3. SEEMINGLY UNRELATED REGRESSIONS (SUR)
|
|
- Ῥαχήλ Ενυώ Αλεξανδρίδης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 3. SEEMINGLY UNRELATED REGRESSIONS (SUR) [] Examples Demad for some commodities: y Nike,t = x Nike,t β Nike + ε Nike,t y Reebok,t = x Reebok,t β Reebok + ε Reebok,t ; where y Nike,t is the quatity demaded for Nike seakers, x Nike,t is a k Nike vector of regressors such as the uit price of Nike seakers, prices of other seakers, icome..., ad t idexes time. Grufeld s ivestmet data: I: gross ivestmet ($millio) F: market value of firm at the ed of previous year. C: value of firm s capital at the ed of previous year. I it = β i + β i F it + β 3i C it + ε it, where i = GM, CH (Chrysler), GE, etc. Notice that although the same regressors are used for each i, the values of the regressors are differet across differet i. CAPM (Capital Asset Pricig Model) r it - r ft : excess retur o security i over a risk-free security. r mt -r ft : excess market retur. r it -r ft = α i + β i (r mt -r ft ) + ε it. Notice that the values of regressors are the same for every security. SUR-
2 VAR (Vector Autoregressios) g CPI,t = growth rate of CPI (iflatio rate) g GDP,t = growth rate of ormial GDP g CPI,t = α CPI + β CPI g CPI,t- + γ CPI g GDP,t- + ε CPI,t g GDP,t = α GDP + β GDP g CPI,t- + γ GDP g GDP,t- + ε GDP,t Notice that the values of regressors are the same. Cobb-Douglas Cost fuctio system Cost fuctio is a fuctio of output ad iput prices. Assume M iputs (labor, capital, lad, material, eergy, etc). Cobb-Douglas Cost fuctio: lc = α + β ly +Σ β l( P ) + ε. (CD.) M y j= j j c Share fuctios (s j = p j x j /C, where x j = quatity of iput j used) s lc = = β + ε, j =,..., M. (CD.) l P j j j j M M M Observe that Σ s = 0. This imples that Σ β = 0 ad Σ ε = 0. j= j j= j j= j Traslog Cost fuctio System Assume three iputs (j =,, ad 3 idex iputs, capital (k), labor (l), ad fuel (f), respectively. SUR-
3 Traslog productio fuctio: lc = α +Σ j= β jl Pj +.5Σ j= Σi= δ jilog Pjlog Pi +Σ γ l P ly + θ l Y +.5 θ (l Y) + ε, (T.) 3 j= y, j j y yy c where δ ji = δ ij. (See Greee Ch. 4.) This a geeralizatio of Cobb-Douglas cost fuctio. If the productio fuctio is homothetic, γ y, = γ y, = γ y,3 = 0. If the productio fuctio is Cobb-Douglas, δ ji = 0, γ y,j = 0, θ yy = 0, for all j ad i. If the productio fuctio is Cobb-Douglas ad costat returs to scale, δ ji = 0, γ y,j = 0, θ yy = 0, for all j ad i; ad θ y =. Share fuctios: lc s = = β +Σ δ l P + γ l Y + ε ; 3 i= i i y, l P lc s = = β +Σ δ l P + γ l Y + ε ; 3 i= i i y, l P lc s = = β +Σ δ l P + γ l Y + ε i= 3 i i y,3 3 l P3 Note that s + s + s 3 =. Thus, Σ β = ; Σ Σ δ = 0; Σ γ = 0; Σ ε = j= j j= i ji j= y, j j= j (T.) SUR-3
4 [] Basic Model Model: y = X β + ε ; y = X β + ε ; : y = X β + ε, where y i = T, X i = T k i, β i = k i, ε i = (ε i,..., ε it ) = T, ad i =,...,. Assumptios o the model: ) SIC hold. (I fact, WIC are sufficiet). ) cov(ε it,ε jt ) = E(ε it ε jt ) = σ ij for ay t, i ad j. cov(ε it,ε it ) = var(ε it ) = σ ii. 3) cov(ε it,ε js ) = E(ε it ε js ) = 0 for ay t s. 4) The ε it are ormally distributed. (For simplicity. Not required) Implicatio of ozero σ ij : A uobservable macro shock at time t ca ifluece all of the y it. SUR-4
5 Form of E(ε i ε j ) ε... i εε i j εε i j εε i jt ε ε iε j εiε j... εiε i jt E( εε i j ) = E ( εj εj... εjt) = E : : : : ε εitε j εitε j... ε it itε jt σ ij σ ij... 0 = = σ ijit : : : σ ij Matrix represetatio of the model y = X β + ε y = X β + ε : y = X β + ε y X 0 T k... 0 T k β ε y 0 T k X... 0 T k β ε = + : : : : : : y 0T k 0 T k... X β ε T k T T k, where k = Σ i k i. y = X β + ε SUR-5
6 Digressio to Kroecker Products Let A = [a ij ] m ad B = [b ij ] p q. The two matrices do ot have to be of the same dimesios. The, A ab ab... a B a B a B... a B B = : : : a B a B... a B m m m mp q Example: 3 A= ; B = A B = = 4 4 Facts: Let A, B ad C be coformable matrices. The, (A+B) C = (A C) + (B C); (A B)(C D) = AC BD, if AC ad BD ca be defied; (A B) - = A - B -, if both A ad B are ivertible; (A B) = (A B ). Ed of Digressio SUR-6
7 Covariace matrix of ε i the system y = X β + ε Let Σ = [σ ij ]. (Note that σ ij = σ ji ) εε εε... εε εε εε... εε Cov( ε ) = E( ε ε ) = E : : : εε εε... εε σit σit... σ IT σ I σ I... σ I : : : σit σit... σit T T T = =Σ T Ω I If we let ε t = (ε t,..., ε t ), the ε t are iid N(0, Σ). SUR-7
8 [3] OLS ad GLS Two possible OLS OLS o idividual i: β i = ( X X ) X y, for i =,...,. OLS o y = X β + ε : i i i i β β β = = : β ( X X ) X y. Propositio : β j = β, for i =,,...,. j <Proof> Ad X X X X... 0 X X = : : : : : : X X X X X X... 0 = : : : X X. SUR-8
9 ( X X) ( X X)... 0 ( X X ) = ; : : : ( X X) Thus, = X y X y X y. : X y SUR-9
10 β β β = = ( X X ) X y : β ( X X) X y 0 ( X X)... 0 X y = : : : : ( X X) X y ( X X) X y β ( X X) X y β = = : : ( X ) X X y β Implicatio: Note that Cov(ε ) = Σ I T σ ε I T. So, i geeral, the OLS o y = X β + ε would ot be efficiet, ad so are idividual OLS estimators. You ca use idividual OLS estimators β i ad Cov( β ) = σ ( X X ). But they would be iefficiet. i ii j j SUR-0
11 Propositio : Let Ω - = (Σ I T ) - = Ω = ( Σ I ) =Σ I. The, the (ifeasible) GLS T T estimator β = asymptotically efficiet <Proof> Obvious. ( X Ω X ) X Ω y is ubiased, efficiet, cosistet ad Structure of the GLS estimator Deote Σ - = [σ ij ]. The, σ X X σ X X... σ X X σ X X σ X X... σ X X X Ω X = ; : : : σ X X σ X X... σ X X j Σ j σ X y = j j Σ j σ X y = j X Ω y =. : Σ j= X y j (Justify this by yourself.) Efficiecy gai of GLS over OLS: SUR-
12 Digressio Suppose A A A = A A ; A A A = A where A ad A are ivertible square matrices. The, A = (A -A (A ) - A ) - = (A ) - + (A ) - A (A -A (A ) - A ) - A (A ) - A = - (A ) - A (A -A (A ) - A ) - = - (A -A (A ) - A ) - A (A ) - A = - (A -A (A ) - A ) - A (A ) - = - (A ) - A (A -A (A ) - A ) - A = (A -A (A ) - A ) - = (A ) - + (A ) - A (A -A (A ) - A ) - A (A ) - Ed of Digressio A Digressio (Review): Let B = [b ij ] x be a symmetric matrix, ad c = [c,..., c ]. The, the scalar c Bc is called a quadratic form of B. If c Bc > (<) 0 for ay ozero vector c, B is called positive (egative) defiite. If c Bc ( ) 0 for ay ozero c, B is called positive (egative) semidefiite. SUR-
13 Let B be a symmetric ad square matrix give by: Defie the pricipal miors by: B b b... b b b... b = : : : b b... b. b b b b b B b ; B ; B b b b ;... 3 = = 3 = 3 b b b3 b3 b33 B is positive defiite iff B, B,..., B are all positive. B is egative defiite iff B < 0, B > 0, B 3 < 0,.... Ed of Digressio Digressio 3 (Review): Let θ ad θ be two p ubiased estimators. Let c = [c,..., c p ] be ay ozero vector. The, θ is said to be efficiet relative to θ iff var( c θ) var( c θ). ccov ( θ) c ccov ( θ) c 0. c [ Cov( θ) Cov( θ)] c 0. [ Cov( θ) Cov( θ)] is positive semidefiite. SUR-3
14 If θ is more efficiet tha θ, var( θ ) var( j θ j ), for ay j =,..., p. But, the reverse is ot true. Ed of Digressio 3 Retur to Efficiecy gai of GLS over OLS: Cosider the cases of two equatios: y = X β + ε y = X β + ε, with σ σ ; Σ= σ σ σ σ Σ =. σ σ Σ must be positive defiite; that is, σ > 0 ad σ σ -(σ ) > 0. β σ X X σ X X Cov( β ) = Cov = ( X Ω X ) = β σ X X σ X X A A A A = ( say) A A = A A Cov( β ) = A ; Cov( β ) = A. SUR-4
15 Usig the fact that A = (A - A (A ) - A ) -, Cov( β ) = [σ X X - {(σ ) /σ }X X (X X ) - X X ] - = [σ X X - {(σ ) /σ }X X + {(σ ) /σ }X X - {(σ ) /σ }X X (X X ) - X X ] - = [{σ -(σ ) /σ }X X + {(σ )/σ }X M(X )X ] -, where M(X ) = I T - X (X X ) - X = [(/σ )X X + {(σ ) /σ }X M(X )X ] - = σ [X X + {σ (σ ) /σ }X M(X )X ] - = σ [X X + {(σ ) /(σ σ -(σ ) )}X M(X )X ] - = σ [X X + m X M(X )X ] - σ, where m = σ σ σ (m 0). Note that Cov( β) = σ( X X). Thus, β is more efficiet tha β, because: [ Cov( β)] [ Cov( β)] = m XM ( X ) X σ is psd. Cov( β ) Cov( β ) is psd. β is more efficiet. Similarly, we ca show that β is more efficiet tha β. SUR-5
16 There are three possible cases i which β is as efficiet as β (m X M(X )X = 0): ) σ = 0 m = 0. ) X = X X M(X )X = X M(X )X = 0. 3) X = [X,W] X M(X )X = X 0 = 0. For ) ad ), β ad β are equally efficiet. But for 3), β is still more efficiet tha β. Three Cases i which OLS = GLS: Case I: σ ij = 0 for ay i j. Σ = diag(σ,..., σ ) Σ - = diag(/σ,..., /σ ). σ X X σ X X... 0 X Ω X = ; : : : σ X X σ X y σ X y X Ω y =. : σ X y SUR-6
17 Thus, β = ( X Ω X ) X Ω y X X σ X y σ 0 σ X X... 0 σ X y = : : : : σ X X σ X y ( X X) σ σ X y σ X y ( X X) = σ : : : ( X X σ ) σ ( X X) X y ( X X) X y = = β : ( X X) X y : X y Case II: X = X =... = X. This is the case where the values of regressors are the same for all equatios. X X 0 X... 0X 0 X X X... 0X X = = = I X : : : : : : X 0X 0 X... X SUR-7
18 The, β = [X Ω - X ] - X Ω - y = [(I X) (Σ - I T )(I X)] - (I X) (Σ - I T )y = [Σ - X X] - (Σ - X )y = (Σ (X X) - )(Σ - X )y = (I (X X) - X )y = ( XX ) X y ( X X) Xy 0 ( )... 0 y XX X ( X X) Xy = : : : : : ( XX) X y ( X X) Xy = β Case III: X, X,..., X m X m+, X m+,..., X β i = β i for i =,,..., m. But β j are still more efficiet tha β j for j = m+,...,. SUR-8
19 [4] Feasible GLS Estimator The GLS estimator defied above is ot feasible i the sese that it depeds o the ukow covariace matrix Σ. Feasible GLS estimator is a GLS estimator obtaied by replacig Σ by a cosistet estimate of it. Feasible GLS estimators caot be said to be ubiased. But they are cosistet ad asymptotically equivalet to the ifeasible couterpart. () Two-Step Feasible GLS Let T sij = ( yi Xiβ )( i yj X jβ j) = Σ t= etietj ; ad S = [s ij ]. T T It ca be show that plim s ij = σ ij. The two-step feasible GLS estimator is the give by: where Ω= S I. T β = ( X Ω X ) X Ω y, () Iterative Feasible GLS. Usig the two-step GLS estimator, recompute S. Usig this recomputed S, recompute the feasible GLS estimator. Repeat this procedure, util the value of FGLS does ot chage. SUR-9
20 (3) Facts: The two-step ad iterative feasible GLS are asymptotically equivalet to the MLE uder the ormality assumptio about the ε s. I fact, iterative feasible GLS = MLE, umerically. SUR-0
21 [4] MLE of β ad Σ Cosider a simple regressio model: y = Xβ + ε; ε ~ N(0 T,Ω). l T = -(T/)l(π) - (/)l[det(ω)] - (/)(y-xβ) Ω - (y-xβ). The log-likelihood fuctio of the SUR model: y = X β + ε ; ε ~ N(0 T,Σ I T ). l = -(T/)l(π) - (/)l[det(σ I T )] - (/)(y -X β ) (Σ - I T )(y -X β ). Let A ad B are p p ad q q matrices. The, det(a B) = [det(a)] q [det(b)] p (Theil, p. 305). (y -X β ) (Σ - I T )(y -X β ) = Σ i Σ j σ ij (y i -X i β i ) (y j -X j β j ). l = -(T/)l(π) + (T/)l[det(Σ - )] - (/)(y -X β ) (Σ - I T )(y -X β ) = -(T/)l(π) + (T/)l[det(Σ - )] - (/)Σ i Σ j σ ij (y i -X i β i ) (y j -X j β j ) = -(T/)l(π) + (T/)l[det(Σ - )] - (/)Σ i σ ii (y i -X i β i ) (y i -X i β i ) -Σ i Σ j<i σ ij (y i -X i β i ) (y j -X j β j ) l[det( A )] = a ij a ij for A = [a ij ] ad A - = [a ij ]. For a symmetric A, l[det( A )] a ii = a ii ; ad l[det( A )] a ij = a ij for j i. SUR-
22 Maximize l w.r.t. β ad σ ii ad σ ij to get MLE of β ad Σ. Let A be a symmetric p p matrix ad; x be a p vector. The, x Ax = Ax. x FOC: l = X ( Σ IT )( y X β ) = 0; β l T = σii ( yi X ii iβi )( yj X jβ j ) = 0 ; σ l = Tσij ( yi Xiβi )( yj X jβ j ) = 0. ij σ MLE estimators, β ad Σ solves: β = [ X ( Σ I ) X ] X ( Σ I ) y ; σ ij = ( yi X iβ i )( yj X jβ j ) T. T T SUR-
23 [5] Testig Hypotheses Let β be a feasible GLS estimator; S be a cosistet estimator of Σ; ad C = Cov( β ) = [X (S - I T )X ] -. () Testig liear hypotheses: H o : Rβ = r, where R ad r are kow matrices with m rows. Uder H 0, W = ( Rβ r)[ RC R ] ( Rβ r) χ ( m). T Example : l(q coke,t ) = β coke, + β coke, l(p coke,t ) + β coke,3 l(p pep,t ) + ε coke,t ; l(q pep,t ) = β pep, + β pep, l(p coke,t ) + β pep,3 l(p pepe,t ) + ε pep,t. βcoke, β coke, βcoke,3 β = β. pep, β pep, β pep,3 H 0 : Ow-price elasticities are the same. H 0 : β coke, - β pep,3 = 0 R = (0,,0,0,0,-), r = 0. SUR-3
24 Example : Assume that X,..., X cotai the same umber (k) of variables. H 0 : β = β =... = β. R Ik Ik 0 k k... 0k k 0k k 0 k k Ik Ik... 0k k 0 k k = : : : : : 0k k 0k k 0 k k... Ik I k ; r 0 k ( ) =. () Testig oliear hypotheses: H o : w(β ) = 0, where w is a m vecor of fuctios of β. Uder H 0, W = w( β )[ W( β ) CW( β )] w( β ) χ ( m), where T W ( β ) = w. β Example: l(q coke,t ) = β coke, + β coke, l(p coke,t ) + β coke,3 l(p pep,t ) + ε coke,t ; l(q pep,t ) = β pep, + β pep, l(p coke,t ) + β pep,3 l(p pep,t ) + ε pep,t. H 0 : β coke, β pep,3 = w( β ) = β β. coke, pep,3 W ( β ) = (0, β,0,0,0, β ). pep,3 coke, SUR-4
25 (3) Testig diagoality of Σ Digressio to LM test: Let θ be a ukow parameter vector (p ). H o : w(θ) = 0. Let θ R be the restricted MLE wihch max. l T subject to w(θ) = 0. lt Let st ( θ ) = ad I θ T lt( θo) ( θ ) = E θθ. The, LM = s ( θ )[ ( )] ( R I θ R s θ R). Ed of Digressio T T T Note that uder H o : Σ is diagoal, the restricted MLE of β i s = OLS of β i s; restricted MLE of σ ii = s ii = ( y X β )( y X β )/ T ; ad restricted MLE of σ ij = 0. i i i i i j Breusch ad Paga (979, Restud): Let r ij = s ij /(s ii s jj ) / (estimated correlatio coefficiet betwee e i ad e j ). LM T for H o = TΣ i Σ j<i r ij χ [(-)/]. Do ot eed to compute urestricted MLE. This statistic is obtaied uder the assumptio of ormal errors. Questio: Is this statistic still chi-squared eve if the errors are ot ormal? SUR-5
26 [6] Autocorrelatio: () AR() y it = x it β i + ε it ; ε it = ρ i ε i,t- + v it ; (v t,..., v t ) ~ N(0, Σ). Use OLS estimates of β i to estimate ρ i s as we did i ECN 55. Trasform each equatio usig Prais-Wiste or Cochrae-Orcutt methods: y ρ y = ρ x β + v ; i i i i i i ρ y = ( x ρ x ) β + v ; i i i i i i i i y it : ρ y = ( x ρ x ) β + v. i i, T it i i, T i it The, do SUR. () AR(p) Similar to the above procedures. (3) MA(q): Procedures are complicated. SUR-6
27 [6] Applicatio: Use taba5_a.wf (EVIEWS data set) from the CD attached to the textbook. Grufeld s ivestmet data: I: gross ivestmet ($millio) F: market value of firm at the ed of previous year. CS: value of firm s capital at the ed of previous year. I it = β i + β i F it + β 3i CS it + ε it, where i = GM (), CH (Chrysler, ), GE (3), WE (Westighouse, 4), ad US (U.S. Steel, 5). GLS Read the work file usig EVIEWS. Go to \objects\new Objects... Choose System ad click o the ok butto. The, a empty widow will pop up. Type the followigs o the widow: i = c()+c()f+c(3)cs i = c(4)+c(5)f+c(6)cs i3 = c(7)+c(8)f3+c(9)cs3 i4 = c(0)+c()f4+c()cs4 i5 = c(3)+c(4)f5+c(5)cs5 Click o proc\estimate. The, you will see the meu for etimatio of systems of equatios. Choose Seeigly Urelated Regressio. For Two-Step GLS, choose Iterate Coefs. For Iterative GLS, choose Sequetial. Do ot use Oe-Step Coefs or Simultaeous. SUR-7
28 <Two-Step GLS> Estimatio Results: System: SUR Estimatio Method: Seemigly Urelated Regressio (Marquardt) Sample: Icluded observatios: 0 Total system (balaced) observatios 00 Liear estimatio after oe-step weightig matrix Coefficiet Std. Error t-statistic Prob. C() C() C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(0) C() C() C(3) C(4) C(5) Determiat residual covariace 6.8E+3 Equatio: I = C()+C()F+C(3)CS Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I = C(4)+C(5)F+C(6)CS Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat SUR-8
29 Equatio: I3 = C(7)+C(8)F3+C(9)CS3 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I4 = C(0)+C()F4+C()CS4 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var 9.09 S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I5 = C(3)+C(4)F5+C(5)CS5 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat.0798 SUR-9
30 views/residuals/graphs I Residuals I Residuals I3 Residuals 0 I4 Residuals I5 Residuals SUR-30
31 views/residulas/correlatio matrix I I I3 I4 I5 I I I I I Testig H o : c() = c(4), c() = c(5), c(3) = c(6) views/wald Coefficiet Tests. Type: c() = c(4), c() = c(5), ad c(3) = c(6). Wald Test: System: SUR Null Hypothesis: C()=C(4) C()=C(5) C(3)=C(6) Chi-square Probability SUR-3
32 <Iterative GLS> System: SUR Estimatio Method: Iterative Seemigly Urelated Regressio (Marquardt) Date: 08/9/0 Time: 8:57 Sample: Icluded observatios: 0 Total system (balaced) observatios 00 Sequetial weightig matrix & coefficiet iteratio Covergece achieved after: 3 weight matrices, 4 total coef iteratios Coefficiet Std. Error t-statistic Prob. C() C() C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(0) C() C() C(3) C(4) C(5) Determiat residual covariace 5.97E+3 Equatio: I = C()+C()F+C(3)CS Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I = C(4)+C(5)F+C(6)CS Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat.885 SUR-3
33 Equatio: I3 = C(7)+C(8)F3+C(9)CS3 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I4 = C(0)+C()F4+C()CS4 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var 9.09 S.E. of regressio Sum squared resid Durbi-Watso stat.4739 Equatio: I5 = C(3)+C(4)F5+C(5)CS5 Observatios: 0 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat SUR-33
34 <GLS with AR()> EVIEWS estimates β s ad ρ s joitly usig oliear GLS method. Type: i = c()+c()f+c(3)cs+[ar()=c(4)] i = c(5)+c(6)f+c(7)cs+[ar()=c(8)] i3 = c(9)+c(0)f3+c()cs3+[ar()=c()] i4 = c(3)+c(4)f4+c(5)cs4+[ar()=c(6)] i5 = c(7)+c(8)f5+c(9)cs5+[ar()=c(0)] The followig results are from two-step oliear GLS (Iterate Coefs). System: SUR Estimatio Method: Seemigly Urelated Regressio (Marquardt) Date: 08/9/0 Time: 9:00 Sample: Icluded observatios: 0 Total system (balaced) observatios 95 Iterate coefficiets after oe-step weightig matrix Covergece achieved after: weight matrix, 50 total coef iteratios Coefficiet Std. Error t-statistic Prob. C() C() C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(0) C() C() C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(0) SUR-34
35 Determiat residual covariace.6e+3 Equatio: I = C()+C()F+C(3)CS+[AR()=C(4)] Observatios: 9 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I = C(5)+C(6)F+C(7)CS+[AR()=C(8)] Observatios: 9 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat.7844 Equatio: I3 = C(9)+C(0)F3+C()CS3+[AR()=C()] Observatios: 9 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat.989 Equatio: I4 = C(3)+C(4)F4+C(5)CS4+[AR()=C(6)] Observatios: 9 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat Equatio: I5 = C(7)+C(8)F5+C(9)CS5+[AR()=C(0)] Observatios: 9 R-squared Mea depedet var Adjusted R-squared S.D. depedet var S.E. of regressio Sum squared resid Durbi-Watso stat SUR-35
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
Lecture 3: Asymptotic Normality of M-estimators
Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95
r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95
Outline. Detection Theory. Background. Background (Cont.)
Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear
Μηχανική Μάθηση Hypothesis Testing
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Solve the difference equation
Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y
Bessel function for complex variable
Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {
Three Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
SECTION II: PROBABILITY MODELS
SECTION II: PROBABILITY MODELS 1 SECTION II: Aggregate Data. Fraction of births with low birth weight per province. Model A: OLS, using observations 1 260 Heteroskedasticity-robust standard errors, variant
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
Introduction to the ML Estimation of ARMA processes
Introduction to the ML Estimation of ARMA processes Eduardo Rossi University of Pavia October 2013 Rossi ARMA Estimation Financial Econometrics - 2013 1 / 1 We consider the AR(p) model: Y t = c + φ 1 Y
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Supplementary Appendix
Supplementary Appendix Measuring crisis risk using conditional copulas: An empirical analysis of the 2008 shipping crisis Sebastian Opitz, Henry Seidel and Alexander Szimayer Model specification Table
true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx
Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University
Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE
INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Homework 4.1 Solutions Math 5110/6830
Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 =
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
1 1 1 2 1 2 2 1 43 123 5 122 3 1 312 1 1 122 1 1 1 1 6 1 7 1 6 1 7 1 3 4 2 312 43 4 3 3 1 1 4 1 1 52 122 54 124 8 1 3 1 1 1 1 1 152 1 1 1 1 1 1 152 1 5 1 152 152 1 1 3 9 1 159 9 13 4 5 1 122 1 4 122 5
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Table 1: Military Service: Models. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed
Tables: Military Service Table 1: Military Service: Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 num unemployed mili mili num unemployed mili 0.489-0.014-0.044-0.044-1.469-2.026-2.026
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Proof of Lemmas Lemma 1 Consider ξ nt = r
Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Example of the Baum-Welch Algorithm
Example of the Baum-Welch Algorithm Larry Moss Q520, Spring 2008 1 Our corpus c We start with a very simple corpus. We take the set Y of unanalyzed words to be {ABBA, BAB}, and c to be given by c(abba)
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Mean-Variance Analysis
Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)
Cornell University Department of Economics Econ 60 - Spring 004 Instructor: Prof. Kiefer Solution to Problem set # 5. Autocorrelation function is defined as ρ h = γ h γ 0 where γ h =Cov X t,x t h =E[X
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
Chap. 6 Pushdown Automata
Chap. 6 Pushdown Automata 6.1 Definition of Pushdown Automata Example 6.1 L = {wcw R w (0+1) * } P c 0P0 1P1 1. Start at state q 0, push input symbol onto stack, and stay in q 0. 2. If input symbol is
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Τέλος Ενότητας Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X