύνολο Χ που αποτελείται από όλες τις δυνατές ακολουθίες τεσσάρων δυαδικών αριθµών (παράδειγµα 0010, 1010 κλπ). Ορίζουµε µια διµελή σχέση Σ επί του συνόλου X, έτσι ώστε (x,y) Σ αν µια ακολουθία 2 ψηφιών στο x ταυτίζεται µε µια ακολουθία 2 ψηφίων στο y, όχι απαραίτητα στην ίδια θέση (για παράδειγµα το ζεύγος {0111, 1001} ανήκει στο Σ αφού και <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 1
5 στα δύο υπάρχει η ακολουθία 01, ενώ το ζεύγος {0000, 1111} προφανώς δεν ανήκει στη Σ). 1) Να υπολογιστεί ο αριθµός των στοιχείων του συνόλου Χ. 2) Να εξεταστεί αν η σχέση Σ είναι ανακλαστική, συµµετρική, αντισυµµετρική, µεταβατική, σχέση µερικής διάταξης. : / 5 Ερώτηµα 3. Το ΤΖΟΚΕΡ είναι ένα παιχνίδι όπου κληρώνονται πέντε διαφορετικοί µεταξύ τους αριθµοί από το 1 έως το 45 (δεν παίζει ρόλο η σειρά κλήρωσης των αριθµών) και ένας ακόµη αριθµός τζόκερ από το 1 έως το 20 (ο αριθµός τζόκερ µπορεί να συµπίπτει µε κάποιον από τους 5 αρχικούς αριθµούς). Οι αριθµοί που κληρώνονται αποτελούν τη νικήτρια στήλη του παιχνιδιού. Όταν λέµε ότι «ο παίκτης συµπληρώνει µία στήλη», αυτό σηµαίνει ότι επιλέγει επίσης πέντε διαφορετικούς µεταξύ τους αριθµούς από το 1 έως το 45 και έναν ακόµη αριθµό τζόκερ από το 1 έως το 20 ευελπιστώντας ότι αυτοί θα συµπίπτουν µε τους αριθµούς της νικήτριας στήλης. Να υπολογιστούν τα ακόλουθα: 1) Ο αριθµός των στηλών που πρέπει να συµπληρώσει κάποιος παίκτης ώστε να είναι απόλυτα σίγουρος ότι θα πετύχει τη νικήτρια στήλη σε κάθε περίπτωση. 2) Τον αριθµό των στηλών που πρέπει να συµπληρώσει κάποιος παίκτης ώστε να είναι απόλυτα σίγουρος ότι θα πετύχει τη νικήτρια στήλη στην περίπτωση όπου στην κλήρωση συµβούν ταυτόχρονα τα εξής: <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 2
6 - Από τους 5 αρχικούς αριθµούς ο ένας είναι µεταξύ του 1 και του 10, ο δεύτερος µεταξύ του 11 και του 20, ο τρίτος µεταξύ του 21 και του 30, ο τέταρτος µεταξύ του 31 και του 40 και ο πέµπτος µεταξύ του 41 και του 45 - Ο αριθµός τζόκερ είναι άρτιος. 3) Ας θεωρήσετε ότι κάποιος συµπληρώνει όλες τις στήλες που υπολογίστηκαν στο ερώτηµα 2 και η κλήρωση τον ευνοεί, δηλαδή ικανοποιούνται όλες οι υποθέσεις του προηγούµενου ερωτήµατος. Πόσες είναι οι στήλες που είναι απόλυτα επιτυχείς; Πόσες είναι οι στήλες που πετυχαίνουν τους 5 αρχικούς αριθµούς όχι όµως και τον αριθµό τζόκερ; Πόσες είναι οι στήλες που πετυχαίνουν τους 4 από τους 5 αρχικούς αριθµούς και τον αριθµό τζόκερ; : / 10 Ερώτηµα 4. Υπολογίστε τον αριθµό των διαφορετικών τρόπων µε τους οποίους µπορούµε να τοποθετήσουµε n φοιτητές σε n θέσεις σε σειρά µε την προϋπόθεση ότι για δύο συγκεκριµένους από αυτούς πρέπει να κάθονται υποχρεωτικά ακριβώς k φοιτητές ανάµεσά τους. Ποιό το αποτέλεσµα της άσκησης για n=10, k =3; <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 3
7 : / 10 Ερώτηµα 5. 1) Σε µια εκλογική αναµέτρηση και σε ένα εκλογικό τµήµα το ψηφοδέλτιο ενός συγκεκριµένου κόµµατος µε 20 υποψήφιους βουλευτές ψήφισαν 300 ψηφοφόροι και κάθε ένας από αυτούς είχε τη δυνατότητα είτε να µη βάλει κανένα σταυρό είτε να βάλει έναν µόνο σταυρό σε ακριβώς έναν υποψήφιο. Σε κάποιο σηµείο στη διάρκεια της καταµέτρησης υπολογίζεται ότι κάθε υποψήφιος βουλευτής έχει λάβει ακριβώς 10 σταυρούς, ενώ επίσης έχουν βρεθεί 10 ψηφοδέλτια του συγκεκριµένου κόµµατος χωρίς να περιέχουν σταυρό. Να υπολογιστεί ο αριθµός των διαφορετικών τρόπων µε τους οποίους µπορούν να κατανεµηθούν οι υπόλοιποι σταυροί στους υποψήφιους βουλευτές. 2) Σε ένα τµήµα µιας αίθουσας που αποτελείται από n θέσεις στη σειρά πρόκειται να καθίσουν k φοιτητές για να εξεταστούν σε ένα µάθηµα. Οι επιτηρητές θέλουν να φροντίσουν ώστε να µην κάθεται κάποιος φοιτητής ακριβώς δίπλα σε κάποιον άλλο. Με πόσους διαφορετικούς τρόπους µπορούν να το επιτύχουν; Ποιό το αποτέλεσµα της άσκησης για n=10, k =3; : / 15 <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 4
8 Ερώτηµα 6. Έχουµε 5 µπλε µπάλες των 5 κιλών, 10 πράσινες των 2 κιλών και απεριόριστες κόκκινες µπάλες του 1 κιλού. Να γραφούν γεννήτριες συναρτήσεις που να υπολογίζουν τα ακόλουθα: 1) Τους διαφορετικούς τρόπους µε τους οποίους µπορούµε να επιλέξουµε n µπάλες. 2) Τους διαφορετικούς τρόπους µε τους οποίους µπορούµε να επιλέξουµε µπάλες που το συνολικό τους βάρος είναι n. : / 10 Ερώτηµα 7. Μια οµάδα στη διάρκεια του πρωταθλήµατος δίνει 30 αγώνες, όπου σε κάθε αγώνα αν κερδίσει παίρνει τρεις βαθµούς, αν φέρει ισοπαλία παίρνει ένα βαθµό και αν χάσει παίρνει 0 βαθµούς. Χρησιµοποιώντας γεννήτριες συναρτήσεις να υπολογίσετε τα ακόλουθα: 1) Τον αριθµό των δυνατών διαφορετικών συνολικών αποτελεσµάτων αν ο συνολικός αριθµός των νικών είναι περιττός, ο συνολικός αριθµός των ηττών είναι άρτιος, ενώ οι ισοπαλίες είναι τουλάχιστον 2 (ένα αποδεκτό συνολικό αποτέλεσµα είναι για παράδειγµα 7 νίκες, 16 ήττες και 7 ισοπαλίες). 2) Τον αριθµό των διαφορετικών τρόπων µε τους οποίους η συνολική βαθµολογία της οµάδας στο τέλος του πρωταθλήµατος θα είναι 45 βαθµοί, µε την προϋπόθεση οι νίκες να είναι περισσότερες από τις ήττες. <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 5
9 : / 15 Ερώτηµα 8. Να γραφεί εκθετική γεννήτρια συνάρτηση που να υπολογίζει τον αριθµό των διαφορετικών διατάξεων µήκους n που µπορούν να δηµιουργηθούν από τα γράµµατα A, B, Γ, µε τον περιορισµό ο αριθµός εµφανίσεων του Α να είναι περιττός και επίσης ο αριθµός εµφανίσεων του Β να είναι περιττός. Να βρεθεί ο αριθµός των διατάξεων για n=8. : / 10 <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 6
10 Ερώτηµα 9. Η θεωρία µέτρησης Polya αναπτύχθηκε µε σκοπό τον υπολογισµό των διαφορετικών µορφών (ισοµερών) µε τις οποίες µπορεί να υπάρξει στη φύση µια χηµική ένωση. Στο ερώτηµα αυτό καλείστε να εφαρµόσετε τη θεωρία Polya σε ένα τέτοιο πρόβληµα, που περιγράφεται στη συνέχεια: Το βενζόλιο είναι η χηµική ένωση C6H 6 που αποτελείται από 6 άτοµα άνθρακα και 6 άτοµα υδρογόνου. Τα άτοµα του υδρογόνου µπορούν να αντικατασταθούν από άλλα άτοµα, δηµιουργώντας έτσι καινούριες ενώσεις. Για παράδειγµα η ένωση C 6 H 4 Br 2 προκύπτει µε αντικατάσταση 2 ατόµων υδρογόνου µε 2 άτοµα βρωµίου. Ενώ όµως το βενζόλιο εµφανίζεται σε µία µόνο µορφή, η ένωση C 6 H 4 Br 2 εµφανίζεται σε τρεις διαφορετικές µορφές ανάλογα µε τη θέση των ατόµων βρωµίου. Αυτές είναι οι ακόλουθες: H H B H H B B H B H HB H HB H H H H H H Σηµειώστε ότι περιστροφή του µορίου κατά 60 µοίρες (µετακίνηση δηλαδή όλων των ατόµων κατά µία θέση) ή αναποδογύρισµα (καθρέφτισµα) γύρω από οποιονδήποτε άξονα συµµετρίας δεν αντιστοιχεί σε καινούρια µορφή του µορίου. Στο ερώτηµα αυτό θα πρέπει να εφαρµόσετε τη θεωρία µέτρησης Polya για τον υπολογισµό των διαφορετικών µορφών µε τις οποίες µπορούν να εµφανιστούν στη φύση οι ακόλουθες χηµικές ενώσεις: 1) H ClBr (2 άτοµα υδρογόνου έχουν αντικατασταθεί από ένα άτοµο C 6 4 χλωρίου και ένα άτοµο βρωµίου) 2) C6H 2Cl2Br2 (4 άτοµα υδρογόνου έχουν αντικατασταθεί από δύο άτοµα χλωρίου και δύο άτοµα βρωµίου) <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 7
11 3) C6H 2IClBr2 (4 άτοµα υδρογόνου έχουν αντικατασταθεί από ένα άτοµο ιωδίου, ένα άτοµο χλωρίου και δύο άτοµα βρωµίου) Για το σκοπό αυτό θα πρέπει να δηµιουργήσετε πίνακα αντίστοιχο µε εκείνον της σελίδας 97 του βιβλίου των Κυρούση-Μπούρα-Σπυράκη, όπου να φαίνονται όλες οι δυνατές αντιµεταθέσεις που αφήνουν αναλλοίωτο το µόριο (λαµβάνοντας υπόψη τις συµµετρίες που αναφέρηκαν πιο πάνω, δηλαδή τις στροφές και τους καθρεφτισµούς) και οι αντίστοιχες κυκλικές αναπαραστάσεις και δείκτριες συναρτήσεις. Στη συνέχεια για κάθε µία από τις τρεις χηµικές ενώσεις θα πρέπει να προσδιορίσετε το δείκτη κύκλων P G και επίσης το µονώνυµο του οποίου ο συντελεστής µας δίνει τον αριθµό των διαφορετικών µορφών της ένωσης. εν είναι απαραίτητος ο υπολογισµός των συντελεστών αυτών. : / 15 <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 8
12 ΕΝΤΥΠΟ Α ΣΥΝΟ ΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Το έντυπο αυτό το συµπληρώνετε και το στέλνετε µαζί µε τη γραπτή εργασία σας στον Καθηγητή Σύµβουλο. Θυµηθείτε ότι θα πρέπει να κρατήσετε φωτοτυπία της γραπτής εργασίας σας. < Συµπληρώστε τα στοιχεία σας µέσα στα σκιασµένα µέρη > Συµπληρώνεται από το φοιτητή(-τρια) Στοιχεία Φοιτητή (-τριας) Όνοµα: <Όνοµα> Επώνυµο: <Επώνυµο> Αριθµός Μητρώου Φοιτητή: <ΑΜ> ιεύθυνση Επικοινωνίας: Οδός / Αριθµός: Περιοχή: Πόλη: Ταχ. Κώδικας: Νοµός: Τηλέφωνο: Fax: ΣΧΟΛΗ Πληροφορικής ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ ιακριτά Μαθηµατικά και Μαθηµατική Λογική (ΠΛΗ20) ΚΩ ΙΚΟΣ ΤΜΗΜΑΤΟΣ ΑΥΞΩΝ ΑΡΙΘΜΟΣ ΓΡΑΠΤΗΣ ΕΡΓΑΣΙΑΣ 1η Ακαδηµαϊκό έτος: Ηµεροµηνία Αποστολής: <Όνοµα> <Επώνυµο>, 1η εργασία, ΠΛΗ 20 [ ] 9
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 1η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Συνδυαστική-Σχέσεις-Συναρτήσεις Ε ρ ω τ ή µ α τ α Ερώτηµα. Θεωρείστε τις συναρτήσεις f,g,h:z Z (Z το σύνολο των ακέραιων αριθµών που ορίζονται
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ2 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η περαιτέρω εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων.
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η <Αλγόριθµοι, Θεωρία Γραφηµάτων>
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 2η Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες µεθόδους και ιδέες της Θεωρίας Γραφηµάτων
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 5η Προτασιακή Λογική Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις έννοιες της Προτασιακής Λογικής. Η εργασία πρέπει να γραφεί ηλεκτρονικά
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων Σκοπός της παρούσας εργασίας είναι η εξοικείωση µε τις σηµαντικότερες έννοιες και τους αλγορίθµους της Θεωρίας ένδρων.
Διαβάστε περισσότερα" ιακριτά Μαθηµατικά και Μαθηµατική Λογική "
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ο ΗΓΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ " ιακριτά Μαθηµατικά και Μαθηµατική Λογική " ΠΛΗ 20 ΠΑΤΡΑ 2003 Πριν αρχίσετε τη µελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε
Διαβάστε περισσότεραn ίδια n διαφορετικά n n 0 n n n 1 n n n n 0 4
Διακριτά Μαθηματικά Ι Επαναληπτικό Μάθημα 1 Συνδυαστική 2 Μεταξύ 2n αντικειμένων, τα n είναι ίδια. Βρείτε τον αριθμό των επιλογών n αντικειμένων από αυτά τα 2n αντικείμενα. Μεταξύ 3n + 1 αντικειμένων τα
Διαβάστε περισσότεραα n z n = 1 + 2z 2 + 5z 3 n=0
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Η ύλη συνοπτικά... Γεννήτριες συναρτήσεις Τι είναι η γεννήτρια Στην
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 1 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Ιούλιος 204 Σελ. από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας
Διαβάστε περισσότεραΣυνδυαστική Απαρίθµηση
Συνδυαστική Απαρίθµηση ιδάσκοντες:. Φωτάκης,. Σούλιου, Θ. Λιανέας Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση
Διαβάστε περισσότερα" ιακριτά Μαθηµατικά και Μαθηµατική Λογική "
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Ο ΗΓΟΣ ΣΠΟΥ ΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ " ιακριτά Μαθηµατικά και Μαθηµατική Λογική " ΠΛΗ 20 ΠΑΤΡΑ 2004 Πριν αρχίσετε τη µελέτη του έντυπου αυτού, είναι απαραίτητο να διαβάσετε
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης. Λύσεις Τρίτης Σειράς Ασκήσεων
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-217: Πιθανότητες - Χειµερινό Εξάµηνο 2016 ιδάσκων : Π. Τσακαλίδης Λύσεις Τρίτης Σειράς Ασκήσεων Ασκηση 1. Σε κάθε περίπτωση πρέπει να χρησιµοποιήσουµε
Διαβάστε περισσότερακ.λπ. Ισχύει πως x = 100. Οι διαφορετικές λύσεις αυτής της εξίσωσης χωρίς κανένα περιορισμό είναι
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Διακριτά Μαθηματικά 3 η γραπτή εργασία, Σχέδιο Λύσεων Επιμέλεια: Δ. Φωτάκης, Δ. Σούλιου ΘΕΜΑ (Συνδυαστική,.6 μονάδες)
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΜάθηµα 14. Κεφάλαιο: Στατιστική
Μάθηµα 4 Κεφάλαιο: Στατιστική Θεµατικές Ενότητες:. Μέτρα θέσης. Εισαγωγή. Για πιο σύντοµη, αποδοτική και συγκρίσιµη θεώρηση της κατανοµής συχνοτήτων µιας µεταβλητής, έχουµε ορίσει και χρησιµοποιούµε κάποια
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Σεπτέμβριος 2014 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότεραΓεννήτριες Συναρτήσεις
Γεννήτριες Συναρτήσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναπαράσταση Ακολουθιών Ακολουθία:
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραιµελής σχέση HY118- ιακριτά Μαθηµατικά n-µελείς σχέσεις Σχέσεις 13 - Σχέσεις
HY118- ιακριτά Μαθηµατικά Πέµπτη, 31/03/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/3/2016
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
ΣΥΝΟΔΕΥΤΙΚΟ ΕΝΤΥΠΟ ΓΙΑ ΤΙΣ ΓΡΑΠΤΕΣ ΕΡΓΑΣΙΕΣ Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά)
Διαβάστε περισσότεραΈντυπο Υποβολής Αξιολόγησης Γ.Ε.
Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΛΥΣΕΙΣ.
ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 Μάθημα: ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία και ώρα εξέτασης: Παρασκευή, 19/05/2017 8:00 11:00
Διαβάστε περισσότεραΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΘΕΜΑ 1 ο (2.5 µονάδες) ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕΧΝΗΤΗ ΝΟΗΜΟΣΥΝΗ Τελικές εξετάσεις Παρασκευή 28 Σεπτεµβρίου 2007 ιάρκεια: 13:00-16:00
Διαβάστε περισσότεραP( n, k) P(5,5) 5! 5! 10 q! q!... q! = 3! 2! = 0! 3! 2! = 3! 2!
HY118- ιακριτά Μαθηµατικά Φροντιστήριο στη Συνδυαστική (#8) Άσκηση 1 Με πόσους τρόπους µπορούµε να δηµιουργήσουµε συµβολοσειρές που αποτελούνται από τρεις παύλες και δύο τελείες; Άσκηση 1, 1 η προσέγγιση
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότερα6 ος ΤΟΠΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ «ΚΑΡΑΘΕΟΔΩΡΗ» 14 ΝΟΕΜΒΡΙΟΥ 2015 Α ΓΥΜΝΑΣΙΟΥ
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΡΑΡΤΗΜΑ ΡΟΔΟΠΗΣ Φιλίππου 33 69 13 ΚΟΜΟΤΗΝΗ Τηλ. 5310805 Πρόεδρος εξεταστικού 697335814 e-mail: emerodopis@gmail.com ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 5: Αρχή Εγκλεισμού - Αποκλεισμού Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις ιδάσκοντες:. Φωτάκης. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις Αναπαράσταση
Διαβάστε περισσότεραΣυνδυαστική Απαρίθµηση Υπολογισµός (µε συνδυαστικά επιχειρήµατα) του πλήθους των διαφορετικών αποτελεσµάτων ενός «πειράµατος». «Πείραµα»: διαδικασία µ
Συνδυαστική Απαρίθµηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθµηση Υπολογισµός
Διαβάστε περισσότεραώστε επιλογή: Στη συνέχεια θα διαβάζει την επιλογή του χρήστη και την ακτίνα ενός κύκλου και θα εκτυπώνει το αντίστοιχο αποτέλεσµα.
ΠΙΝΑΚΕΣ 1. Να γραφούν οι εντολές µε τις οποίες από το περιεχόµενο κάθε θέσης του πίνακα αφαιρούµε το τετράγωνο του δείκτη της αντίστοιχης θέσης. 2. Να γραφούν οι εντολές µε τις οποίες αντιγράφουµε τα στοιχεία
Διαβάστε περισσότεραιµελής Σχέση ιατεταγµένο ζεύγος (α, β): ύο αντικείµενα (όχι κατ ανάγκη διαφορετικά) σε καθορισµένη σειρά. Γενίκευση: διατεταγµένη τριάδα (α, β, γ), δι
Σχέσεις ιδάσκοντες: Φ. Αφράτη, Σ. Ζάχος,. Σούλιου Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιµελής Σχέση ιατεταγµένο ζεύγος (α, β):
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ
ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Ηµεροµηνία: Σάββατο 8 Απριλίου 2017 ιάρκεια Εξέτασης: 3 ώρες
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραMonitor Games BOWLING
ΠΕΡΙΓΡΑΦΗ ΠΑΙΧΝΙΔΙΟΥ: BOWLING Αναπαράσταση παιχνιδιού Bowling με δύο εικονικούς παίκτες. Κάθε εικονικός παίκτης έχει δύο ευκαιρίες να ρίξει και τις 10 κορύνες ώστε να πετύχει τη μέγιστη βαθμολογία. Το
Διαβάστε περισσότεραΘεωρία παιγνίων Δημήτρης Χριστοφίδης Εκδοση 1η: Παρασκευή 3 Απριλίου 2015. Παραδείγματα Παράδειγμα 1. Δυο άτομα παίζουν μια παραλλαγή του σκακιού όπου σε κάθε βήμα ο κάθε παίκτης κάνει δύο κανονικές κινήσεις.
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ι (Θ.Ε. ΠΛΗ 12) 6Η ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ - ΕΝΗΜΕΡΩΜΕΝΗ ΜΟΡΦΗ Ημερομηνία Αποστολής της εργασίας στον Φοιτητή 5 Μαϊου 2014
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Πέµπτη, 23/03/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/2017
Διαβάστε περισσότεραΈντυπο Υποβολής Αξιολόγησης Γ.Ε.
Έντυπο Υποβολής Αξιολόγησης Γ.Ε. O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΑ. ΜΕΣΗ ΤΙΜΗ - ΙΑΜΕΣΟΣ
ΜΑΘΗΜΑ 17 Κεφάλαιο 4o : Περιγραφική Στατιστική Υποενότητα 4.5: Μέση Τιµή - ιάµεσος Θεµατικές Ενότητες: 1. Μέση Τιµή - ιάµεσος. Α. ΜΕΣΗ ΤΙΜΗ - ΙΑΜΕΣΟΣ ΟΡΙΣΜΟΙ Για πιο σύντοµη, αποδοτική και συγκρίσιµη θεώρηση
Διαβάστε περισσότεραΈντυπο Yποβολής Αξιολόγησης ΓΕ
Έντυπο Yποβολής Αξιολόγησης ΓΕ O φοιτητής συμπληρώνει την ενότητα «Υποβολή Εργασίας» και αποστέλλει το έντυπο σε δύο μη συρραμμένα αντίγραφα (ή ηλεκτρονικά) στον Καθηγητή-Σύμβουλο. Ο Καθηγητής-Σύμβουλος
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 19 ΙΑΝΟΥΑΡΙΟΥ 2008
Τηλ. 3616532-3617784 - Fax: 3641025 Tel. 3616532-3617784 - Fax: 3641025 ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ Ο ΕΥΚΛΕΙΔΗΣ ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ,
Διαβάστε περισσότεραΓεννήτριες Συναρτήσεις
Ακολουθίες Γεννήτριες Συναρτήσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ακολουθία: αριθμητική
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Ιανουάριος 2015 Σελ. 1 από 5 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις
Διαβάστε περισσότεραΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ
ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΟΔΗΓΟΣ ΣΠΟΥΔΩΝ ΓΙΑ ΤΗ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ Ψηφιακά Συστήµατα ΠΛΗ 21 [http://edu.eap.gr/pli/pli21/students.htm] ΠΑΤΡΑ 2013 Πριν αρχίσετε τη µελέτη του έντυπου αυτού, είναι απαραίτητο
Διαβάστε περισσότεραΓραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση
Διαβάστε περισσότεραΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 66 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙ ΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2006
Ο ΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕ ΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕ ΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ 1. Παρακαλούµε να διαβάσετε προσεκτικά τις οδηγίες στους µαθητές.. Οι επιτηρητές των αιθουσών
Διαβάστε περισσότεραιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου
ιακριτά Μαθηµατικά Ασκήσεις Φροντιστηρίου Εαρινό Εξάµηνο 2009 Κάτια Παπακωνσταντινοπούλου 1. Εστω A ένα µη κενό σύνολο. Να δείξετε ότι η αλγεβρική δοµή (P(A), ) είναι αβελιανή οµάδα. 2. Εστω ένα ξενοδοχείο
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων. 22 - Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 19/05/2015 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/21/2015 1 1 5/21/2015 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραΑ1. τις παρακάτω προτάσεις, να γράψετε τον αριθμό της καθεμιάς και δίπλα το γράμμα αν είναι σωστή ή Λ αν είναι λανθασμένη.
ΜΑΘΗΜΑ / ΣΑΞΗ : ΕΙΡΑ: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΜΑΣΟ: Θέμα Α Α1. τις παρακάτω προτάσεις, να γράψετε τον αριθμό της καθεμιάς και δίπλα το γράμμα αν είναι
Διαβάστε περισσότεραΚεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο
Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,
Διαβάστε περισσότεραΣχέσεις. ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιμελής Σχέση ιατεταγμένο ζεύγος (α, β): ύο αντικείμενα
Διαβάστε περισσότεραΜαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα x 1 2x 7 x 8 4
Μαθηματικά Β' Γυμνασίου - Ασκήσεις επανάληψης στην Άλγεβρα Σελίδα 1 1) Na λυθούν οι εξισώσεις : α) 2 3x 1 x 8 x 1 (απ.: x = -2) β) γ) 2x 7 x 1 (απ.: x = -12) 4 3 4 5 x 2 x 4 2 x (απ.: x = 1) 4 5 δ) x 1
Διαβάστε περισσότεραΕπαναληπτικέ ς Ασκη σέις ΑΕΠΠ
Επαναληπτικέ ς Ασκη σέις ΑΕΠΠ Επιμέλεια: Σ. Ασημέλλης 1. Σε ένα ποδοσφαιρικό πρωτάθλημα μετέχουν 16 ομάδες. Κάθε ομάδα παίζει με όλες τις υπόλοιπες ως γηπεδούχος και ως φιλοξενούμενη. Νίκη μιας ομάδας
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό
Διαβάστε περισσότεραΛύσεις 1ης Ομάδας Ασκήσεων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΙΘΑΝΟΤΗΤΕΣ Γ. ΚΟΝΤΟΓΙΑΝΝΗΣ Λύσεις ης Ομάδας Ασκήσεων Τμήμα Α Λ. Ισότητα συνόλων Έστω C = A i= B i και D = i= A B i. Θα αποδείξουμε ότι τα C, D ταυτίζονται,
Διαβάστε περισσότεραεπιµέλεια Θοδωρής Πιερράτος
Ερωτήσεις Σωστό Λάθος 1. Οι διαστάσεις ενός πίνακα δεν µπορούν να µεταβάλλονται κατά την εκτέλση ενός αλγόριθµου. 2. Ο πίνακας είναι στατική δοµή δεδοµένων. 3. Ένας πίνακας δυο στηλών µπορεί να περιέχει
Διαβάστε περισσότεραΒαθµολογία Χαρακτηρισµός
1. Η χρέωση στους λογαριασµούς της TEL Company είναι η εξής: Πάγιο: 15 Αστικές µονάδες: 0.030 ανά µονάδα Υπεραστικές µονάδες: 0-150 0.045 ανά µονάδα 151-500 0.039 ανά µονάδα 501-0.033 ανά µονάδα Να αναπτυχθεί
Διαβάστε περισσότεραKΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Διαβάστε περισσότεραGutenberg
Διακριτά Μαθηματικά * Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Φροντιστήριο: Α. Κόλλια (akollia@ceid.upatras.gr) * Οι διαφάνειες (πλην αυτών για τις σχέσεις αναδρομής) έχουν παραχθεί από τη Δρ. Ε. Παπαϊωάννου,
Διαβάστε περισσότεραΆδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ
Διακριτά Μαθηματικά Ι Ενότητα 2: Γεννήτριες Συναρτήσεις Μέρος 2 Διδάσκων: Χ. Μπούρας (bouras@cti.gr) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Διαβάστε περισσότεραΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ
Τεχνολογικο Εκπαιδευτικο Ιδρυµα Πελοποννησου Σχολη Τεχνολογικων Εφαρµογων Τµηµα Μηχανικων Πληροφορικης τ.ε. ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ ΨΗΦΙΑΚΗ ΛΟΓΙΚΗ ΣΧΕ ΙΑΣΗ Εξάµηνο: Α ιδάσκων: Γιάννης Λιαπέρδος ιάρκεια
Διαβάστε περισσότερα#(A B) = (#A)(#B). = 2 6 = 1/3,
Κεφάλαιο 4 Πιθανότητες και συνδυαστική Οπως είδαμε σε κάποια παραδείγματα των προηγουμένων κεφαλαίων, συχνά συναντάμε καταστάσεις όπου όλες οι δυνατές εκφάνσεις ενός τυχαίου πειράματος έχουν την ίδια πιθανότητα.
Διαβάστε περισσότεραΚ Ε Μη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Εξέταση Ιούνιος 206 Σελ. από 6 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις απαντήσεις σας
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
Διαβάστε περισσότερα(Γραμμικές) Αναδρομικές Σχέσεις
(Γραμμικές) Αναδρομικές Σχέσεις Διδάσκοντες: Φ. Αφράτη, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναδρομικές Σχέσεις
Διαβάστε περισσότεραO n+2 = O n+1 + N n+1 = α n+1 N n+2 = O n+1. α n+2 = O n+2 + N n+2 = (O n+1 + N n+1 ) + (O n + N n ) = α n+1 + α n
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Σχέσεις Αναδρομής Γραμμικές Σχέσεις Αναδρομής με σταθερούς συντελεστές
Διαβάστε περισσότεραΣτατιστική. 2. Να κατασκευάσετε το κυκλικό διάγραµµα των. x i. ν i Σε ένα κυκλικό διάγραµµα παριστάνεται η.
Στατιστική 1. Σε µια εταιρεία εργάζονται 10 εργάτες, 30 διοικητικοί υπάλληλοι και 60 επιστήµονες. Να κατασκευάσετε πίνακα συχνοτήτων, σχετικών συχνοτήτων, επί % πίνακα σχετικών συχνοτήτων, ραβδόγραµµα
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι
HY118- ιακριτά Μαθηµατικά Θεωρία γράφων / γραφήµατα Τρίτη, 17/05/2016 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 5/22/2016 1 1 5/22/2016 2 2 Τι είναι οι γράφοι; Mία ειδική κλάση διακριτών δοµών (που
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα)
Συνδυαστική Απαρίθμηση Υπολογισμός αριθμού διαφορετικών αποτελεσμάτων πειράματος (με συνδυαστικά επιχειρήματα) Πείραμα: διαδικασία που παράγει πεπερασμένο σύνολο αποτελεσμάτων Πληθικός αριθμός συνόλου
Διαβάστε περισσότεραP(n, r) = n! P(n, r) = n r. (n r)! n r. n+r 1 r n!
Διακριτά Μαθηματικά Σύνοψη Θεωρίας Τυπολόγιο Αναστασία Κόλλια 20/11/2016 1 / 55 Κανόνες γινομένου και αθροίσματος Κανόνας αθροίσματος: Αν ένα γεγονός μπορεί να συμβεί κατά m τρόπους και ένα άλλο γεγονός
Διαβάστε περισσότεραΓενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα
Γενικό πλάνο Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 1 Παράδειγµα δοµικής επαγωγής 2 Ορισµός δοµικής
Διαβάστε περισσότεραΔιδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Σχέσεις Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Διμελής Σχέση Διατεταγμένο ζεύγος (α, β):
Διαβάστε περισσότεραΜαθηµατικά για Πληροφορική
Μαθηµατικά για Πληροφορική 3ο Μάθηµα Ηλίας Κουτσουπιάς, Γιάννης Εµίρης Τµήµα Πληροφορικής και Τηλεπικοινωνιών Πανεπιστήµιο Αθηνών 14/10/2008 14/10/2008 1 / 24 Γενικό πλάνο 1 Παράδειγµα δοµικής επαγωγής
Διαβάστε περισσότεραΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ (2ος Κύκλος) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό
Διαβάστε περισσότεραx < y ή x = y ή y < x.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εαρινό Εξάμηνο 011-1 Τμήμα Μαθηματικών Διδάσκων: Χ.Κουρουνιώτης Μ8 ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΥΣΗΣ Φυλλάδιο 1 Ανισότητες Οι πραγματικοί αριθμοί είναι διατεταγμένοι. Ενισχύουμε αυτήν την ιδέα με
Διαβάστε περισσότεραΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διαβάστε περισσότεραΣυνδυαστική Απαρίθμηση
Συνδυαστική Απαρίθμηση ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συνδυαστική Απαρίθμηση Υπολογισμός
Διαβάστε περισσότεραιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ
ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΓΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΤΗ ΔΙΟΙΚΗΣΗ ΚΑΙ ΣΤΗΝ ΟΙΚΟΝΟΜΙΑ 7 Ο ΜΑΘΗΜΑ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΑΠΟΣΤΟΛΙΑ ΠΑΓΓΕ Περιεχόμενα 2 Δυαδικό Σύστημα Προσημασμένοι δυαδικοί αριθμοί Αφαίρεση
Διαβάστε περισσότεραΑσκήσεις μελέτης της 6 ης διάλεξης
Οικονομικό Πανεπιστήμιο Αθηνών, Τμήμα Πληροφορικής Μάθημα: Τεχνητή Νοημοσύνη, 2016 17 Διδάσκων: Ι. Ανδρουτσόπουλος Ασκήσεις μελέτης της 6 ης διάλεξης 6.1. (α) Το mini-score-3 παίζεται όπως το score-4,
Διαβάστε περισσότεραΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)
ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (7) 25/7/2012 Θέμα Α Α1. Να γράψετε στο τετράδιό
Διαβάστε περισσότεραΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς
ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack Χλης Νικόλαος-Κοσμάς Περιγραφή παιχνιδιού Βlackjack: Σκοπός του παιχνιδιού είναι ο παίκτης
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Α ) ΚΑΙ ΜΑΘΗΜΑΤΩΝ ΕΙ ΙΚΟΤΗΤΑΣ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ (ΟΜΑ Α Β ) ΠΕΜΠΤΗ 7 ΜΑΪΟΥ 010 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ
Διαβάστε περισσότεραHY118- ιακριτά Μαθηµατικά. Σχέσεις. Την προηγούµενη φορά. Αντισυµµετρικότητα. 13 Σχέσεις
HY8- ιακριτά Μαθηµατικά Πέµπτη, 23/03/207 Σχέσεις Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 3/24/207
Διαβάστε περισσότεραΜη γράφετε στο πίσω μέρος της σελίδας
Διακριτά Μαθηματικά Ενδιάμεση εξέταση 1 Φεβρουάριος 2014 Σελ. 1 από 7 Στη σελίδα αυτή γράψτε μόνο τα στοιχεία σας. Γράψτε τις απαντήσεις σας στις επόμενες σελίδες, κάτω από τις αντίστοιχες ερωτήσεις. Στις
Διαβάστε περισσότεραΠόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές;
Η ύλη συνοπτικά... Στοιχειώδης συνδυαστική Γεννήτριες συναρτήσεις Σχέσεις αναδρομής Θεωρία Μέτρησης Polyá Αρχή Εγκλεισμού - Αποκλεισμού Πόσες από αυτές τις σκακιέρες είναι αλήθεια διαφορετικές; Αυτές οι
Διαβάστε περισσότεραΟΡΙΖΟΝΤΙΑ ΨΗΦΟΦΟΡΙΑ ΣΤΙΣ ΒΟΥΛΕΥΤΙΚΕΣ ΕΚΛΟΓΕΣ
ΠΛΑΤΦΟΡΜΑ ΟΜΑΔΩΝ ΠΟΛΙΤΩΝ ΔΙΑΦΑΝΕΙΑ ΤΩΡΑ! ΟΡΙΖΟΝΤΙΑ ΨΗΦΟΦΟΡΙΑ ΣΤΙΣ ΒΟΥΛΕΥΤΙΚΕΣ ΕΚΛΟΓΕΣ Λευκωσία, 25 Μαρτίου 2015. Ομάδα Εργασίας για την Οριζόντια Ψηφοφορία αποτελούμενη από εκπρόσωπους τριών κομμάτων (ΔΗΣΥ,
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΑΝΟΥΑΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό
Διαβάστε περισσότεραΜερικές διατάξεις. HY118- ιακριτά Μαθηµατικά. Μερικές διατάξεις, παράδειγµα. ιαγράµµατα Hasse: Αναπαράσταση σχέσεων µερικής διάταξης
HY118- ιακριτά Μαθηµατικά Παρασκευή, 04/04/2017 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr Το υλικό των διαφανειών έχει βασιστεί σε διαφάνειες του Kees van Deemter, από το University of Aberdeen 4/7/2017
Διαβάστε περισσότεραΑλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 6 Νοεµβρίου 0 Ασκηση. Θεωρούµε
Διαβάστε περισσότερα