Large Deviations for Stochastic Systems with Memory

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Large Deviations for Stochastic Systems with Memory"

Transcript

1 Souther Illiois Uiversity Carbodale OpeSIUC Articles ad Preprits Departmet of Mathematics 7-6 Large Deviatios for Stochastic Systems with Memory Salah-Eldi A. Mohammed Souther Illiois Uiversity Carbodale, Tusheg Zhag Uiversity of Machester Follow this ad additioal works at: Part of the Mathematics Commos This is a pre-copy-editig, author-produced PDF of a article accepted for publicatio i Discrete ad Cotiuous Dyamical Systems-Series B followig peer review. The defiitive publisher-autheticated versio "Large Deviatios for Stochastic Systems with Memory", Discrete ad Cotiuous Dyamical Systems-Series B, 64, is available olie at: dcdsb_olie.jsp. Recommeded Citatio Mohammed, Salah-Eldi A. ad Zhag, Tusheg. "Large Deviatios for Stochastic Systems with Memory." Jul 6. This Article is brought to you for free ad ope access by the Departmet of Mathematics at OpeSIUC. It has bee accepted for iclusio i Articles ad Preprits by a authorized admiistrator of OpeSIUC. For more iformatio, please cotact opesiuc@lib.siu.edu.

2 Mauscript submitted to Website: AIMS Jourals Volume, Number, Xxxx XXXX pp. LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Abstract. I this paper, we develop a large deviatios priciple for stochastic delay equatios drive by small multiplicative white oise. Both upper ad lower large deviatios estimates are established. 1. Itroductio. Large deviatios were studied by may authors begiig with the fudametal work of Dosker ad Varadha [4],[5],[6]. Subsequetly several issues cocerig large deviatio priciples ad their applicatios to stochastic differetial equatios were studied by may authors, e.g. Freidli ad Wetzell [8], Stroock [18], Deuschel ad Stroock [3], de Hollader [], ad others. However, there is little published work o large deviatios for stochastic systems with memory. The problem of large deviatios for such systems was first studied by M. Scheutzow [16] withi the cotext of additive white oise. Stochastic systems with memory or stochastic differetial delay equatios sdde s serve as viable models i a variety of applicatios, ragig from ecoomics ad fiace to sigal processig Elsaosi, ksedal ad Sulem [7], Kolmaovskii ad Myshkis [1]. The origis of the qualitative theory of stochastic systems with memory goes back to work by Itô ad Nisio [9], Kusher [11], Mizel ad Trutzer [13], Mohammed [14], Scheutzow [17], Mao [1] ad others. I this paper we examie the questio of small radom perturbatios of systems with memory ad the associated problem of large deviatios. Our aalysis allows for multiplicative oise with possible depedece o the history i the diffusio coefficiet. Our approach is similar to that i [1] ad [18], but itroduces a ew iductio argumet i order to hadle the delay.. Basic Settig ad Notatio. Let W t := Wt 1, Wt,..., Wt l deote a stadard l-dimesioal Browia motio o a complete filtered probability space Ω, F, F t t, P, with W =. Let b = b 1, b,..., b d : R + R d R d R d, σ = σ ij i=1, d,j=1,,l : R + R d R d R d R l be Borel measurable fuctios. We itroduce the followig coditios: The research of the first author is ported i part by NSF grats DMS , DMS-9989 ad DMS

3 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG A1 The fuctios b, σ satisfy a Lipschitz coditio. That is, there exist costats L 1, L such that for all x 1, x, y 1, y ad t [,, σt, x 1, y 1 σt, x, y R d R L 1 x l 1 x + y 1 y, 1 bt, x 1, y 1 bt, x, y R d L x 1 x + y 1 y. A The fuctios b, x, y, σ, x, y are cotiuous o [,, uiformly i x, y R d, i.e., bs, x, y bt, x, y =, 3 s t x,y R d σs, x, y σt, x, y =. 4 s t x,y R d Let τ > be a fixed delay, ad ψ be a give cotiuous fuctio o [ τ, ]. Cosider the followig differetial delay equatio dde: dxt = bt, Xt, Xt τ dt, t, Xt = ψt, t [ τ, ], ad the associated perturbed sdde: dx t = b t, X t, X t τ dt + 1 σ t, X t, X t τ dw t, t, X t = ψt, t [ τ, ], with solutio X. 5 6 Throughout this paper, we will assume, without loss of geerality, that the delay τ is equal to Statemet of the Mai Theorem ad Proofs. Let C [, m], R l deote the space of all cotiuous fuctios g : [, m] R l with g =. If g C [, m], R l is absolutely cotiuous, set eg = m ġt dt. Otherwise, defie eg =. Let F g be the solutio to the dde F gt = F g + + F gt = ψt, 1 t. b s, F gs, F gs 1 ds σ s, F gs, F gs 1 ġsds, < t m Deote by C ψ [ 1, m], R d the set of all cotiuous fuctios f : [ 1, m] R d such that ft = ψt for all t [ 1, ]. 7 Theorem 3.1. Let µ be the law of X o C ψ [ 1, m], R d, equipped with the uiform topology. The family {µ, > } satisfies a large deviatio priciple with the followig good rate fuctio { } 1 If := if eg; F g = f, f C ψ [ 1, m], R d. 8 That is,

4 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 3 i for ay closed subset C C ψ [ 1, m], R d, ii for ay ope subset G C ψ [ 1, m], R d, log µ C if If, 9 f C if log µ G if If. 1 f G The rest of the paper is devoted to the proof of this result. The proof is split ito several lemmas. For ay > ad ay 1, deote by X the solutio to the sdde: X t = X X t = ψt, t [ 1, ]. b s, Xs, Xs 1 ds [s] [s] σ, X [s], X 1 dw s, t >, 11 We eed the followig lemma from Stroock [18] p. 81. Lemma 3.. Let α : [, Ω R d R l ad β : [, Ω R d be F t t -progressively measurable processes. Assume that α A ad β B, where the orm of α is the Hilbert-Schmidt orm ad the orm of β is the usual orm i R d. Set ξt := αsdw s + βsds for t. Let T > ad R > satisfy d 1 BT < R. The P ξt R d exp R d 1 BT /A dt. 1 t T Lemma 3.3. I additio to A.1 ad A., assume that b, σ are bouded. The for ay m 1, δ >, the followig is true: log P X t X t > δ =. 13 Proof. We prove 13 by iductio o m. We first prove it for m = 1. Set Y t := X t X t, t. The For ρ >, defie τ,ρ Y t = [ b s, X s, X s 1 b s, X s, X s 1 ] ds + 1 ξ,ρ := if{t, Y,ρt δ}. The [ σ s, X s, X s 1 ] [s] X 1 [s] σ, X dw s, t. [s] := if{t ; X t X [t] ρ}, ad set Y,ρt := Y t τ,ρ, t, P Y t > δ = P Y t > δ, τ,ρ 1 t 1 t 1 + P Y t > δ, τ,ρ > 1 t 1 P τ,ρ 1 + P ξ,ρ 1., 14 15

5 4 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Observe that P τ,ρ 1 k=1 P k 1 t k Usig Lemma 3., there exists a costat c ρ > such that Hece, X t X k 1 ρ. 16 P τ,ρ 1 exp c ρ /, For λ >, defie φ λ y := ρ + y λ, y R d. By Itô s formula, M,ρ t is a martigale with iitial value zero, where, log P τ,ρ 1 =. 18 := φ λ Y,ρt τ,ρ γ λs := λρ + Y s λ 1 Y s, bs, X s, X s 1 γ λsds ρ λ 19 b s, X s, X s 1 + λλ 1ρ + Y s λ σ s, X s, X s 1 [s] [s] σ, X, X [s] 1 Y s + λ ρ + Y s λ 1 σ s, X s, X s 1 [s] [s] [s] σ, X, X 1 H.S. for s t τ,ρ. Noticig that X u = ψu ad X u = ψu for u, we see that γ λs cλφ λ Y s + { 4λλ 1 ρ + Y s λ Y s + λ ρ + Y s λ 1} { σs, X s, X s 1 [s] σ, X s, X s 1 + Y s + [s] X s X + [s] } ψs 1 ψ 1. By uiform cotiuity, there exists a iteger N so that ad for s 1 ad all N. Thus for N, σs, X s, X s 1 σ [s], X s, X s 1 < ρ ψs 1 ψ [s] 1 < ρ γ λs cλ + λ + λ φ λ Y s. 1 Choose λ = 1 ad take expectatios i 19 to obtai E[ρ + Y,ρt 1/ ] ρ / + C E[ρ + Y,ρs 1/ ]ds.

6 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 5 Hece, E[ρ + Y,ρt 1/ ] ρ / e Ct. Sice we have Therefore, ρ + δ 1 P ξ,ρ 1 E[ρ + Y,ρ1 1/ ], 1 ρ P ξ,ρ 1 ρ + δ e C. ρ log P ξ,ρ 1 log ρ + δ + C. 3 Give M >, first choose ρ sufficietly small so that log ρ +δ + C M, ad the use 18 to choose N so that log P τ,ρ 1 M for N. Combiig these two facts gives log P 1 t 1 ρ X t X t > δ M. Sice M is arbitrary, we have proved 13 for m = 1. Assume ow 13 holds for some iteger m. We will prove it is also true for m + 1. Let Y, τ,ρ be defied as before. I additio, itroduce two ew stoppig times: τ 1,,ρ := if{t ; X t 1 Xt 1 ρ}, { τ,ρ, := if t ; [t] Xt 1 X 1 ρ}, ad defie Z,ρt := Y t τ 1,,ρ τ,,ρ τ,ρ ad ξ,ρ := if{t ; Z,ρt δ}. We the have As i the proof of 18, P Y t > δ P τ,ρ 1, τ,ρ, τ,ρ m + 1 t m+1 + P Y t > δ, τ,ρ 1, τ,ρ, τ,ρ > m + 1 t m+1 P τ 1,,ρ m P τ,ρ τ,,ρ m P ξ,ρ m By the iductio hypothesis, Agai by Itô s formula, log P τ,ρ τ,ρ, m + 1 =. 5 log P τ,ρ 1, m + 1 log P M,ρ t τ := φ λ Z,ρt,ρ X t X t > ρ =. 1,, τ,ρ τ,ρ 6 γ λsds ρ λ 7

7 6 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG is a martigale with M,ρ =, where γ λs λρ + Y s λ 1 Y s Y s + X s 1 X s 1 + { 4λλ 1ρ + Y s λ Y s + λρ + Y s λ 1} { σs, X s, X s 1 [s] σ, X s, X s 1 [s] + Y s + X s X + } X [s] s 1 X 1 + X s 1 Xs 1 λρ + Y s λ 1 Y s Y s + ρ 8 + { 4λλ 1ρ + Y s λ Y s + λρ + Y s λ 1} Y s + 4ρ cλ + λ + λ φy s for s τ,ρ τ 1,,ρ τ,,ρ m + 1, ad sufficietly large. Usig 5, 6 ad followig the proof of the case for m = 1, we see that 13 is also true for m + 1. This completes the proof of the lemma. For 1, defie the map F : C [, m], R l C ψ [ 1, m], R d by F ωt := ψt, 1 t k t F ωt := F ω + bs, F ωs, F ωs 1ds k k k k k + σ, F ω, F ω 1 ωt ω for k t k+1. It is easy to see that F : C [, m], R l C ψ [ 1, m], R d is cotiuous. 9 Lemma 3.4. {g;eg α} F gt F gt =. Proof. Note that for g with eg α, Thus, F gt =F g + b s, F gs, F gs 1 ds [s] [s] [s] + σ, F g, F g 1 ġsds. F gt F gt = + [ bs, F gs, F gs 1 b s, F gs, F gs 1 ] ds [ [s] σ, F g [s] [s], F g σ s, F gs, F gs 1 ] ġsds.

8 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 7 By the liear growth coditio o b ad σ, we have F gt ψ + C + C Usig Growwall s iequality, this implies that 1 + F gu ds 1 u s 1 + F gu ġ sds. 1 u s I particular, M α = 1 1 u m g;eg α 1 1 u m F g u C exp m + eg. 3 Agai by the liear growth coditio ad 3, we have F gu C expm + α <. 33 [s] F gt F g + σ [t] t b s, F gs, F gs 1 ds [t] [s] [s] [s], F g, F g 1 ġ sds 1 1 C α M α 34 uiformly over the set {g; eg α}. Thus, F gt F gt C + C + F gs F gs ds + C F gs 1 F gs 1 ds [s] σ, x, y σs, x, y ġ sds x,y [ F gs 1 F gs 1 + F gs F gs ] ġ sds [ F [s] + gs F g + ] [s] F gs 1 F g 1 ġ sds 35 [ 1 1 [s] C α + σ s x,y, x, y σs, x, y ] u s 1 u s F gu F gu ds F gu F gu ġ sds. 36

9 8 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG This gives, Hece, F gu F gu 1 u m CC α [ s {g;eg α} [s] σ x,y, x, y σs, x, y ]. F gt F gt =. 37 This proves the lemma. Proof of Theorem 3.1 whe b, σ are bouded. Notice that X s = F 1 W s, where W is the Browia motio. The theorem follows from Lemma 3.3, Lemma 3.4 ad the geeralized cotractio priciple Theorem 4..3 [1] i large deviatios theory.. Next, we remove the boudedess assumptios o b ad σ. We begi with Propositio 3.5. Assume that σt, x, y C1 + x + y, 38 bt, x, y C1 + x + y, 39 for all x, y R d. The for each iteger m 1, R where X is the solutio to equatio 6. log P X t > R = 4 Proof. We use iductio o m. We first prove 4 for m = 1. For λ >, set φ λ y := 1 + y λ, y R d. By Itô s formula, the process M λ t := φ λ X t γ λsds 1 + x λ, t, 41 is a martigale with iitial value zero, where γλs = λ 1 + X s λ 1 X s, b s, X s, X s 1 + λλ X s λ σs, X s, X s 1 X s + λ 1 + X s λ 1 σ s, X s, X s 1 H.S,

10 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 9 for s 1. Sice X u = ψu for u, it follows that γ λs λ 1 + X s λ 1 X s [ 1 + X s + 1 t + λλ X s λ X s [ 1 + X s + ψt ] + λ 1 + X s λ 1[ 1 + X s 1 t + ψt ] Cψ λ + λλ + 1 φλ X s. 1 t ψt ] 4 Let ξr := if{t, X t > R}. Choosig λ = 1, it follows from 4 that E [ 1 + X t ξr 1 ] Hece, 1 + x 1 + C E [ 1 + X s ξr ] 43 1 ds. E [ 1 + X t ξr ] x 1 C e. 44 This implies Hece, R P X t > R P ξr 1 1 t R x 1 C e. log P 1 t 1 X t > R =. 46 Assume ow that 4 holds for some m. We will prove that it is also true for m + 1. For R 1 >, set ξ 1 := if{t, X t 1 R 1 } ad X 1t := X t ξ 1. Defie ξ R := if{t, X 1t R}. The, P As before, by Itô s formula, +1 X t > R 47 P ξ 1 m P ξ R m = P X t > R 1 + P ξr m M λ t ξ := φ λ X1t 1 γλsds 1 + x λ, t, 5 is a martigale with iitial value zero, where γ λs λ 1 + X s λ 1 X s [ 1 + X s + R 1 ] + 4λλ 11 + X s λ X s [1 + X s + R 1 ] + λ 1 + X s λ 1[ 1 + X s + R 1 ] 51 C R1 λ + λλ + 1 φλ X s. for s 1 ξ 1.

11 1 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG Usig 51 ad the proof of 46, we get log P ξr m + 1 log1 + R + log1 + x + C R1 m Thus it follows from 49 that log P X t R t m+1 log P X t R 1 t m log1 + R + log1 + x + C R1 m Hece, R log P X t R t m+1 log P X t R 1. t m Usig the iductio hypothesis ad lettig R 1 we obtai 4 for m + 1. This completes the proof of the propositio. For R >, defie m R := { bt, x, y, σt, x, y ; t [, m], x R, y R} ad b R i := m R 1 b i m R + 1, σ R i,j := m R 1 σ i,j m R + 1, 1 i, j d. Put b R := b R 1, b R,..., b R d ad σ R := σ R i,j 1 i,j d. The b R t, x, y = bt, x, y, σ R t, x, y = σt, x, y, for t [, m], x R, y R. Furthermore, b R ad σ R satisfy the Lipschitz coditio A.1 with the same Lipschitz costat. Let XR be the solutio to the sdde X Rt = X R X Rt = ψt, t [ 1, ]. b R s, X Rs, X Rs 1ds σ R s, X Rs, X Rs 1dW s, t >, 54 Propositio 3.6. Fix m 1. The R log P X t X Rt > δ =. 55 Proof. Agai we will use iductio. We omit the proof for the case m = 1 sice it is similar to that of Lemma 3.3. Let us assume that 55 holds for some m. We will prove that it also holds for m + 1. Set

12 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 11 YR t := X t XR t. For R 1 >, defie ξr 1 := if{t ; X t R 1 }. For ay R R 1 we have Y Rt ξ R 1 = ξ R 1 [ br s, X s, X s 1 b R s, X Rs, X Rs 1 ] ds + 1 ξ R 1 [ σr s, X s, X s 1 σ R s, X R s, X Rs 1 ] dw s, t. 56 For ρ >, let φ λ y := ρ + y λ ad τr,ρ := if{t ; X t 1 XR t 1 ρ}. Set Y R,ρ t := YR t ξ R 1 τr,ρ ad ξ R,ρ := if{t ; Y R,ρ t δ}. The P YRt > δ +1 P ξ R 1 m P τr,ρ m P ξr,ρ m + 1 P X t > R P X t XRt > ρ + P ξr,ρ m By the iductio hypothesis, By Itô s formula, log P X t XRt > ρ R =. 58 ξ φ λ YR,ρt R τ 1 R,ρ γλsds ρ λ = M R,ρ t 59 is a martigale with iitial value zero, where, as i the proof of Lemma 3.3, for s t ξ R 1 τ R,ρ, γ λs Cλ + λλ + 1φ λ Y Rs. 6 As before, this implies that Hece, it follows from 57, 58 ad 6 that ρ log P ξr,ρ m + 1 log ρ + δ + C. 61 R log P log P { ρ log ρ + δ } + C. Y Rt > δ X t > R 1 6 By Propositio 3.5, lettig first ρ ad the, R 1, we obtai 55 for m+1. The proof of Propositio 3.6 is complete.

13 1 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG For g with eg <, let F R g be the solutio to the dde F R gt = F R g + + F R gt = ψt, 1 t. b R s, FR gs, F R gs 1 ds σ R s, FR gs, F R gs 1 ġsds 63 Defie for each f C ψ [ 1, m] R d. If { } 1 I R f := if eg; F Rg = f F gt R, the F g = F R g. Therefore, 64 If = I R f, for all f with ft R. 65 Lemma 3.7. I is a good rate fuctio o C ψ [ 1, m], R d ; that is, for ay α, the level set {f; If α} is compact. Proof. As i Lemma 3.4, we ca show that R eg α F R g F g =. I particular, this implies that F is cotiuous o each level set {g; eg α}. Sice e is a good rate fuctio, this is sufficiet to coclude that I is also a good rate fuctio. Proof of Theorem 3.1 i the ubouded case. For R > ad a closed subset C C ψ [ 1, m], R l, set C R = C {f; f R}. C δ R deotes the δ-eighborhood of C R. Deote by µ R µ C µ C R1 + P X t > R 1 µ R C δ R 1 + P Usig the large deviatio priciple for {µ R, > }, we obtai Sedig R to ifiity gives log µ C X t X Rt > δ + P X t > R 1. if I R f log P f CR δ 1 log µ C log P X t X Rt > δ. if If log P f CR δ 1 Lettig first δ, ad the R 1, we obtai which is the upper boud 9 i Theorem 3.1. log µ C if If f C the law of XR. The we have X t > R 1 X t > R

14 LARGE DEVIATIONS FOR STOCHASTIC SYSTEMS WITH MEMORY 13 Let G be a ope subset of C ψ [ 1, m] R d. Fix ay φ G ad choose δ > such that Bφ, δ = {f; f φ δ} G. The I R φ log µ R Bφ, δ log µ G log P X t XRt > δ Note that I R φ = Iφ for all R φ. So, lettig R i the above iequality, we get. 69 Sice φ is arbitrary, it follows that Iφ log µ G. 7 if If log µ G f G which is the lower boud 1 i Theorem 3.1. The proof of Theorem 3.1 is ow complete. Remark. The results i this paper ca be easily exteded to the case, where differet delays τ 1, τ are allowed i 6: dx t = b t, X t, X t τ 1 dt + 1 σ t, X t, X t τ dw t, X t = ψt, t [ τ 1 τ, ]. t,, 71 REFERENCES [1] Dembo, A. ad Zeitoui, A, Large Deviatios Techiques ad Applicatios, Spriger-Verlag, Berli Heidelberg, [] de Hollader, F., Large deviatios, Fields Istitute Moographs, 14. America Mathematical Society, Providece, RI,, pp.143 [3] Deuschel, J.-D., ad Stroock, D. W., Large Deviatios, Academic Press, Bosto, Sa Diego, New York, [4] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, I, Comm. Pure Appl. Math., 8, 1975, [5] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, II, Comm. Pure Appl. Math., 8, 1975, [6] Dosker, M., ad Varadha, S. R. S., Asymptotic evaluatio of certai Markov process expectatios for large time, III, Comm. Pure Appl. Math., 9, 1976, [7] Elsaosi, I., ksedal, B., ad Sulem, A., Some solvable stochastic cotrol problems with delay, Stochastics Stochastics Rep. 71, o. 1-, [8] Freidli, M. I., ad Wetzell, A. D., Radom Perturbatios of Dyamical Systems, Spriger-Verlag, New York, Berli, Heidelberg, Tokyo, [9] Itô, K., ad Nisio, M., O statioary solutios of a stochastic differetial equatio, J. Math. Kyoto Uiversity, , [1] Kolmaovskii, V., ad Myshkis, A., Itroductio to the theory ad applicatios of fuctioal-differetial equatios, Mathematics ad its Applicatios, 463, Kluwer Academic Publishers, Dordrecht [11] Kusher, H. J., O the stability of processes defied by stochastic differetial-differece equatios, J. Differetial Equatios, , [1] Mao, X., Stochastic differetial equatios ad their applicatios, Horwood Series i Mathematics & Applicatios, Horwood Publishig Limited, Chichester, 1997, pp [13] Mizel, V. J. ad Trutzer, V, Stochastic hereditary equatios: existece ad asymptotic stability, Joural of Itegral Equatios , 1 7. [14] Mohammed, S.-E. A., Stochastic Fuctioal Differetial Equatios, Research Notes i Mathematics, 99, Pitma Advaced Publishig Program, Bosto, Lodo, Melboure 1984.

15 14 SALAH-ELDIN A. MOHAMMED AND TUSHENG ZHANG [15] Mohammed, S.-E. A., Stochastic differetial systems with memory: Theory, examples ad applicatios, Stochastic Aalysis ad Related Topics VI, The Geilo Workshop, 1996, eds. L. Decreusefod, J. Gjerde, B. ksedal ad A.S. Ustuel, Progress i Probability, vol. 4, Birkhauser [16] Scheutzow, M., Qualitative behaviour of stochastic delay equatios with a bouded memory, Stochastics , o. 1, [17] Scheutzow, M., Statioary ad Periodic Stochastic Differetial Systems: A study of qualitative chages with respect to the oise level ad asymptotics, Habilitatiosschrift, Fachbereich Mathematik, Uiversity of Kaiserslauter, Germay, [18] Stroock, D.W., A Itroductio to the Theory of Large Deviatios, Spriger-Verlag, Berli, [19] Zhag, T.S., O the small time asymptotics of diffusios o Hilbert spaces, Aals of Probability 8: [] Zhag, T.S., A large deviatio priciple of diffusios o cofiguratio spaces, Stochastic Processes ad Applicatios Departmet of Mathematics, Souther Illiois Uiversity, Carbodale, Illiois, U.S.A. Departmet of Mathematics, Uiversity of Machester, Oxford Road, Machester M13 9PL, Eglad, U.K.

On Generating Relations of Some Triple. Hypergeometric Functions

On Generating Relations of Some Triple. Hypergeometric Functions It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade

Διαβάστε περισσότερα

Homework for 1/27 Due 2/5

Homework for 1/27 Due 2/5 Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where

Διαβάστε περισσότερα

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1) 8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r

Διαβάστε περισσότερα

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University) Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize

Διαβάστε περισσότερα

1. For each of the following power series, find the interval of convergence and the radius of convergence:

1. For each of the following power series, find the interval of convergence and the radius of convergence: Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing. Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis

Διαβάστε περισσότερα

A study on generalized absolute summability factors for a triangular matrix

A study on generalized absolute summability factors for a triangular matrix Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş

Διαβάστε περισσότερα

On Inclusion Relation of Absolute Summability

On Inclusion Relation of Absolute Summability It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Solve the difference equation

Solve the difference equation Solve the differece equatio Solutio: y + 3 3y + + y 0 give tat y 0 4, y 0 ad y 8. Let Z{y()} F() Taig Z-trasform o both sides i (), we get y + 3 3y + + y 0 () Z y + 3 3y + + y Z 0 Z y + 3 3Z y + + Z y

Διαβάστε περισσότερα

LAD Estimation for Time Series Models With Finite and Infinite Variance

LAD Estimation for Time Series Models With Finite and Infinite Variance LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite

Διαβάστε περισσότερα

EN40: Dynamics and Vibrations

EN40: Dynamics and Vibrations EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio

Διαβάστε περισσότερα

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES

COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

On Certain Subclass of λ-bazilevič Functions of Type α + iµ Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator

Διαβάστε περισσότερα

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case

Uniform Estimates for Distributions of the Sum of i.i.d. Random Variables with Fat Tail in the Threshold Case J. Math. Sci. Uiv. Tokyo 8 (2, 397 427. Uiform Estimates for Distributios of the Sum of i.i.d. om Variables with Fat Tail i the Threshold Case By Keji Nakahara Abstract. We show uiform estimates for distributios

Διαβάστε περισσότερα

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y

Διαβάστε περισσότερα

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities

Research Article Finite-Step Relaxed Hybrid Steepest-Descent Methods for Variational Inequalities Hidawi Publishig Corporatio Joural of Iequalities ad Applicatios Volume 2008, Article ID 598632, 13 pages doi:10.1155/2008/598632 Research Article Fiite-Step Relaxed Hybrid Steepest-Descet Methods for

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

IIT JEE (2013) (Trigonomtery 1) Solutions

IIT JEE (2013) (Trigonomtery 1) Solutions L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE

Διαβάστε περισσότερα

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ. Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods DOI: 545/mjis764 Biet Type Formula For The Sequece of Tetraacci Numbers by Alterate Methods GAUTAMS HATHIWALA AND DEVBHADRA V SHAH CK Pithawala College of Eigeerig & Techology, Surat Departmet of Mathematics,

Διαβάστε περισσότερα

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6 SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )

SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, ) Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL

Διαβάστε περισσότερα

Proof of Lemmas Lemma 1 Consider ξ nt = r

Proof of Lemmas Lemma 1 Consider ξ nt = r Supplemetary Material to "GMM Estimatio of Spatial Pael Data Models with Commo Factors ad Geeral Space-Time Filter" (Not for publicatio) Wei Wag & Lug-fei Lee April 207 Proof of Lemmas Lemma Cosider =

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

The Heisenberg Uncertainty Principle

The Heisenberg Uncertainty Principle Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1

ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY. Gabriel STAN 1 Bulleti of the Trasilvaia Uiversity of Braşov Vol 5) - 00 Series III: Mathematics, Iformatics, Physics, -4 ANOTHER EXTENSION OF VAN DER CORPUT S INEQUALITY Gabriel STAN Abstract A extesio ad a refiemet

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

Degenerate Perturbation Theory

Degenerate Perturbation Theory R.G. Griffi BioNMR School page 1 Degeerate Perturbatio Theory 1.1 Geeral Whe cosiderig the CROSS EFFECT it is ecessary to deal with degeerate eergy levels ad therefore degeerate perturbatio theory. The

Διαβάστε περισσότερα

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE INTEGRATION OF THE NORMAL DISTRIBUTION CURVE By Tom Irvie Email: tomirvie@aol.com March 3, 999 Itroductio May processes have a ormal probability distributio. Broadbad radom vibratio is a example. The purpose

Διαβάστε περισσότερα

The Neutrix Product of the Distributions r. x λ

The Neutrix Product of the Distributions r. x λ ULLETIN u. Maaysia Math. Soc. Secod Seies 22 999 - of the MALAYSIAN MATHEMATICAL SOCIETY The Neuti Poduct of the Distibutios ad RIAN FISHER AND 2 FATMA AL-SIREHY Depatet of Matheatics ad Copute Sciece

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Homework 4.1 Solutions Math 5110/6830

Homework 4.1 Solutions Math 5110/6830 Homework 4. Solutios Math 5/683. a) For p + = αp γ α)p γ α)p + γ b) Let Equilibria poits satisfy: p = p = OR = γ α)p ) γ α)p + γ = α γ α)p ) γ α)p + γ α = p ) p + = p ) = The, we have equilibria poits

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

On a four-dimensional hyperbolic manifold with finite volume

On a four-dimensional hyperbolic manifold with finite volume BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,

Διαβάστε περισσότερα

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.

Διαβάστε περισσότερα

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators Tamsui Oxford Joural of Mathematical Scieces 20(2) (2004) 175-186 Aletheia Uiversity A New Class of Aalytic -Valet Fuctios with Negative Coefficiets ad Fractioal Calculus Oerators S. P. Goyal Deartmet

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

Bessel function for complex variable

Bessel function for complex variable Besse fuctio for compex variabe Kauhito Miuyama May 4, 7 Besse fuctio The Besse fuctio Z ν () is the fuctio wich satisfies + ) ( + ν Z ν () =. () Three kids of the soutios of this equatio are give by {

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

α β

α β 6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5 Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2

Διαβάστε περισσότερα

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Data Dependence of New Iterative Schemes

Data Dependence of New Iterative Schemes Mathematics Volume : 4 Issue : 6 Jue 4 ISSN - 49-555X Data Depedece of New Iterative Schemes KEYWORDS CR Iteratio Data Depedece New Multistep Iteratio Quasi Cotractive * Aarti Kadia Assistat Professor

Διαβάστε περισσότερα

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano

THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS. Daniel A. Romano 235 Kragujevac J. Math. 30 (2007) 235 242. THE SECOND ISOMORPHISM THEOREM ON ORDERED SET UNDER ANTIORDERS Daniel A. Romano Department of Mathematics and Informatics, Banja Luka University, Mladena Stojanovića

Διαβάστε περισσότερα

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction

Supplement to A theoretical framework for Bayesian nonparametric regression: random series and rates of contraction Supplemet to A theoretical framework for Bayesia oparametric regressio: radom series ad rates of cotractio A Proof of Theorem 31 Proof of Theorem 31 First defie the followig quatity: ɛ = 3 t α, δ = α α

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Locatio ad Navigatio INS Iitializatio Aly El-Osery Electrical Egieerig Departmet, New Mexico Tech Socorro, New Mexico, USA April 25, 2013 Aly El-Osery (NMT) EE 570: Locatio ad Navigatio April 25,

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log

Διαβάστε περισσότερα

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue Queueig Aalysis Outlie M/M/ Queue (ifiite buffer M/M//N (fiite buffer M/M// (Erlag s B forula M/M/ (Erlag s C forula Networks of M/M/ Queues M/G/ Priority Queue M/M/ M: Markovia/Meoryless Arrival process

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

Certain Sequences Involving Product of k-bessel Function

Certain Sequences Involving Product of k-bessel Function It. J. Appl. Coput. Math 018 4:101 https://doi.org/10.1007/s40819-018-053-8 ORIGINAL PAPER Certai Sequeces Ivolvig Product of k-bessel Fuctio M. Chad 1 P. Agarwal Z. Haouch 3 Spriger Idia Private Ltd.

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1.

1. Introduction. Main Result. 1. It is well known from Donsker and Varadhan [1], the LDP for occupation measures. I(ξ k A) (1. LAGE DEVIATIONS FO OCCUPATION MEASUES FO MAKOV POCESSES (discrete time, o compact case). LIPTSE Electrical Egieerig-Systems, Tel Aviv Uiversity, 69978 - amat Aviv, Tel Aviv, ISAEL ad Istitute for Problems

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Knaster-Reichbach Theorem for 2 κ

Knaster-Reichbach Theorem for 2 κ Knaster-Reichbach Theorem for 2 κ Micha l Korch February 9, 2018 In the recent years the theory of the generalized Cantor and Baire spaces was extensively developed (see, e.g. [1], [2], [6], [4] and many

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα