Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators"

Transcript

1 Higer Order Properties of Bootstrap ad Jackkife Bias Corrected Maximum Likeliood Estimators Jiyog Ha Brow Uiversity Guido Kuersteier MIT Marc 5, 2002 Witey Newey MIT Abstract Pfazagl ad Wefelmeyer (978) sow tat bias corrected ML estimators are iger order efficiet. Teir procedure owever is computatioally complicated because it requires itegratig complicated fuctios over te distributio of te MLE estimator. Te purpose of tis paper is to sow tat tese itegrals ca be replaced by sample averages witout affectig te iger-order variace. We focus o bootstrap ad jackkife based bias correctio as a way to implemet bias correctios i a oparametric way. We fid tat our bootstrap ad jackkife bias corrected ML estimators ave te same iger order variace as te efficiet estimator of Pfazagl ad Wefelmeyer. Bias corrected ML estimators are terefore iger order efficiet eve if te bias fuctio is estimated from te data rater ta computed aalytically. Departmet of Ecoomics, Brow Uiversity, Box B, Providece, RI Jiyog_Ha@brow.edu MIT, Departmet of Ecoomics, E52-37A, 50 Memorial Drive, Cambridge, MA gkuerste@mit.edu. Fiacial support from NSF grat SES is gratefully ackowledged. MIT, Departmet of Ecoomics, E52-262, 50 Memorial Drive, Cambridge, MA wewey@mit.edu.

2 Itroductio Optimality properties of oterwise asymptotically efficiet estimators are ofte distorted by small sample biases. Pfazagl ad Wefelmeyer sow tat bias corrected imum likeliood (ML) estimators are iger order asymptotically efficiet. Teir bias correctio ivolves aalytical computatio of ofte complicated itegrals ivolvig te true data desity. From a applied poit of view tis procedure is terefore uattractive if ot ofte ifeasible. As a result te statistical ad ecoometric literature as see a variety of alterative bias correctio teciques tat acieve ubiasedess up to stocastic orders of i iid settigs, were istesamplesize. Adrews (993) cosiders media ubiased estimatio of a autoregressive model wit ormal errors. His procedure is based o te iversio of te quatile fuctio tat is i priciple kow or ca be umerically evaluated. Sice tis procedure depeds o complicated fuctios of te uderlyig desity geeralizatios are ot straigt forward. Taylor series expasios of te estimator ca be used to obtai approximate formulae for te bias. Tese formulas te eed to be estimated, ofte by meas of oparametric teciques requirig te coice of furter uisace parameters suc as badwidt selectios. I te cotext of simultaeous equatios models Nagar (959) proposed a similar correctio based o iger order expasios of te two stage least squares estimator. A more geerally applicable, ad less parametric procedure is te Jackkife procedure ad more geeral resamplig algoritms. Te Jackkife bias estimator goes back to Queouille (949). Bootstrap bias estimatio was discussed by Parr (983), Sao (988a,b) ad Horowitz (998) i te cotext of oliear trasformatios of OLS estimators of liear models ad oliear fuctios of te mea. Bootstrap bias correctio is also metioed i Hall (992). We exted te literature o te bootstrap ad jackkife bias corrected estimator i two directios. First, we aalyze geuiely oliear estimators rater ta oliear trasformatios of liear estimators as i Sao. Tis requires a careful treatmet of te potetial oexistece of momets of te actual estimator. We address tis problem by itroducig trucatig parameters tat become less restrictive as te sample expads. Secodly, te literature o bootstrap bias corrected estimators as bee focused o aalyzig bias properties witout ivestigatig te effects of bias correctio o te iger order variace. We are istead workig wit tird rater ta secod order expasios of te bias corrected estimators. Tis allows us to aalyze te effect bias correctio as o te iger order variace of te estimator. We are carryig out our aalysis i a likeliood framework. Tis allows us to aalyze iger order efficiecy properties of bias corrected estimators. We sow tat te bias correctio, eve toug based o sample averages, does ot icrease te iger order variace of te estimator compared to te bias corrected estimators of Pfazagl ad Wefelmeyer (978) ad tus leads to a iger order efficiet procedure. 2

3 2 Higer Order Compariso of Bootstrap ad Jackkife Bias Corrected MLE I tis sectio, we first cosider a simple parametric model, ad derive iger order expasios of te imum likeliood estimator (MLE). We te derive iger order expasios of te bootstrap ad jackkife bias corrected MLE, ad argue tat tey are iger order equivalet. We argue tat suc bias corrected estimators sould ave te same iger order variace as te bias corrected MLE developed by Pfazagl ad Wefelmeyer (978), wic was sow to be tird order optimal. 2. Higer Order Expasio of MLE Cosider a stadard parametric model i f (z, 0 ),wicsatisfies sufficiet smootess coditios. For simplicity, it is assumed tat dim ( 0 )=. We cosider properties of te MLE b were b X i= log f ( i, ). We later impose coditios tat guaratee tat te MLE ca be uderstood as a solutio to X log f i, b X 0= ` i, b. i= i= Tis coditio is certaily satisfied for parametric models tat ave aalytical solutios for b,atleast wit probability tedig to oe if te true parameter is i te iterior of a compact parameter space. More geerally, tis coditio could also be satisfied, at least up to a error tat vaises at a sufficietly fast rate if te model does ot posses a aalytical solutio but te imum of te log likeliood lies witi te iterior of te parameter space wit probability tedig to oe. We are abstractig from tese tecical details to keep te expositio of our mai results as clear as possible. It is coveiet to uderstad b b, were (²) deotes te solutio to te estimatig equatio Here, 0= ` (, ) df ² (z). F ² F ² F ² bf F, ² 0, ad F ad F b deote te uderlyig cumulative distributio fuctio ad te empirical distributio fuctio F b (z) P i= { i z}. We obtai bootstrapped estimates b by samplig,..., idetically ad idepedetly from te empirical distributio bf. We deote te distributio of,..., by bf (z) = P i= { i z}. 3

4 Usig previous otatio it terefore follows tat b b is te solutio to were 0= ` (, ) d bf ² (z), bf ² bf ² b bf ² F b bf, ² 0,. Here, b is te bootstrap empirical process b F b bf. We are imposig te followig tecical coditios to guaratee te validity of our stocastic expasios. Coditio (i) Te fuctio log f (,, α) is cotiuous i Υ; (ii) Te parameter space Υ is a compact, separable metric space, 0 it (Υ); (iii) Tere exists a fuctio M (z) suc tat m log f (z, ) m M (z) 0 m 7 ad E M ( i ) Qi < for some Q > 6; (iv) Lettig G () E [log f ( i, )], we ave G ( 0 ) sup {: 0 >η} G () > 0 for eac η > 0. Coditio 2 Let φ (F, ) R ` (, (²)) df (z) be a fuctioal of F idexed by Υ, adletφ 0 (F, ) R `(,(²)) df (z). For all D [, ] wit kk ad lim z (z) = lim z (z) =0ad all ² [0, / ] fixed, tere exist b (²), b (²) Υ suc tat φ F ², b (²) =0ad φ F b ², b (²) =0 except for some bf wit probability zero. Also, assume φ 0 F ², b (²) 6= 0ad φ 0 bf ², b (²) 6= 0 except for some bf wit probability zero. Coditio 3 For eac Υ ad for m 7 let m log f (z, ) / m be a F -measurable fuctio of z. Coditio 4 Let F be te class of fuctios m log f (z,) / m idexed by Υ wit evelope M (z). Te evelope fuctio M (z) satisfies Pollard s etropy coditio v u µ /2 t log N ε M dq 2, F,L 2 (Q) dε <, () 0 sup Q P were P is te class of probability measures o R tat cocetrate o a fiite set ad N is te cover umber defied i va der Vaart ad Weller (996, p.90). Coditio is a stadard coditio guarateeig idetificatio of te model ad imposig sufficiet smootess coditios as well as existece of iger momets to allow for a iger order stocastic expasio of te estimator. Coditio 2 formalizes te fact tat te first order coditios are satisfied exactly at te imum for observatios tat are geerated from distributios tat are cotaied witi a eigborood of te true data desity. Tis latter requiremet is importat for bootstrap based 4

5 samples tat are ot derived directly from te origial data desity. Coditio 3 togeter wit separability of te parameter space guaratees measurability of suprema of our empirical processes. As is well kow from te probability literature, measurability coditios could be relaxed somewat at te expese of more refied covergece argumets. We are abstractig from suc refiemets for te purpose of tis paper. Te idea beid usig te bootstrap is rougly speakig tat uder certai regularity coditios it ca be sow tat b b as te same properties as b 0 ad ca terefore be used to obtai bias approximatios ad oter correctios to te small sample distributio. From Gie ad i (990, Teorem 2.4) ad Coditios,2,3 ad 4 it follows tat, almost surely, /2 ˆF ˆF T weakly i l (F). We use te result o te covergece of te empirical processes to obtai a expasio of te estimators b ad b. Let ` (, ) log f (, )/, ` (, ) 2 log f (, ) ± 2, ` (, ) 3 log f (, ) ± 3,etc. Defie I E `( i, 0 ), Q () E ` ( i, ) ad Q 2 () E ` ( i, ). It is coveiet to express te resultig expasio i terms of U ad V-statistics. We defie U i () ` ( i, ), V i () ` ( i, ) E ` ( i, ), W i ` ( i ) E ` ( i ) ad let U () /2 P i= U i (), V () /2 P i= V i (), ad W () /2 P i= W i (). i Propositio Assume tat dim () =. Uder Coditio, tere exists some ² 0, suc tat b satisfies te expasio b 0 = ² (0) ²² (0) 2 6 ²²² (0) (2) 24 ²²²² (0) 20 2 ²²²²² (0) ²²²²²² (e²) (3) were ² (0) = I U ( 0 ), (4) ²² (0) = I 3 Q ( 0 ) U ( 0 ) 2 2I 2 U ( 0 ) V ( 0 ) (5) ad ²²² (0) = I 4 Q 2 ( 0 ) U ( 0 ) 3 3I 5 Q ( 0 ) 2 U ( 0 ) 3 9I 4 Q () U ( 0 ) 2 V ( 0 ) (6) 3I 3 U ( 0 ) 2 W ( 0 )6I 3 U ( 0 ) V ( 0 ) 2. Moreover, ² (0) = O p (), ²² (0) = O p (), ²²² (0) = O p () ad ² 0, i ²²²² (²) =O p (). Proof. See Appedix A.4. Usig expasio (2), we defie te approximate estimator e 0 /2 ² (0) 2 ²² (0) 6 3/2 ²²² (0). We ca ow defie te expected value of tis approximate estimate as i E e = b () c () 3/2 5

6 were b () 2 E [²² ]= 2I 2 E ` I 2 E ``. i i i If E b exists, te E e will be approximately equal to E b at least up to order / except possibly for some patological cases. Terefore, we ca uderstad b() as te iger order bias of b. Likewise, we ave " µ 2 E e b () 0 I υ were υ 4 Var (²² ) 3 E [²²² ² ] Terefore, we ca uderstad I υ as te iger order variace of b. Fially, we ca defie te iger order MSE as E e 0 2 I υ b ()2. I order to approximate te bias of te bootstrapped estimate b we eed a similar iger order expasio as i te case of te ML estimator. Here, owever, te referece poit aroud wic we develop our approximatio is te empirical distributio bf rater ta te origial distributio F. Te covergece of bf to F te guaratees tat bootstrapped statistics are close to te origial statistics. We replace I, Q ad Q 2 wit bi= P `( i= i, b ), bq = P i= ` ( i, b ) ad bq 2 = P i= ` ( i, b ) ad defie bootstrapped U ad V-statistics as Ui () ` ( i, ), V i () ` (i, ) P i= ` ( i, ), Wi ` (i ) P i= ` ( i, ) ad let U () = /2 P i= U i (), V () = /2 P W () = /2 P i= W i () we obtai for te followig result for te bootstraped estimate b. i= V i () ad Propositio 2 Assume tat dim () =. Uder Coditios,2,3 ad 4 ² 0, /2 suc tat b satisfies te expasio b b = b ² (0) ²² b (0) 2 6 b ²²² (0) 24 b ²²²² (0) 20 b 2 ²²²²² ( ²) a.s. were b ² (0) = I b U b, b ²² (0) = I b 3 Q b b U b 2 2I b 2 U b V b etc. Moreover, b ² (0) = O p (), b ²² (0) = O p (), b ²²² (0) = O p (), b ²²²² (0) = O p () ad ² [0, /2 ] b ²²²²² (²) =O p () were all orders of probability old P N a.s., were P N is defiedipropositio6iteappedix. 2.2 Bootstrap Bias Correctio Bootstrap Bias estimatio ad Bias correctio was aalyzed i te cotext of liear models by Sao (988a,b). Let E be te expectatio operator wit respect to bf. Te idea beid te Bootstrap bias 6

7 i correctio is to estimate E b 0, if it exists, by E b i b. Sice i our case we ca ot guaratee i existece of E b we sow istead tat E b i is close to b (). Tis i tur will allow us to costruct te bias corrected estimate 2 b E b i. Sice is a potetially igly oliear fuctio of te uderlyig desity we itroduce a trucated versio of te bootstrap bias estimator. A similar form of trucatio was suggested by Sao (988b). However, Sao required tat te trucatio poit was bouded i probability as te sample size grows. We allow for growig trucatio poits i order to guaratee te asymptotically iger order ubiasedess of our procedure. We itroduce te statistic C (), werec () =O p () ad {,..., }. Te trucated bootstrap bias estimate is te defied as b E b b i were (x) = α C () x α C () if x< α C () if x < α C () if x> α C () (7) Possible coices for C () are estimates suc as te stadard deviatio of b. We first establis tat E b b i estimates te iger order bias b () cosistetly. Propositio 3 Assume tat dim () =.AlsoassumeCoditios,2,3ad4old.Let be defied i 7witα 0, 4 30.Te b = b ( 0) o p. Proof. See Appedix A.4. Note tat te restrictios imposed o α deped o te smootess of te uderlyig model ad could be relaxed at te cost of additioal restrictios o te desities f(z,). Wile tis result establises tat we ca cosistetly estimate te iger order bias it is ot sufficiet to guaratee good iger order properties of te bias corrected estimator. For tis reaso we establis te ext result. Propositio 4 Assume tat dim () =.Let be defied as i 7. Te b E b i 0 were B is defied i (44) i te Appedix. = I U( 0) µ 2 ²² (0) b( 0 ) 6 ²²² (0) 2 B o p µ, 7

8 Proof. See Appedix A.4. Because E ²² (0) 2 b( 0 ) =0, we ca see tat te bootstrap successfully removes bias. It terefore follows tat E e E b 0 2 Var e 0 2 E [B² ]. 2.3 Jackkife Bias Correctio A alterative to te bootstrap is a jackkife bias corrected estimator. We develop te iger order teory for suc a estimator i tis sectio ad compare its iger order properties to te properties of te bootstrap bias corrected procedure. Let b (i) deote te MLE based o delete-i sample. Te jackkife bias corrected estimator is give by J = b X i= b (i) Te followig propositio establises te iger order properties of te Jackkife bias corrected ML estimator. Propositio 5 Assume tat dim () =. Also assume Coditio olds. Te te jackkife bias corrected ML estimator as a iger order expasio as i (J 0 ) = ² µ 2 ²² (0) b( 0 ) 6 ²²² µ 2 J o p were J is defied i (52) i te Appedix. Proof. See Appedix A.4. It follows at oce tat J = B, (8) wic meas tat te Jackkife ad Bootstrap bias corrected versios of te ML estimator are iger order equivalet. Tey do ot oly ave te same iger order variace but agree more geerally i terms of teir iger order distributio at least as far as te stocastic approximatio allows to make suc comparisos. 8

9 3 Higer Order Efficiecy I tis sectio we obtai te iger order asymptotic properties of te bias corrected estimator of Pfazagl ad Wefelmeyer (978). Sice tat estimator was sow to be iger order efficiet we will coclude tat our bias corrected estimator is iger order efficiet if it as te same iger order variace as te Pfazagl ad Wefelmeyer estimator. I geeral, we dim (), we still ave a expasio similar to Propositio 2: b 0 = ² (0) ²² (0) µ 2 6 ²²² (0) O p, Te asymptotic bias of MLE is te equal to b ( 0 ) ²² (0) = E 2 Suppose tat tere is some vector of fuctios m (z, ) ad aoter vector of fuctios τ (m) wit µ b () τ m (z, ) f (z,) dz. Tis leads to a bias corrected estimator b c b b b Implemetatio of te Pfazagl ad Wefelmeyer procedure is potetially complicated if te itegral R m (z, ) f (z,) dz is difficult to compute. A alterative is terefore to replace te itegral by sample averages. For b () τ X i m ( i, ), a alterative bias correctio is te b b b a b We ca sow tat b a ad b c ave te same mea squared error up to order O by aalyzig teir iger order variace. Let m () E [m ( i, )] = m (z, ) f (z, 0 ) dz (9) wit j-t elemet m j () ad write m = m ( 0 ), τ m τ (m) / m 0, M E ad Λ E m ( i, 0 ) ` ( i, 0 ) 0. i m(i, 0) 0 = R m(z, 0) f (z, 0 0 ) dz, We dim () =, we ave see tat b () = 2I 2 E ` I 2 E ``. Terefore, we ave b () τ R m (z, ) f (z,) dz, were τ (t,t 2,t 3 ) 2t 2 t 2 t 2 t 3, t R ` (z,) 2 f (z,) dz, t 2 R ` (z,) f (z,) dz, t 3 R ` (z, ) ` (z,) f (z, ) dz, ad m (z, ) ` (z,) 2,` (z,),`(z,) ` (z,) 0. 9

10 Teorem Assume Coditios,3 ad 4 old. Let be defied i 7 wit α 0, 4 30.Te, bc 0 = ² (0) µ 2 ²² (0) b ( 0 ) µ 6 ²²² (0) C o p, ba 0 = ² (0) µ 2 ²² (0) b ( 0 ) µ 6 ²²² (0) A o p were A = τ m M I U ( 0 ) /2 P i (m (z i, 0 ) m), C = τ m (M Λ) I U ( 0 ),ad E C ² (0) 0 = E A ² (0) 0 = τ m (M Λ) I. Proof. See Appedix A.4. Tis result implies tat te four bias corrected estimators all ave te same iger order variace term. Assume for simplicity tat dim () =. Because bc 0 = ² (0) µ 2 ²² (0) b ( 0 ) µ 6 ²²² (0) C o p, we ca defie te approximate MSE of bc 0 tobetemeasquareofterhsigorigte o p. It is easy to see tat te approximate MSE of bc 0 is equal to " µ E ( ² (0)) 2i 2 µ E 2 ²² (0) b ( 0 ) E =Var( ² (0)) µ Var 2 ²² (0) ² (0) Likewise, we ca see tat te approximate MSE of ba 0 is equal to 6 ²²² (0) C µ Cov 6 ²²² (0), ² (0) Cov (C, ² (0)) Var ( ² (0)) µ Var 2 ²² (0) µ Cov 6 ²²² (0), ² (0) Cov (A, ² (0)) Teorem idicates tat Cov (C, ² (0)) = Cov (A, ² (0)), ad terefore, te approximate MSEs are idetical. I order to uderstad te ituitio beid tis result, it is useful to uderstad b b as a efficiet estimator of b ( 0 ). Tis is because b is a efficiet estimator of 0. Assume tat b b b ( 0 ) is asymptotically a osigular liear combiatio of b 0, i.e., b b b ( 0 ) = Υ /2 P i= ψ ( i, 0 ) o p () for some osigular Υ. Here, ψ ( i, 0 ) I ` ( i, 0 ) deotes te efficiet ifluece fuctio. Suppose tat b is ay oter regular 2 estimator of b ( 0 ) suc tat (b b ( 0 )) = /2 P i= % ( i, 0 ) o p () for some % ( i, 0 ) suc tat E [% ( i, 0 )]=0. Asymptotic covariace betwee b 0 ad b b b is te equal to Cov (% ( i, 0 ) Υψ ( i, 0 ), ψ ( i, 0 )) = Υ Cov Υ % ( i, 0 ) ψ ( i, 0 ), ψ ( i, 0 ). 2 See, e.g., Bickle, Klaasse, Ritov, ad Weller (993, p. 2). 0

11 Because Cov Υ % ( i, 0 ) ψ ( i, 0 ), ψ ( i, 0 ) = 0 by te ituitio uderlyig Hausma-test, we obtai te coclusio tat te asymptotic covariace is zero. I oter words, we ave Cov (% ( i, 0 ), ψ ( i, 0 )) = Cov (Υψ ( i, 0 ), ψ ( i, 0 )) (0) Now, ote tat we ave te expasios b b b 0 = ² (0) µ 2 ²² (0) b ( 0 ) 6 ²²² (0) Υ /2 X ψ ( i, 0 ) i= µ O p ad µ b b 0 = ² (0) µ 2 ²² (0) b ( 0 ) 6 ²²² (0) /2 X % ( i, 0 ) i= µ O p Because ² (0) = /2 P i= ψ ( i, 0 ), equatio (0) implies tat covariaces of te adjustmet terms of order wit ² (0) are equal to eac oter. It terefore follows tat te approximate MSE of te bias corrected MLE is ivariat to te metod of bias correctio. Teorem turs out to be just a special case. Give te precedig discussio, it is peraps ot surprisig tat te Bootstrap ad Jackkife bias corrected Maximum Likeliood estimators ave te same approximate MSE as b c : Teorem 2 Assume tat dim () =. Assume Coditios,3 ad 4 old. Let be defied i 7 wit α 0, 4 30.Te, 2 E [B² (0)] = 2 E [J² (0)] = τ m (M Λ) I. Proof. See Appedix A.4. Remark Teorems ad 2 are irrelevat we relevat loss fuctio is ot approximate MSE. O te oter ad, equatio (8) idicates tat te iger order equivalece of Bootstrap ad Jackkife goes beyod te MSE compariso. 4 Coclusios We ave sow tat oparametric bootstrap ad jackkife procedures ca be used to remove bias terms of stocastic order from a ML estimator. Te bootstrap bias corrected ML estimator acieves te same iger order variace as te efficiet estimators of Pfazagl ad Wefelmeyer (978). Tis idicates tat tere is o eed to derive te aalytic bias formula. Estimated versios of te bias correctios do ot icrease te iger order variace ad are terefore iger order efficiet i a mea squared sese.

12 A Proofs A. Some Prelimiary Lemmas Lemma Assume tat W i are iid wit E [W i ]=0ad E Wi 2k <. Te, E ( P i= W i) 2ki = C(k) k o( k ) for some costat C(k). Proof. By adoptig a argumet i te proof of Lemma 5. i Lairi (992), we ave E ( P i= W i) 2ki P = 2k P C(α,..., α j ) P jq E W α s i s, () α I s= were for eac fixed j {,..., 2k}, P α exteds over all j-tuples of positive itegers (α,..., α j ) suc tat α... α j =2k ad P I exteds over all ordered j-tuples (i,..., i j ) of itegers suc tat i j. Also, C(α,..., α j ) stads for a bouded costat. Note, tat if j>kte at least oe of te idices α j =. By idepedece ad te fact tat EW i =0it follows tat E Q j s= W α s i s =0weever j>k. Tis sows tat E ( P i= W i) 2k = C(k) k o( k ) for some costat C(k). Lemma 2 Suppose tat {ξ i,i=, 2,...} is a sequece of zero mea i.i.d. radom variables. We also assume tat E ξ i 6i <. We te ave Pr " X ξ > η = O 8 i i= for every η > 0. Proof. Usig Lemma, we obtai E X ξ i6 C 8 o( 8 ), i= were C>0is a costat. Terefore, we ave 8 X Pr " ξ > η O( i 8 C8 6 )=O(). η6 i= Lemma 3 Suppose tat, for eac i, {ξ i (φ),i=, 2,...} is a sequece of zero mea i.i.d. radom variables idexed by some parameter φ Φ. We also assume tat sup φ Φ ξ i (φ) B i for some sequece of radom variables B i tat is i.i.d. Fially, we assume tat E B i 6i <. Weteave X Pr " ξ i (φ ) > 2 υ = o 6v i= 2

13 for every υ suc tat υ < 6.Forυ < 48 we ave X Pr " ξ i (φ ) > 2 υ = o( ). i= Here, φ is a arbitrary sequece i Φ. Proof. By Markov s iequality, we ave " " X Pr sup ξ φ Φ i (φ) > 2 υ X = Pr sup ξ i= φ Φ i (φ ) > 2 7 υ i= E sup φ Φ ( P i= ξ i (φ)) 6i sup φ Φ E = υ η 6 were te last equality is based o domiated covergece. By Lemma, we ave 6 X E ξ i (φ) C 8, i= were C>0is a costat. Terefore, we ave " X Pr sup ξ i (φ) > 2 υ C 8 4/36υ 28/36υ η = O. 6 φ Φ i= ( P i= ξ i (φ)) 6i υ η 6, Lemma 4 Let bg () P i= log f ( i, ). Suppose tat Coditio old. We te ave for all η > 0 tat Pr sup bg () G () η = o 23 3 Proof. Note tat Pr sup bg () G () η =Pr sup were υ = 5 2. Te te result follows by Lemma 3. Lemma 5 Uder Coditio, we ave " Pr (²) 0 η = o ² for every η > 0. bg () G () η 2 υ Proof. Let η be give, ad let ε G ( 0 ) sup {: 0 >η} G () > 0. Lettig g (z, ) log f (z, ), we ave g (z, ) df ² (z) = ² G ()² bg () 3

14 ad g (z, ) df ² (z) G () ² bg () G () bg () G (). Here, te last iequality is based o te fact tat 0 ². By Lemma 4, we ave " Pr 0 ² sup g (z,) df ² (z) G () η = o 23 3 Terefore, for every 0 ² wit probability equal to o 23 3,weave 0 >η 0 >η g (z, ) df ² (z) 0 >η G () 3 ε < G( 0 ) 2 3 ε < g (z, 0 ) df ² (z) 3 ε. We also ave g (z,) df ² (z) g (z, 0 ) df ² (z) by defiitio. It follows tat g (z, ) df ² (z) < g (z, ) df ² (z) 3 ε for every 0 ². We terefore obtai tat Pr i 0 ² (²) 0 η = o Lemma 6 Assume tat Coditio olds. Suppose tat K (z; (²)) is equal to m log f (z; (²)) m for some m 6. Te, for ay η > 0, weave " Pr K (z; (²)) df ² (z) E [K ( i ; 0 )] > η 0 ² = o Also, " Pr 0 ² K ( ; (²)) d >C 2 υ = o 6υ for some costat C>0 ad for every υ suc tat υ < 6.Ifυ < 48 te te above order is o. Proof. Note tat we may write K (z; (²)) df ² (z) E [K ( i ; 0 )] = K (z; (²)) df ² (z) K (z; 0 ) df (z) = K (z; (²)) df ² (z) K (z; 0 ) df ² (z) = K (z; ) ( (²) 0 ) df ² (z)² K (z; 0 ) df ² (z) K (z; 0 ) d F b F (z) K (z; (²)) df (z) 4

15 were is betwee 0 ad (²). Terefore,weave K (z; (²)) df ² (z) E [K ( i ; 0 )] (²) 0 E [M ( i )] X M ( i ) i= X (M ( i ) E [M ( i )]) were M ( ) is defied i Coditio. Usig Lemma 5, we ca boud K (z; (²)) df ² (z) E [K ( i ; 0 )] 0 ² T i absolute value by some η > 0 wit probability o Usig Coditio ad Lemmas 3, we ca also sow tat R K ( ; (²)) d ca be bouded by C 2 υ for some costat C>0ad υ suc tat υ < 6 wit probability o 6υ. Similarly, if υ < 48, te te statemet olds wit probability o( ). i= 23 3 Lemma 7 Suppose tat Coditio olds. Te, we ave " Pr ² (²) >C2 υ = o 6υ 0 ² Pr " Pr " 0 ² ²² (²) >C 0 ² ²²²²²² (²) >C υ υ 6 = o 6υ. = o 6υ for some costat C>0 ad for every υ suc tat υ < 6.Ifυ < 48 te te above orders are o. Proof. From (30), we ave ² (²) = ` (z, ²) df ² (z) ` (,²) d. Usig Lemma 6, we ca boud te deomiator by some C>0, ad te umerator by some C 2 υ wit probability o 6υ,fromwictefirst coclusio follows. As for te secod coclusio, we ote from (3) tat we ave 0=E ` ² ( i,²) ( ² (²)) 2 ` E ² ( i,²) µ ²² (²)2 ` (z, ²) d (z) ² (²) Te secod coclusio follows by usig Lemmas 6 alog wit te first coclusio. Te rest of te Lemmas ca be establised similarly. Note tat if υ < 48 te we ca apply te specialized result of Lemma 6 i tesamewayasbefore. 5

16 Lemma 8 Suppose tat Coditio olds. Let m j ().be as defied i 9. Te I b I = V ( 0 ) Q ( 0 ) I U ( 0 )o p (), Q b b Q ( 0 ) = W ( 0 )Q 2 ( 0 ) I U ( 0 )o p (), m b m ( 0 ) =2E [U i ( 0 ) V i ( 0 )] I U ( 0 )o p (), m 3 b m 3 ( 0 ) = E V i ( 0 ) 2i E ` ( i, 0 ) 2 E [Ui ( 0 ) W i ( 0 )] I U ( 0 ) Proof. Let m 0 () R ` (z,) f (z, 0 ) dz. Note tat bi I = P ` i, b E ` ( i, 0 ) i= = P i= ` ( i, 0 ) m 0 ( 0 ) o p /2 m 0 b m 0 ( 0 ), were te last equality is based o te usual stocastic equicotiuity. Also ote tat m 0 ()/ = R ` (z, ) f (z, 0 ) dz by domiated covergece. We terefore obtai b I I = /2 P i= ` ( i, 0 ) E ` ( i, 0 ) E ` ( i, 0 ) b 0 o p () = V ( 0 ) Q ( 0 ) I U ( 0 )o p (), Likewise, we obtai Q b b Q ( 0 ) m b m ( 0 ) = /2 P i= ` ( i, 0 ) E ` ( i, 0 ) E ` ( i, 0 ) b 0 o p () = W ( 0 )Q 2 ( 0 ) I U ( 0 )o p (), = 2E ` ( i, 0 ) ` ( i, 0 ) b 0 o p () = 2E [U i ( 0 ) V i ( 0 )] I U ( 0 )o p (), m 3 b m 3 ( 0 ) = = ` E ( i, 0 ) 2i E ` ( i, 0 ) ` ( i, 0 ) b 0 o p () E V i ( 0 ) 2i E ` ( i, 0 ) 2 E [Ui ( 0 ) W i ( 0 )] I U ( 0 ) A.2 Lemmas for Bootstrapped Statistics Propositio 6 Assume tat Coditios,2,3 ad 4 old. Let F be te class of measurable fuctios defied i Coditio 4. Let deote weak covergece. Let (Ω, F, P) be a probability space suc tat i : Ω N, F N,P N (Ω, F,P) are coordiate projectios. Te, for f F, F b F f Tf were 6

17 T is a tigt Browia bridge wit variace covariace fuctio F (t s) F (s) F (t). LetBL be te set of all fuctio : l (F) 7 [0, ] suc tat (z ) (z 2 ) kz z 2 k F for every z ad z 2 were l (F) is te set of uiformly bouded real fuctios o F ad k.k F is te uiform orm for maps from F to R. i Te sup BL E F b bf f E[Tf] 0, P N -a.s. Proof. We first sow tat for f F, F b F f Tf or i oter words tat F is a Dosker class. Defie F δ = f g : f,g F,E kf gk 2i o < δ, F = {f g : f,g F} ad F 2 = ª f 2 : f F. I ligt of va der Vaart ad Weller (996, Teorem 2.5.2), it is eoug to sow tat F δ ad F 2 are F measurable classes for every δ > 0 ad E M (z) 2i <. Te secod requiremet is satisfied by Coditio. Sice F δ F te first coditio olds if for f F 2 ad ay vector a R ad ay te fuctio s(,..., )=sup, 2 Υ P i a `(k) i ( i, ) `(k) ( i, 2 ) 2 is measurable. Let Υk be a icreasig sequece of coutable subsets of Υ wose limit is dese i Υ. Te X `(k) s k (,..., )= sup a i ( i, ) `(k) 2 ( i, 2 ), 2 Υ k i is measurable by Coditio 3. By cotiuity of `(k) ( i, ) i it follows tat lim if k s k (,..., )= s(,..., ) suc tat measurability of s follows from Royde (988, Teorem 20, p.68). Coditioal weak covergece of b follows from Gie ad i (990, Teorem 2.4). Note tat by measurability of i ˆF F f ad Gie ad i (990, p86) te covergece of sup BL E F b bf f E[Tf] is a.s. Lemma 9 Assume tat Coditio is satisfied. Suppose tat, for eac i, ξ i (φ) =τ ( i, φ) P i= τ ( i, φ), i = {, 2,...} is a sequece of bootstrapped trasformatios of radom variables idexed by some parameter φ Φ wit E [ξ i (φ)]=0. We also assume tat sup φ Φ τ ( i, φ) B i for some sequece of radom variables B i tat is i.i.d. Fially, we assume tat E B i 6i <. Weteave P " X ξ i (φ ) > 2 υ = o p 6υ i= for every υ suc tat υ < 6.Moreover, P " X ξ i (φ ) > 2 υ = o p 23 3 i=. Here, φ is a arbitrary sequece i Φ ad P is te coditioal probability measure of i give i. Proof. Note tat P i= ξ i (φ) = P i= (N i ) τ( i, φ) were N,..., N is multiomially distributed wit parameters (, /,..., /) =(k, p,..., p ) ad idepedet of i suc tat Pr ( i= {N i = i })= / ( Q i i) Q i i were P i i =, i 0. Let κ r r 2...r be te mixed iger order cumulat of N,..., N of order r = r... r for r i 0, r i iteger. Mixed iger order cumulats ca be obtaied 7

18 from Guldberg s (935) recurrece relatio κ r r 2..r i...r = a i (κ r r 2..r i...r ) / a i were a i = p i /p.let b be te umber of o zero idices r i. Te argumets i Wisart (949) imply tat for p i = we ave κ r r 2...r c b for some costat c. For otatioal coveiece we will represet cumulats wit zero idices as lower order cumulats of te variables wit o-zero idices, i.e. write κ...r.. = κ rr 2...r were r j =0. Cosider P "sup X ξ φ Φ i (φ) > 2 υ = P "sup X ξ i (φ i= φ Φ ) > 7 2 υ i= E sup φ Φ ( P i= ξ i (φ)) 6i υ η 6 sup φ Φ E ( P i= ξ i (φ)) 6i =, υ η 6 were te last equality uses te fact tat sup φ Φ does ot ivolve N,..., N. By adoptig a argumet i te proof of Lemma 5. i Lairi (992), we ave E ( P i= ξ i (φ))2k = 2k P α P C(α,..., α j ) P I jq τ( it, φ) αt E t= j Q s= (N is ) α s, (2) were for eac fixed j {,...,2k}, P α exteds over all j-tuples of positive itegers (α,..., α j ) suc tat α... α j =2k ad P I exteds over all ordered j-tuples (i,..., i j ) of itegers suc tat i j. Also, C(α,..., α j ) stads for a bouded costat. Next we cosider te mixed cetral momets µ(α,..., α j )=E Q j s= (N i s ) αs. From Siryaev (989, Teorem 6, p.290) we obtai a relatiosip betwee cumulats ad mixed momets. Let α =(α,..., α j ) 0,r (p) = r (p),..., r(p) j, r (p) = r (p)...r(p) j ad r (p) =r (p)...r(p) suc tat j µ(α,...,α j )= X r ()...r (q) =α α q r ()...r (q) qy p= κ r (p) r(p) 2...r(p) j were P r ()...r (q) =α idicates te sum over all ordered sets of oegative itegral vectors r(p), r (p) > 0,wose sum is α. Sice te order of 2 depeds bot o te umber of ozero terms i P I ad te size of µ(α,...,α j ) for eac j, we aalyze te term S(, j) = X jy jy τ( it, φ) αs E (N is ) α s I t= s= for eac j. Note tat Qj t= τ( i t, φ) αs is bouded almost surely ad terefore does ot affect te aalysis. Also, P I is a sum over j terms ad tus is O( j ) if all tese terms are ozero. Te crucial factor i determiig te overall order is terefore E Q j s= (N i s ) α s. We start wit j =. Te α =2k, q =...2k ad r (p) are scalars. Cosequetly, κ (p) r = c were c is some costat ad S(, ) P c 2 i= τ( i t, φ) 2k for some oter costat c 2. If j k te for q =...2q, r (p) are vectors wit possibly 8

19 oly oe elemet differet from zero. Agai, S(, j) c 2 PI Q j t= τ( i t, φ) α s for j k. If j k te α cotais at least 2(j k) elemets α i =. Now assume tat for some p, r (p) i i 6= j. Te κ r (p) i ad r (p) j = E (N is ) = 0 ad tus Q q p= κ r (p) r(p) 2...r(p) j 6= 0for at least oe j 6= i te κ (p) r r(p) 2...r(p) =ad r (p) j =0for =0. O te oter ad if r (p) i = c. Sice tere must exists p 0 correspodig to te oter α i 0 =suc tat eiter r (p0 ) =ad ) i 0 r(p0 j =0for i 0 6= j or r (p0 ) i =ad ) 0 r(p0 j 6= 0 for at least oe j 6= i 0, it follows tat Q q p= κ = c r (p) 3 2(jk), at most. It ow follows tat r(p) 2...r(p) j S(, j) c 2 2(jk) P Q j I t= τ( i t, φ) αs for all j>k.te, X jy E S(, j) c 2 E τ( it, φ) αs c 2 j E τ( it, φ) 2k for j k ad I t= E S(, j) c 2 2(jk) X I jy E τ( it, φ) α s c 2 2kj E τ( it, φ) 2k c 2 k E τ( it, φ) 2k t= for j>k.togeter tese results imply tat E E ( P i= ξ i (φ)) 2k C(k) k E τ( it, φ) 2k were C(k) is a costat tat depeds o k. By te Markov iequality it follows tat E ( P i= ξ i (φ)) 2k = O p ( k ). We coclude tat P " X ξ i (φ ) > 2 υ O p( 8 ) i= υ η = O 6 p 6υ 4 3. Te secod result follows immediately from P " X ξ i (φ ) > η = P " X ξ i (φ ) > η/2 o p 23 3 i= by te previous result. i= Lemma 0 Uder Coditio, we ave " P b (²) b η = o p ². Proof. For ay η > 0, tere exists some δ > 0 suc tat 0 > η/2 implies G () G ( 0 ) > δ. Let G b () R g(z, )df b (z) ad G b ² () R g (z, ) df b ² (z). Te, " " P b (²) b η P G( b (²)) G b > δ. 0 ² 0 ² Because G b (²) G b = G b (²) b G ² bg b (²) b (²) bg ² G b b (²) b b G ² b G bg b ² (²) b 9

20 ad bg ² () bg () bg () bg (), we obtai 0 ² G b (²) G b sup bg () bg () sup bg () G () Υ Υ bg b 0 ² ² (²) bg ² b bg 0 ² ² sup bg () bg () sup bg () G () Υ Υ bg b 0 ² ² (²) bg ² b bg 0 ² ² sup bg () bg () sup bg () G () Υ Υ bg b 0 ² ² (²) bg ² 2sup bg () bg () 2sup bg () G () Υ Υ b G b b bg b bg b bg b bg b bg b G b bg ² 0 ² b G b b (²) bg ² b (3) By Lemma 9, we ave P sup bg () bg () > δ = o p 23 3 Υ 6 Coditioal o data, sup Υ bg () G () > δ is a o-stocastic evet. Terefore, we ca write P sup bg () G () > δ Υ ½ = sup bg ¾ () G () > δ, Υ (4) were { } deotes a idicator fuctio. For every σ > 0, weave Pr P sup bg () G () > δ ½ > σ 23 3 = Pr sup Υ 6 bg () G () > δ ¾ > 0 (5) Υ 6 = Pr sup bg () G () > δ = o() Υ 6 were te last equality is implied by Lemma 4. It terefore follows tat P sup bg () G () > δ = o p (6) 6 Υ 20

21 Fially, bg b 0 ² ² (²) bg ² b bg b 0 ² ² (²) b bg b bg b bg 0 ² ² sup bg ² () sup bg () bg 0 ² ² sup bg ² () sup bg () bg b bg b sup bg ² () bg () sup bg () bg () sup bg () bg () sup bg () bg () bg () bg () sup bg () bg () bg () bg () = 0 ² 0 ² 0 ² 0 ² sup = 2sup Here, te first equality is based o te defiitios of b (²) ad b. Because P sup bg () bg () > δ = o p 23 3 Υ we ca coclude tat P " 0 ² bg ² b (²) bg ² Te coclusio follows by combiig (3) - (7). b bg b δ b > = o p (7) 3 Lemma Assume tat Coditio is satisfied. Let K ( ; (²)) be defied as i Lemma 6. Te, for ay η > 0, weave " P K (z; (²)) d bf ² (z) E [K (z; 0 )] > η = o p ² Also, P " 0 ² K ; b (²) d b >C 2 υ = o p 6υ 23 3, for some costat C>0 ad for every υ suc tat υ < 6. Proof. ItesamewayasiteproofofLemma6 K z; b (²) df b ² (z) K (z; 0 ) df b (z) K (z; ) = b (²) 0 d bf ² (z)² K (z; 0 ) d F b bf (z) 2

22 were is betwee 0 ad b (²). Terefore, we ave K (z; (²)) df ² (z) K (z; 0 ) d bf (z) b X (²) 0 M ( i ) i= X M (i ) X M ( i ) i= i= X M (i ) were M ( ) is defied i Coditio. Let M = P i= M ( i) ad M = P i= M ( i ). Te, for ay η ad some c b i P (²) 0 M b i >η P (²) 0 > η/c P M E [M ( i )] >c = o p 23 3 sice P M E [M ( i )] >c =wit probability equal to P M E [M ( i )] >c = o 23 3 by Lemma2adzerooterwiseforsomec. Te, P M E [M ( i )] >c = o p 23 3 by te same argumet as i 5 Moreover, b i P (²) 0 M M b i > η P (²) 0 > η/c P M M >c = o p 23 3 i= by Lemmas 9 ad 0. It tus follows tat for ay η > 0, P µ K (z; (²)) df ² (z) K (z; 0 ) d bf (z) > η = o p R Fially ote tat P K (z; 0 ) d bf (z) EK (z; 0 ) > η =wit probability P µ K (z; 0 ) d bf (z) E [K (z; 0 )] > η = o( 23 3 ) R by Lemma 2. Tus, by te same argumet as i 5 P K (z; 0 ) d bf (z) EK (z; 0 ) > η = o p For te secod result fix δ > 0 arbitrary. Te " P K ; b (²) db >C 2 υ P sup K ( ; ) d b >C 2 υ 0 ² b <δ " P b (²) b δ 0 ² were P sup b <δ K ( ; ) d b >C 2 υ = o p 6υ follows directly from Lemma 9 ad " P b (²) b δ = o p ² follows from Lemma 0. 22

23 Lemma 2 Suppose tat Coditio olds. Te, we ave " P ² b (²) >C2 υ = o p 23 3, 6υ 0 ² " P ²² b (²) >C υ 2 2 = o p 23 3, 6υ 0 ² " P ²²²²²² b (²) >C υ ². = o p 23 3, 6υ for some costat C>0 ad for every υ suc tat υ < 6. Proof. Let M ² = R ` (z, ²) d bf ² (z) suc tat ² b (²) = M ² ` (,²) d b ad for ay δ > 0 some C>0ad for every υ suc tat υ < b 6 P ² (²) >C υi 2 P sup υ ` (,²) db > δc 2 ² = o p 23 3, 6υ P sup M ² E ` (z, 0 ) δ ² by Lemma. Te rest of te Lemma ca be establised similarly. Lemma 3 Let Xi = τ i, b be some trasformatio of i,wereτ possibly depeds o te sample { i } i= troug b.te E P P were X i = τ Xi i= i, b. Proof. Note tat E [X i ]= P = X j wic i tur implies µ P E Xi i= = X i i= P i= P X j = P X j. Lemma 4 Let Xk,i = τ k i, b for k =, 2 be some trasformatio of i,wereτ k possibly depeds o te sample { i } i= troug b.te µ µ E P P P = i= were X k,i = τ k ( i, b ). X,i i= X,i X 2,i µ X2,i i= µ P X,i i= i= P X 2,i 23

24 Proof. Tis is because E X,iX 2,i = P X,j X 2,j, wic i tur implies tat µ E P = i= = i= = = X,i i= µ P X2,i i= P E X,iX 2,i P E X,i E X 2,i 0 i6=i 0 P P P X,j X 2,j P P X,j X 2,j i6=i 0 P ( ) P P X,j X 2,j X,j X 2,j P X,j X 2,j P P X,j X 2,j. Te coclusio follows easily from tis result. Lemma 5 Let Xk,i = τ k i, b for k =, 2 be some trasformatio of i,wereτ k possibly depeds o te sample { i } i= troug b. Te µ µ µ E P P P = X,i i= X2,i i= X3,i i= P X,j X 2,j X 3,j P P X,j X 2,j X 3,j P P X 3,j X,j X 2,j P X 2,j X 3,j P P P X,j X 2,j X 3,j. P X,j Proof. Note tat µ P µ P µ P = P X,i i= Terefore, we ave P i= X,iX 2,iX 3,i i= X2,i i= X3,i i= P X,iX 2,iX 3,i P X,iX 0 2,i 0X 3,i P i6=i 0 i6=i 0 P X,i X 2,i 0X 3,i 00 i6=i 0 6=i 00 6=i E X,iX 2,iX 3,i = P i= i6=i 0 X,i 0X 2,iX 3,i P X,j X 2,j X 3,j P = X,j X 2,j X 3,j 24

25 ad P E X,iX 2,iX 3,i 0 i6=i 0 P E X,iX 2,i 0X 3,i i6=i 0 P E X,i 0X 2,iX 3,i i6=i 0 P i6=i 0 6=i 00 6=i E X,iX 2,i 0X 3,i 00 = P E X,iX 2,i E X 3,i 0 i6=i 0 = P P P X,j X 2,j X 3,j i6=i 0 = P P X,j X 2,j X 3,j = = = = P P X 3,j X,j X 2,j P P X 2,j X 3,j X,j P i6=i 0 6=i 00 6=i P i6=i 0 6=i 00 6=i E X,i E X2,i E X 0 3,i 00 = P X,j P X,j P P X 2,j P X 2,j from wic we obtai µ P µ P µ P E X,i X2,i X3,i i= i= i= P = X,j X 2,j X 3,j P P X,j X 2,j X 3,j P P X 3,j X,j X 2,j P P X 2,j X 3,j X,j P P P X,j X 2,j X 3,j. P X 3,j X 3,j Lemma 6 Let Ui () ` (i, ), Vi () ` (i, ) ` (, ) ` (i, ) P i= ` ( i, ), Wi (i ) ` (, ) ` (i ) P i= ` ( i, ) ad let U () = /2 P i= U i (), V () = /2 P i= V i () = /2 P i= W i (). Te(a) E U b i = 0, E V b i = 0, E W b i = 0, (b) E U b 2 E U b V b i P = i= P = i= ` i, b 2 ` i, b ` i, b 25

26 (c) E U () 3i = E U b 2 V b E U b 2 W b E U b V b 2 = = = P P P P ` i, b 3, µ ` i, b 2 ` i, b `, b µ ` i, b 2 ` i, b `, b ` i, b µ ` i, b 2 `, b Proof. For part (a) it follows from Lemma 3 tat E U b i i = P ` i, b =0, i= were te last iequality follows from te defiitio of b. Te remaiig results ca be establised i te same way. For part (b) we ote tat it follows from Lemma 4 tat E U b P µ 2 ` i, b 2 P 2 ` i, b = i= P = i= ` i, b 2, were te last equality is based o P i= ` E U b V b i = i= i= i, b =0. For te secod part we use P ` i, b µ ` i, b µ P i= P ` i, b ` i, b. = i= For part (c) we use Lemma 5 to obtai E U b 3 = E U b 2 V b P = ` i, b 3 3 µ P 2 P i= µ µ ` i, b P 3 ` i, b, P ` i, b µ P ` i, b µ P i= i= U b 2 j Vj b P ` i, b 2 U j b V j b P 2 U j b P P U b 2 j P U j b P V j b, i= ` i, b ` j, b P V j b 26

27 ad E U b 2 W b E U b V b 2 suc tat te result follows. = P 2 = U b 2 j Wj b P 2 P U j b W j b P U b 2 j U j b V b 2 j P U j b V j b P U j b P P U b 2 j P U j b P W j b, V b 2 j P V j b P V b 2 j P W j b P U j b A.3 Lemmas for Jackkifed Statistics Lemma 7 Let W = X X X i, W (j) = Te, we ave i= W X W (j) = W Proof. Note tat X W (j) = It terefore follows tat W X X X X i X i = X X i = i= W W (j) = W W = W Lemma 8 Let X X W = X,i X 2,i, W (j) = X X,i X X 2,i Te, W X i= W (j) = i= X X,i X 2,j 27

28 Proof. We first prove tat jx W (j) = 2 W ( ) For tis purpose, ote tat X W (j) = = X X,i X 2,i i= X X X,i X X 2,i X µ X X,j µ X2 X 2,j = 3 X X X X 2 P i= X,iX 2,i ( ) 2 X = 2 2 ( ) 2 X X 2 = ( ) 2 2 ( ) 2 W ( ) 2 i= X,i X 2,i X X,i X 2,i, were X deotes te sample average of X,i.Terefore,weave X W (j) = 2 W X X,i X 2,i ( ) i= i= ad X W W (j) = = = = µ ( 2) W X X,i X 2,i i= W X X,i X 2,i i= X X X,i X 2,i i= i= X X,i X 2,j X X,i X 2,i i= Lemma 9 Let X X X W = X,i X 2,i X 3,i, i= i= i= W (j) = X X,i X X 2,i X X 3,i 28

29 Te, r W = 2 ( ) 2 W X 2 ( ) 2 X 2 ( ) 2 X3 W (j) X X 2,i X 3,i i= X X,i X 2,i i= 2 ( ) 2 X2 ( ) 2 Proof. Observe tat X X X,i X X 2,i X X 3,i = X µ X X,j = ( ) 3 X X 2 X 3 µ X2 X 2,j X X 2,i X 3,i ( ) 3 X 2 ( ) 3 X i= TX ( ) 3 X 3 X,i X 2,i t= ( ) 3 µ X3 X 3,j TX X 3,i X,i t= X X 3,i X,i i= TX X,i X 2,i X 3,i t= TX X,i X 2,i X 3,i It terefore follows tat X 3 W (j) = X X2 X3 ( ) 3/2 X X ( ) 3/2 X 2,i X 3,i X3 ( ) 3/2 ad terefore, r X W W (j) = 2 ( ) 2 W 2 ( ) 2 X 2 ( ) 2 X3 i= t= X X,i X 2,i ( ) 3/2 i= X X 2,i X 3,i i= X X,i X 2,i i= 2 ( ) 2 X2 ( ) 2 X2 ( ) 3/2 TX t= X X 3,i X,i i= TX X,i X 2,i X 3,i t= X X 3,i X,i i= X,i X 2,i X 3,i 29

30 Lemma 20 Let X X X X W = X,i X 2,i X 3,i X 4,i, i= i= i= i= W (j) = X X,i X X 2,i X X 3,i X X 4,i Te, W 2 X = 2 3 ( ) 3 W W (j) 3 ( ) 3 X X2 3 ( ) 3 X X4 3 ( ) 3 X2 X4 3 ( ) 3 3 ( ) 3 2 ( ) 3 X i= X X 3,i X 4,i i= X X 2,i X 3,i i= X X,i X 3,i i= X3 i= X X,i X 2,i X 3,i X 4,i i= 3 ( ) 3 X X3 3 ( ) 3 X2 X3 3 ( ) 3 X3 X4 X 3 X 2,i X 3,i X 4,i ( ) 3 X2 X 3 X,i X 2,i X 4,i ( ) 3 X4 X X 2,i X 4,i i= X X,i X 4,i i= X X,i X 2,i i= X X,i X 3,i X 4,i i= X X,i X 2,i X 3,i i= 30

31 Proof. Observe tat X X X,i X X 2,i X X 3,i X X 4,i = X µ X X,j = ( ) 4 X X 2 X 3 X 4 ( ) 4 X X 2 ( ) 4 X 2X 3 ( ) 4 X ( ) 4 X 3 ( ) 4 It terefore follows tat X i= i= µ X2 X 2,j µ X3 X 3,j X X 3,i X 4,i ( ) 4 X X 3 X X,i X 4,i i= ( ) 4 X 2X 4 X X 2,i X 3,i X 4,i ( ) 4 X 2 X X,i X 2,i X 4,i i= X X,i X 2,i X 3,i X 4,i i= ( ) 4 X 4 µ X4 X 4,j X X 2,i X 4,i i= ( ) 4 X X 4 X X,i X 3,i i= ( ) 4 X 3X 4 X X,i X 3,i X 4,i i= X X,i X 2,i X 3,i i= W (j) = 2 4 ( ) 2 X X2 X3 X4 ( ) 2 X X2 ( ) 2 X X4 ( ) 2 X2 X4 2 ( ) ( ) 2 ( ) 2 from wic te coclusio follows. X i= X X 3,i X 4,i i= X X 2,i X 3,i i= X X,i X 3,i i= X3 i= X X,i X 2,i X 3,i X 4,i, i= X X 2,i X 3,i i= X X,i X 2,i i= ( ) 2 X X3 ( ) 2 X2 X3 ( ) 2 X3 X4 X X 2,i X 3,i X 4,i 2 X2 ( ) X X,i X 2,i X 4,i ( ) 2 X4 X X 2,i X 4,i i= X X,i X 4,i i= X X,i X 2,i i= X X,i X 3,i X 4,i i= X X,i X 2,i X 3,i i= 3

32 Lemma 2 Let X X X X X W = X,i X 2,i X 3,i X 4,i X 5,i, i= i= i= i= i= W (j) = X X,i X X 2,i X X 3,i X X 4,i X X 5,i i= Te, W ( ) X W (j) = ( ) 4 X X2 X3 X4 X5 2 ( ) 4 X X2 X5 2 ( ) 4 X X2 X3 2 ( ) 4 X X3 X5 2 ( ) 4 X X4 X5 2 ( ) 4 X X3 X4 2 ( ) 4 X3 X4 X5 2 ( ) 4 X2 X3 X5 2 ( ) 4 X2 X4 X5 2 ( ) 4 X2 X3 X4 2 ( ) 4 X X2 X4 X X X X X X X X X X X 3,j X 4,j X 4,j X 5,j X 2,j X 4,j X 2,j X 3,j X 2,j X 5,j X,j X 2,j X,j X 4,j X,j X 3,j X,j X 5,j X 3,j X 5,j 32

33 (cotiued) ( ) 4 X3 X5 X X,j X 2,j X 4,j ( ) 4 X X5 X X 2,j X 3,j X 4,j ( ) 4 X X3 X X 2,j X 4,j X 5,j ( ) 4 X X4 X X 2,j X 3,j X 5,j ( ) 4 X X2 X X 3,j X 4,j X 5,j ( ) 4 X2 X5 X X,j X 3,j X 4,j ( ) 4 X2 X3 X X,j X 4,j X 5,j ( ) 4 X2 X4 X X,j X 3,j X 5,j ( ) 4 X4 X5 X X,j X 2,j X 3,j ( ) 4 X3 X4 X X,j X 2,j X 5,j ( ) 4 X X X 2,j X 3,j X 4,j X 5,j ( ) 4 X2 X X,j X 3,j X 4,j X 5,j ( ) 4 X3 X X,j X 2,j X 4,j X 5,j ( ) 4 X4 X X,j X 2,j X 3,j X 5,j ( ) 4 X5 X X,j X 2,j X 3,j X 4,j ( ) 4 X X,j X 2,j X 3,j X 4,j X 5,j 33

34 Proof. Observe tat X X X,i X X 2,i X X 3,i X X 4,i X X 5,i = X µ X X,j µ X2 X 2,j µ X3 X 3,j µ X4 X 4,j µ X5 X 5,j = ( ) 5 X X 2 X 3 X 4 X 5 2 ( ) 5 X X 2 X 5 X X 3,j X 4,j 2 ( ) 5 X X 2 X 3 X X 4,j X 5,j 2 ( ) 5 X X 3 X 5 X X 2,j X 4,j 2 ( ) 5 X X 4 X 5 X X 2,j X 3,j 2 ( ) 5 X X 3 X 4 X X 2,j X 5,j 2 ( ) 5 X 3X 4 X 5 X X,j X 2,j 2 ( ) 5 X 2X 3 X 5 X X,j X 4,j 2 ( ) 5 X 2X 4 X 5 X X,j X 3,j 2 ( ) 5 X 2X 3 X 4 X X,j X 5,j 2 ( ) 5 X X 2 X 4 X X 3,j X 5,j ( ) 5 X 3X 5 X X,j X 2,j X 4,j ( ) 5 X X 5 X X 2,j X 3,j X 4,j ( ) 5 X X 3 X X 2,j X 4,j X 5,j ( ) 5 X X 4 X X 2,j X 3,j X 5,j ( ) 5 X X 2 X X 3,j X 4,j X 5,j ( ) 5 X 2X 5 X X,j X 3,j X 4,j ( ) 5 X 2X 3 X X,j X 4,j X 5,j ( ) 5 X 2X 4 X X,j X 3,j X 5,j ( ) 5 X 4X 5 X X,j X 2,j X 3,j ( ) 5 X 3X 4 X X,j X 2,j X 5,j ( ) 5 X X X 2,j X 3,j X 4,j X 5,j ( ) 5 X X 2 X,j X 3,j X 4,j X 5,j ( ) 5 X X 3 X,j X 2,j X 4,j X 5,j ( ) 5 X X 4 X,j X 2,j X 3,j X 5,j ( ) 5 X X 5 X,j X 2,j X 3,j X 4,j ( ) 5 X X,j X 2,j X 3,j X 4,j X 5,j 34

35 Terefore, we ave X = W (j) X X2 X3 X4 X5 ( ) 2 ( ) 2 X X2 X5 X ( ) 2 X X2 X3 X ( ) 2 X X3 X5 X ( ) 2 X X4 X5 X ( ) 2 X X3 X4 X ( ) 2 X3 X4 X5 X ( ) 2 X2 X3 X5 X ( ) 2 X2 X4 X5 X ( ) 2 X2 X3 X4 X ( ) 2 X X2 X4 X X 3,j X 4,j X 4,j X 5,j X 2,j X 4,j X 2,j X 3,j X 2,j X 5,j X,j X 2,j X,j X 4,j X,j X 3,j X,j X 5,j X 3,j X 5,j 35

36 (cotiued.) ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 ( ) 2 X3 X5 X X5 X X3 X X4 X X2 X2 X5 X2 X3 X2 X4 X4 X5 X3 X4 X X2 X3 X4 X5 X X X X X X X,j X 2,j X 4,j X 2,j X 3,j X 4,j X 2,j X 4,j X 5,j X 2,j X 3,j X 5,j X 3,j X 4,j X 5,j X,j X 3,j X 4,j X X,j X 4,j X 5,j X X,j X 3,j X 5,j X X,j X 2,j X 3,j X X,j X 2,j X 5,j X X 2,j X 3,j X 4,j X 5,j X X,j X 3,j X 4,j X 5,j X X,j X 2,j X 4,j X 5,j X X,j X 2,j X 3,j X 5,j X X,j X 2,j X 3,j X 4,j X X,j X 2,j X 3,j X 4,j X 5,j 36

37 from wic te coclusio follows. A.4 Proofs of Mai Results Proof of Propositio. Cosider te fuctio G (², ) R ` (, ) df ² (z). Note tat G(.,.) :R Υ R ad is cotiuously differetiable o R 2. By Coditio 2 tere exists (²) Υ suc tat G(², (²)) = 0 for all ² [0, / ]. Sice G(², )/ 6= 0almost surely by assumptio it follows by te implicit fuctio teorem tat tere exists a cotiuously differetiable fuctio (²) :U R suc tat G (², (²)) = 0 a.s. Sice G(², ) is i fact m times cotiuously differetiable (²) ierits tis property. Measurability of (²) follows from cotiuity of f(z, ) ad separability of Υ. By Taylor s teorem tere exists some ² [0, / ] suc tat b /2 = (0) P m k= (k) (0) k k/2 (m) ( ²). By Lemmas 5 ad 6 it follows tat m m/2 0 ² /2 (k) (²) =O p () suc tat te remaider term (m) ( ²) =O m m/2 p m/2 for m 6. Tofid te derivatives (k),let (z, ²) ` (z, (²)), ad rewrite te first order coditio as 0= (z, ²) df ² (z) Differetiatig repeatedly wit respect to ², weobtai d (z, ²) 0 = df ² (z) (z, ²) d (z) (8) d² d 2 (z, ²) d (z, ²) 0 = d² 2 df ² (z)2 d (z) (9) d² d 3 (z, ²) d 2 (z, ²) 0 = d² 3 df ² (z)3 d² 2 d (z) (20) d 4 (z, ²) d 3 (z, ²) 0 = d² 4 df ² (z)4 d² 3 d (z) (2) d 5 (z, ²) d 4 (z, ²) 0 = d² 5 df ² (z)5 d² 4 d (z) (22) d 6 (z, ²) d 5 (z, ²) 0 = d² 6 df ² (z)6 d² 5 d (z) (23) Note tat d (²) d² = ` ² (24) d 2 (²) d² 2 = ` ( ² ) 2 ` ²² (25) d 3 (²) d² 3 = ` ( ² ) 3 3` ² ²² ` ²²² (26) 37

38 d 4 (²) d² 4 = ` ( ² ) 4 6` ( ² ) 2 ²² 3` ( ²² ) 2 4` ² ²²² ` ²²²² (27) d 5 (²) d² 5 = ` ( ² ) 5 0` ( ² ) 3 ²² 5` ² ( ²² ) 2 (28) 0` ( ² ) 2 ²²² 0` ²² ²²² 5` ² ²²²² ` ²²²²² d 6 (²) d² 6 = ` ( ² ) 6 5` ( ² ) 4 ²² 45` ( ² ) 2 ( ²² ) 2 (29) 20` ( ² ) 3 ²²² 5` ( ²² ) 3 60` ² ²² ²²² 5` ( ² ) 2 ²²²² 0` ( ²²² ) 2 5` ²² ²²²² 6` ² ²²²²² ` ²²²²²² Here, ² deotes te derivative of wit respect to ². Combiig (8) - (2) wit (24) - (27), we obtai ` 0=E ² ( i,²) ² (²) ` (z,²) d (z) (30) 0=E ` ² ( i,²) ( ² (²)) 2 ` E ² ( i,²) µ ²² (²)2 ` (z, ²) d (z) ² (²) (3) 0 = E ` ² ( i,²) ( ² (²)) 3 3E ` ² ( i,²) ² (²) ²² ` (²)E ² ( i,²) ²²² (²) µ µ 3 ` (z,²) d (z) ( ² (²)) 2 3 ` (z,²) d (z) ²² (²) (32) 0 = E ` ² ( i,²) ( ² (²)) 4 6E ` ² ( i,²) ( ² (²)) 2 ²² (²)3E ` ² ( i,²) ( ²² (²)) 2 4E ` ² ( i,²) ² (²) ²²² ` (²)E ² ( i,²) µ ²²²² (²)4( ² (²)) 3 ` (z, ²) d (z) µ 2 ² (²) ²² (²) µ ` (z, ²) d (z) 4 ²²² (²) ` (z,²) d (z) (33) 0 = E ² ` ( i,²) ( ² (²)) 5 0E ² ` ( i,²) ( ² (²)) 3 ²² (²)5E ² ` ( i,²) ² (²)( ²² (²)) 2 0E ² ` ( i,²) ( ² (²)) 2 ²²² (²)0E ² ` ( i,²) ²² (²) ²²² (²) 5E ² ` ( i,²) ² (²) ²²²² (²)E ² ` ( i,²) ²²²²² (²)5( ² (²)) 4 µ µ 30 ( ² (²)) 2 ²² (²) µ 20 ² (²) ²²² (²) µ ` (z, ²) d (z) 5( ²² (²)) 2 µ ` (z,²) d (z) 5 ²²²² (²) ` (z,²) d (z) ` (z, ²) d (z) ` (z, ²) d (z) (34) 38

39 ad 0 = E ` ² ( i,²) ( ² (²)) 6 5E ` ² ( i,²) ( ² (²)) 4 ²² (²) 45E ` ² ( i,²) ( ² (²)) 2 ( ²² (²)) 2 20E ` ² ( i,²) ( ² (²)) 3 ²²² (²) 5E ` ² ( i,²) ( ²² (²)) 3 60E ` ² ( i,²) ² (²) ²² (²) ²²² (²) 5E ` ² ( i,²) ( ² (²)) 2 ²²²² (²)0E ` ² ( i,²) ( ²²² (²)) 2 5E ` ² ( i,²) ²² (²) ²²²² (²)6E ` ² ( i,²) ² (²) ²²²²² (²) ` E ² ( i,²) µ ²²²²²² (²)6( ² (²)) 5 (z, ²) d (z) µ µ 60 ( ² (²)) 3 ²² (²) (z, ²) d (z) 90 ² ( ²² (²)) 2 (z,²) d (z) µ µ 60 ( ² (²)) 2 ²²² (²) ` (z,²) d (z) 60 ²² (²) ²²² (²) ` (z, ²) d (z) µ µ 30 ² (²) ²²²² (²) ` (z, ²) d (z) 6 ²²²²² (²) ` (z, ²) d (z) (35) Here, E ² [ ] is defied suc tat E ² [g ( i,²)] g (z, ²) df ² (z) Evaluatig expressios (30) - (33) at ² =0, we obtai µ ² = `d = `d, (36) E [`] I ²² = E [`] = E ` µ I 3 µ E ` µ ( ² ) `d 2 µ I 2 `d ² = E ` µ `d µ E [`] (² ) 2 2 `d E [`] ² `d, (37) ²²² = E ` E [`] (² ) 3 3 E ` µ µ E [`] ² ²² 3 E [`] ` d ( ² ) 2 3 `d E [`] ²² E ` = I 4 3 E ` 2 µ 3 9E ` µ 2 µ `d I 5 I 4 `d `d 3 µ 2 µ I 3 `d ` d 6 µ µ 2 I 3 `d `d (38) ²²²² = E ` ( E [`] ² ) 4 6 E ` E [`] (² ) 2 ²² 3 E ` E [`] (²² ) 2 4 E ` µ E [`] ² ²²² 4 E [`] (² ) 3 ` d µ µ 2 E [`] ² ²² ` d 4 `d E [`] ²²² (39) 39

40 ²²²²² = E ` ( E [`] ² ) 5 0 E ` ( E [`] ² ) 3 ²² 5 E ` E [`] ² ( ²² ) 2 0 E ` E [`] (² ) 2 ²²² 0 E ` E [`] ²² ²²² 5 E ` µ E [`] ² ²²²² 5 E [`] (² ) 4 ` d µ µ 30 E [`] (² ) 2 ²² ` d 5 E [`] (²² ) 2 ` d µ µ 20 E [`] ² ²²² ` d 5 `d E [`] ²²²² (40) ProofofPropositio2. By te same argumets as i te proof of propositio it follows tat tere exists some ² 0, /2 suc tat b b = b ² (0) P m b k= (k) (0) b (m) ( ²) k k/2 m m/2 a.s., were b ² (0) is obtaied from evaluatig R d(z,²) d² d bf ² (z) R (z, ²) d b (z) at ² =0. We obtai 0= `(z,b)d bf (z) b ² (0) ` z,b d b (z), were R `(z, b )d bf (z) P `( i= i, b ) ad b (z) F b (z) bf (z). Similar expressios ca be foud for iger order derivatives of b (²). Tese expressios deped o P i= `(k) i, b ad R `(k) z, b d b (z) for k =0,,..., 6. By Coditio ad Lemma 5, it follows tat P i= `(k) i, b p E `(k) ( i, 0 ) by a uiform law of large umbers. By Propositio 6 te class F is Dosker. By te proof of Teorem 2.4 i Gie ad i (990) it follows tat te followig coditioal stocastic equicotiuity property P N a.s., lim lim supp sup δ 0 `(k) (z, t) `(k) (z, s) d b (z) > η =0 ts <δ olds. Te P µ `(k) z, b `(k) (z, 0 ) db (z) > η P sup `(k) (z, t) `(k) (z,s) d b (z) b > η/2 P 0 η/2 or 0 <δ `(k) z, b d b (z) = `(k) (z, 0 ) d b (z)o p () P N a.s. (4) It ow follows from Propositio 6 ad Teorem 2.4 of Gie ad i (990) tat R `(k) (z, 0 ) d b (z) R `(k) (z, 0 ) dt (z) almost surely, were T (z) is a Browia Bridge process. We fially ave to aalyze te term b (m) ( ²) wic cotais expressios of te form R `(k) (z, b (²))dF b ² (z) ad R z, `(k) b (²) d b (z). For R z, `(k) b (²) d b (z) we use te same iequality as i (4) togeter wit Lemma 0 to sow tat `(k) z, b (²) d b (z) = `(k) (z, 0 ) d b (z)o p () P N a.s. 40

41 Next cosider `(k) (z, b (²))d bf ² (z) `(k) (z, 0 )df (z) ² `(k) (z, b (²))d b (z) `(k) (z, 0 )d F (z) bf (z) `(k) (z, b i (²)) `(k) (z, 0 ) d bf (z) were R `(k) (z, b (²))d b (z) =O p () P N a.s. by Propositio 6 ad sup ² = O( /2 ). Te secod term is o p () by a law of large umbers. Fially, P µsup `(k) (z, b i (²)) `(k) (z, 0 ) d bf (z) > η ² i P sup `(k) (z, ) `(k) (z, 0 ) d bf (z) > η P sup b (²) 0 δ 0 <δ 0 ² / were te first probability goes to zero because for ay ε > 0, δ > 0 suc tat i E sup `(k) (z,) `(k) (z, 0 ) d bf (z) = sup E`(k) ( i, ) E`(k) ( i, 0 ) ε 0 <δ 0 <δ ad te secod probability goes to zero by Lemma 0. It follows tat R `(k) (z, b (²))d bf ² (z) p E`(k) (z, 0 ) P N (k) a.s. Togeter, tese results imply tat sup b ² (²) = O p () P N a.s. for k 6. Tis establises te validity of te expasio. ProofofTeorem3. Let b a /2 ² b (0) 2 b ²² (0) 6 b ²²² (0) 3/2 24 b 2 ²²²² (0). Because (x) (y) 2 α C () kx yk, weave b b b a mi 2 α C (), 96 5/2 sup 0 ² / b ²²²²² (²). Fix ε > 0 ad 7 96 < δ < 2 arbitrary. Takig expectatios wit respect to te measure bf leads to E b b i " E b a i ε/ 2δ 2 α C () P sup 96 5/2 b ²²²²² (²) > ε/ 2δ. 0 ² / i Use te fact tat P sup ²²²²² b 24 5/2 0 ² / (²) > ε/ 2δ = o p 76/60(6/5)δ by settig v = /60 δ/5 i Lemma 2. Coose δ (7/96 (5/6) α, /2). It follows tat E b b i E b a i ε/ 2δ 2o p 76/60(6/5)δα C () = O p ( δ2 )=o p ( 3/2 ) 4

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Lecture 3: Asymptotic Normality of M-estimators

Lecture 3: Asymptotic Normality of M-estimators Lecture 3: Asymptotic Istructor: Departmet of Ecoomics Staford Uiversity Prepared by Webo Zhou, Remi Uiversity Refereces Takeshi Amemiya, 1985, Advaced Ecoometrics, Harvard Uiversity Press Newey ad McFadde,

Διαβάστε περισσότερα

Three Classical Tests; Wald, LM(Score), and LR tests

Three Classical Tests; Wald, LM(Score), and LR tests Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

The Equivalence Theorem in Optimal Design

The Equivalence Theorem in Optimal Design he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.

Διαβάστε περισσότερα

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95

p n r.01.05.10.15.20.25.30.35.40.45.50.55.60.65.70.75.80.85.90.95 r r Table 4 Biomial Probability Distributio C, r p q This table shows the probability of r successes i idepedet trials, each with probability of success p. p r.01.05.10.15.0.5.30.35.40.45.50.55.60.65.70.75.80.85.90.95

Διαβάστε περισσότερα

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx

true value θ. Fisher information is meaningful for families of distribution which are regular: W (x) f(x θ)dx Fisher Iformatio April 6, 26 Debdeep Pati Fisher Iformatio Assume X fx θ pdf or pmf with θ Θ R. Defie I X θ E θ [ θ log fx θ 2 ] where θ log fx θ is the derivative of the log-likelihood fuctio evaluated

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

arxiv: v3 [math.pr] 24 Nov 2017

arxiv: v3 [math.pr] 24 Nov 2017 Time-depedet weak rate of covergece for fuctios of geeralized bouded variatio Atti Luoto arxiv:169.5768v3 [mat.p] 4 Nov 17 Abstract Let W deote te Browia motio. For ay expoetially bouded Borel fuctio g

Διαβάστε περισσότερα

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Factorial Notatios Traditioal ame Factorial Traditioal otatio Mathematica StadardForm otatio Factorial Specific values Specialized values 06.0.0.000.0 k ; k 06.0.0.000.0 ; 06.0.0.000.0 p q q p q p k q

Διαβάστε περισσότερα

1. Matrix Algebra and Linear Economic Models

1. Matrix Algebra and Linear Economic Models Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability

Supplemental Material to Comparison of inferential methods in partially identified models in terms of error in coverage probability Supplemetal Material to Compariso of iferetial methods i partially idetified models i terms of error i coverage probability Federico A. Bugi Departmet of Ecoomics Duke Uiversity federico.bugi@duke.edu.

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Inertial Navigation Mechanization and Error Equations

Inertial Navigation Mechanization and Error Equations Iertial Navigatio Mechaizatio ad Error Equatios 1 Navigatio i Earth-cetered coordiates Coordiate systems: i iertial coordiate system; ECI. e earth fixed coordiate system; ECEF. avigatio coordiate system;

Διαβάστε περισσότερα

Adaptive Covariance Estimation with model selection

Adaptive Covariance Estimation with model selection Adaptive Covariace Estimatio with model selectio Rolado Biscay, Hélèe Lescorel ad Jea-Michel Loubes arxiv:03007v [mathst Mar 0 Abstract We provide i this paper a fully adaptive pealized procedure to select

Διαβάστε περισσότερα

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions

Second-order asymptotic comparison of the MLE and MCLE of a natural parameter for a truncated exponential family of distributions A Ist Stat Math 06 68:469 490 DOI 0.007/s046-04-050-9 Secod-order asymptotic compariso of the MLE ad MCLE of a atural parameter for a trucated expoetial family of distributios Masafumi Akahira Received:

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

Online Appendix for Measuring the Dark Matter in Asset Pricing Models

Online Appendix for Measuring the Dark Matter in Asset Pricing Models Olie Appedix for Measurig the Dark Matter i Asset Pricig Models Hui Che Wisto Wei Dou Leoid Koga April 15, 017 Cotets 1 Iformatio-Theoretic Iterpretatio for Model Fragility 1.1 Bayesia Aalysis with Limited-Iformatio

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Diane Hu LDA for Audio Music April 12, 2010

Diane Hu LDA for Audio Music April 12, 2010 Diae Hu LDA for Audio Music April, 00 Terms Model Terms (per sog: Variatioal Terms: p( α Γ( i α i i Γ(α i p( p(, β p(c, A j Σ i α i i i ( V / ep β (i j ij (3 q( γ Γ( i γ i i Γ(γ i q( φ q( ω { } (c A T

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Digital Signal Processing: A Computer-Based Approach

Digital Signal Processing: A Computer-Based Approach SOLUTIOS AUAL to accopay Digital Sigal Processig: A Coputer-Based Approac Tird Editio Sait K itra Prepared by Cowdary Adsuilli, Jo Berger, arco Carli, Hsi-Ha Ho, Raeev Gadi, Ci Kaye Ko, Luca Luccese, ad

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 311: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 016 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα, Αλγόριθμοι και Πολυπλοκότητα

Διαβάστε περισσότερα

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: ΔΙΑΚΡΙΤΗ ΑΝΑΛΥΣΗ ΚΑΙ ΔΟΜΕΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΗΜΥ 3: Διακριτή Ανάλυση και Δομές Χειμερινό Εξάμηνο 06 Σειρά Ασκήσεων : Συναρτήσεις, Σχέσεις, Σειρές και Αθροίσματα,

Διαβάστε περισσότερα

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory

Probability theory STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN15/MASM23 TABLE OF FORMULÆ. Basic probability theory Lud Istitute of Techology Cetre for Mathematical Scieces Mathematical Statistics STATISTICAL MODELING OF MULTIVARIATE EXTREMES, FMSN5/MASM3 Probability theory Basic probability theory TABLE OF FORMULÆ

Διαβάστε περισσότερα

Αναγνώριση Προτύπων. Non Parametric

Αναγνώριση Προτύπων. Non Parametric Γιώργος Γιαννακάκης No Parametric ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΠΙΣΤΗΜΗΣ ΥΠΟΛΟΓΙΣΤΩΝ Probability Desity Fuctio If the radom variable is deoted by X, its probability desity fuctio f has the property that No Parametric

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent

Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation HermiteHGeeral Notatios Traditioal ame Hermite fuctio Traditioal otatio H Mathematica StadardForm otatio HermiteH, Primary defiitio 07.0.0.000.0 H F ; ; F ; 3 ; Specific values Specialied values For fixed

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER *

A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER * PORTUGALIAE MATHEMATICA Vol. 60 Fasc. 2 2003 Nova Série A NEW CLASS OF SEMI-PARAMETRIC ESTIMATORS OF THE SECOND ORDER PARAMETER * M.I. Fraga Alves M. Ivette Gomes ad Laures de Haa Abstract: The mai goal

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

A note on a conjecture of Calderón

A note on a conjecture of Calderón A ote o a cojecture of Calderó Jiecheg CHEN & Xiagrog ZHU Dept of Math Xixi Campus), Zhejiag Uiversitry Abstract For f SR ) ad Ω L 1 S 1 ), S 1 Ωx )dx = 0, defie T Ω f)x) = lim ɛ 0+ x y ɛ Ωy/ y ) y fx

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

Variance Covariance Matrices for Linear Regression with Errors in both Variables. by J.W. Gillard and T.C. Iles

Variance Covariance Matrices for Linear Regression with Errors in both Variables. by J.W. Gillard and T.C. Iles Variace Covariace Matrices for Liear Regressio with Errors i both Variables by J.W. Gillard ad T.C. Iles School of Mathematics, Segheydd Road, Cardiff Uiversity, October 2006 Cotets 1 Itroductio 2 2 The

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Tired Waiting in Queues? Then get in line now to learn more about Queuing!

Tired Waiting in Queues? Then get in line now to learn more about Queuing! Tired Waitig i Queues? The get i lie ow to lear more about Queuig! Some Begiig Notatio Let = the umber of objects i the system s = the umber of servers = mea arrival rate (arrivals per uit of time with

Διαβάστε περισσότερα

Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression.

Dimension-free PAC-Bayesian bounds for matrices, vectors, and linear least squares regression. Dimesio-free PAC-Bayesia bouds for matrices vectors ad liear least squares regressio Olivier Catoi ad Ilaria Giulii December 31 2017 Abstract: This paper is focused o dimesio-free PAC-Bayesia bouds uder

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION

ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION Sakhyā : The Idia Joural of Statistics 994, Volume 56, Series B, Pt. 3, pp. 34-322 ASYMPTOTIC BEST LINEAR UNBIASED ESTIMATION FOR THE LOG-GAMMA DISTRIBUTION By N. BALAKRISHNAN McMaster Uiversity, Hamilto

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

Lecture 12: Pseudo likelihood approach

Lecture 12: Pseudo likelihood approach Lecture 12: Pseudo likelihood approach Pseudo MLE Let X 1,...,X n be a random sample from a pdf in a family indexed by two parameters θ and π with likelihood l(θ,π). The method of pseudo MLE may be viewed

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1.

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1. LAGE DEVIATIONS FO OCCUPATION MEASUES FO MAKOV POCESSES (discrete time, o compact case). LIPTSE Electrical Egieerig-Systems, Tel Aviv Uiversity, 69978 - amat Aviv, Tel Aviv, ISAEL ad Istitute for Problems

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Parameter Estimation Fitting Probability Distributions Bayesian Approach

Parameter Estimation Fitting Probability Distributions Bayesian Approach Parameter Estimatio Fittig Probability Distributios Bayesia Approach MIT 18.443 Dr. Kempthore Sprig 2015 1 MIT 18.443 Parameter EstimatioFittig Probability DistributiosBayesia Ap Outlie Bayesia Approach

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Outline. Detection Theory. Background. Background (Cont.)

Outline. Detection Theory. Background. Background (Cont.) Outlie etectio heory Chapter7. etermiistic Sigals with Ukow Parameters afiseh S. Mazloum ov. 3th Backgroud Importace of sigal iformatio Ukow amplitude Ukow arrival time Siusoidal detectio Classical liear

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Zeta. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values Zeta Notatios Traditioal ame Riema zeta fuctio Traditioal otatio Ζs Mathematica StadardForm otatio Zetas Primary defiitio... Ζs ; Res s k k Specific values Specialized values..3.. Ζ B ;..3.. Ζ ;..3.3.

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time Moder Applied Sciece September 8 Steady-state Aalysis of the GI/M/ Queue with Multiple Vacatios ad Set-up Time Guohui Zhao College of Sciece Yasha Uiersity Qihuagdao 664 Chia E-mail: zhaoguohui8@6com Xixi

Διαβάστε περισσότερα

B.A. (PROGRAMME) 1 YEAR

B.A. (PROGRAMME) 1 YEAR Graduate Course B.A. (PROGRAMME) YEAR ALGEBRA AND CALCULUS (PART-A : ALGEBRA) CONTENTS Lesso Lesso Lesso Lesso Lesso Lesso : Complex Numbers : De Moivre s Theorem : Applicatios of De Moivre s Theorem 4

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Gauss Radau formulae for Jacobi and Laguerre weight functions

Gauss Radau formulae for Jacobi and Laguerre weight functions Mathematics ad Computers i Simulatio 54 () 43 41 Gauss Radau formulae for Jacobi ad Laguerre weight fuctios Walter Gautschi Departmet of Computer Scieces, Purdue Uiversity, West Lafayette, IN 4797-1398,

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα