29 6 2014 12 JOURNAL OF SYSTEMS ENGINEERING Vol.29 No.6 Dec. 2014 1, 2, 3 (1. ( ), 266580; 2., 210093; 3., 150001) :, Weibull, Bayes.,,.,. : ; Bayes ; ; : F272.3 : A : 1000 5781(2014)06 0845 07 Schedule variance early-warning control model for project crical chain resource plan Xu Xiaofeng 1, Li Xiang 2, Liu Jiaguo 3 (1. School of Economics and Management, China University of Petroleum, Qingdao 266580, China; 2. School of Economics and Management Science, Beijing University of Chemical Technology, Beijing 100029, China; 3. Shipbuilding Industry Management Research Instuon, Harbin Engineering University, Harbin 150001, China ) Abstract: In order to solve the problem that the project crical chain resource plan is easier influenced by uncertain risks of the construcon process and deviate, the paper presents a modeling of schedule variance early-warning control where value analysis is embedded into Weibull distribuon, and is integrated with Bayes esmaon. The main purpose is to solve the hierarchical informaon conversion of resource plan cohesive tasks, improve the uncertain predicon ability of schedule variance, and take correcve measures for project managers and decision makers to ensure the plan s normal proceeding. Finally, a case analysis shows that the proposed model is correct and effecve. Key words: project management; Bayes esmaon; earned value analysis; schedule early-warning 1 ( ), [1]. : 2014 02 13; : 2014 07 17. : (70971028); (J13WG67); (2013EI228); (QDSKL130415); (14CX04047B).
846 29,, /.,,,,.,,., Goldratt [2] (theory of constraint, TOC),,. Wei [3], TOC,. [4] Goldratt,,., [5]. [6], GM(1,1),. Nassar [7] Weibull earning value analysis, EVA, /. [8],,,. Kim [9] (crical path method, CPM) EVA, Kalman Bayesian,. [10], /,.,,.,.,, Bayes Weibull,. EVA / (schedule/cost performance index, SPI/CPI) Weibull ; Bayes,. 2., /,. CPM/PERT,,,. ( 1). t 1,t 2,...,t m, [,+1 ) i, n i i, d i i, (n i,d i ) i.,. BCWS i i, ACWP i i, BCWP i i. i,, : 1) i, ( )R i ; 2) i p i, i + 1
6 : 847. t 1 t 2 t 3 t 4 +1 n 1, d 1 n 2, d 2 n 3, d 3 n 4, d 4 n i, d i n i+1, d i+1 t m 1/Z 1 /t z11 5/Z 4 /t z45 6/Z 5 /t z56 2/Z 2 /t z22 4/Z 2 /t z24 8/Z 4 /t z48 y/z x /t zxy 3/Z 3 /t z33 7/Z 4 /t z47 y/z x /t zxy 表示任务 y 需要资源 Z x, 执行时间为 t zxy ; 表示该任务为关键链上任务 t 1 BCWS 1 ACWP 1 BCWP 1 t 2 BCWS 2 ACWP 2 BCWP 2 t 3 BCWS 3 ACWP 3 BCWP 3 t 4 BCWS 4 ACWP 4 BCWP 4 BCWS i ACWP i BCWP i +1 BCWS i+1 ACWP i+1 BCWP i+1 t m 1 Fig. 1 Network diagram of crical chain resource plan, : 1) m, i [,+1 ),i = 1,2,...,m 1,,,, 0 p 1 p 2 p m < 1; 2) Weibull, i p i (t α,β) = 1 e ( α ) β, 0,α,β > 0,i = 1,2,...,m 1;α,β, R i = 1 p i = e ( α ) β ; 3),,,,,., i R i, Weibull R i β. i 1 R i 1, i R i α =, t ( ln R i 1 ) 1 i 0, β > 0, i = 2,3,...,m, (1) β R i ( R i,β) = e ln Ri 1 ( ) β, 0,β > 0, i = 2,3,...,m. (2) Weibull φ i ( α,β) = β ( ) β 1 e ( α) β, 0, α, β > 0, i = 1,2,...,m 1, (3) α α R i β Weibull φ i ( R i,β) = β ( ln R i 1 ) ( ) e ln Ri 1( ) β, 0, β > 0, i = 2,3,...,m. (4), t β, R., t β, φ i ( R i,β) R i, R i = 1 p i, φ i ( R i,β) p i π i (p i,β) π i (p i,β) = β ( ) β ( ) ln(1 p i ) e ln(1 pi 1) β, 0,β > 0, i = 2,3,...,m. (5)
848 29 π i (p i ) i, i, Bayes f i (p i (n i,d i )) = pi 1 Pr{(n i,d i ) p i } = ( n i ) d i p d i i (1 p i ) ni di,m{(n i,d i ) p i } =. 0 π i (p i )Pr{(n i,d i ) p i }, i = 2,3,...,m, (6) π i (p i )Pr{(n i,d i ) p i }dp i pi 1 0 π i (p i )Pr{(n i,d i ) p i }dp i p i, t β, i π i (p i,β) Weibull φ i ( R i,β)., (n i,d i ), i f i (p i (n i,d i )), i + 1 π i+1 (p i+1 ),. β, π(p). 2.1 SPI/CPI (α,β) Weibull, (median ranking method MRM). MRM Weibull y = kx + b, α β [11,12]. : 1 i, SPI i /CPI i,, SPI i = BCWP i /BCWS i,cpi i = BCWP i /ACWP i ; 2 SPI i /CPI i i = 1,2,...,n, M i, M i = (i 0.3)/(n + 0.4),i = 1,2,...,n; 3 ln (ln(1/(1 M i ))), ln(spi i ) ln(cpi i ) y = kx + b ; 4 β = k SPI k CPI, α = e b β SPI e b β CPI. 2.2 Bayes,,.,, [13,14]. i, (n i,d i ),, i p i Bayes f i (p i (n i,d i )), (5) i + 1 π i+1 (p i+1 +1,β) = β +1 ( ln(1 l i p i )) ( +1 ) β e ln(1 lipi)( +1 ) β, 0,β > 0, i = 1,2,...,m 1, (7) l i., t β, l i, i + 1. ML-II,, l i. (n i+1,d i+1 ) i + 1, m(n i+1,d i+1 ) p i+1. i, i + 1, n i+1, d i+1.,, Monte Carlo
6 : 849 m(n i+1,d i+1 = Max) l i ˆl i, i + 1 p i+1 π i+1 (p i+1 +1,β) = β ( ) β ln(1 t ˆl +1 i p i ) e ln(1 ˆl ip i)( +1 ) β, i+1 0,β > 0, i = 1,2,...,m 1. (8),. 3,, MATLAB. / SPI/CPI,, 1. 1 Table 1 Project progress informaon stascs i SPI i CPI i n i d i 1 0.43 0.35 4 2 2 1.30 0.73 2 0 3 0.99 0.87 3 1 4 0.82 1.24 5 3 5 1.04 1.02 1 0 6 0.57 0.91 1 1 7 1.13 0.69 2 0 8 0.84 0.88 3 1 9 1.48 1.33 2 1 10 0.93 0.95 4 2 11 0.94 1.05 2 0 1 SPI/CPI, ln SPI ln CPI. MRM M i, ln (ln (1/(1 M i ))), 2. 2 Table 2 MRM MRM-based data processing i SPI i ln SPI i CPI i lncpi i M i ln(ln(1/(1 M i ))) 1 0.43 0.84 0.35 1.05 0.06 2.76 2 1.30 0.56 0.73 0.37 0.15 1.82 3 0.99 0.20 0.87 0.31 0.24 1.31 4 0.82 0.17 1.24 0.14 0.32 0.94 5 1.04 0.07 1.02 0.13 0.41 0.63 6 0.57 0.06 0.91 0.09 0.50 0.37 7 1.13 0.01 0.69 0.05 0.59 0.12 8 0.84 0.04 0.88 0.02 0.68 0.12 9 1.48 0.12 1.33 0.05 0.76 0.36 10 0.93 0.26 0.95 0.22 0.85 0.64 11 0.94 0.39 1.05 0.29 0.94 1.03 2 ln SPI i /ln CPI i ln (ln (1/(1 M i ))) y = kx + b, β = k,α = e b β, 3. 3 β, li ˆl i. ˆl i [0,n i ],. f i, [0,n i ],.
/ 0 I 850 29, Monte Carlo 10 000, m i (n i,d i ) ˆl i., 1, π 0 (p 0 ) = 1, p 0 = 0.0030. Table 3 3 Parameter esmaon based on regression analysis (SPI) (CPI) k 3.14 4.12 b 0.21 4.28 β 3.14 4.12 α 0.94 0.35 2 0. 2 5 0. 2 0. 1 5 0. 1 0. 0 5 S P C P I 2 4 6 8 1 0 2 / Fig. 2 Resource plan schedule/cost variance appear probability curve 2,, /. /,,., p < 0.15, 8.,, p i [0.15,0.20),, 9,,,. /,, p 0.20, 10,,,. 4,,. Weibull, Bayes. EVA Weibull, Bayes,,
6 : 851.,.,,,. : [1] Savkin A V, Petersen I R. An uncertainty averaging approach to opmal guaranteed cost control of uncertain systems with structured uncertainty[j]. Automaca, 1995, 31(11): 1649 1653. [2] Goldratt E M. Crital Chain[M]. Great Barrington: The North River Press, 1997. [3] Wei C C, Liu P H, Tsai Y C. Resource constrained project management using enhanced theory of constraint[j]. Internaonal Journal of Project Management, 2002, 20(7): 561 567. [4],. [J]., 2010, 24(5): 559 563. Zhao Zhenyu, Lü Qianlei. Study on the double-buffering method for project schedule control[j]. Journal of Engineering Management, 2010, 24(5): 559 563. (in Chinese) [5] Nasir D, McCabe B, Hartono L. Evaluang risk in construcon-schedule risk model[j]. Journal of Construcon Engineering and Management, 2003, 129(5): 518 527. [6],. [J]., 2000, 28(3): 114 116. Zhao Qinghua, Zhong Wenle. Predicon of deviaon for project progress[j]. Journal of Hohai University, 2000, 28(3): 114 116. (in Chinese) [7] Nassar K M, Gunnarsson H G, Hegab M Y. Using Weibull analysis for evaluaon of cost and schedule performance[j]. Journal of Construcon Engineering and Management, 2005, 131(12): 1257 1262. [8],,,. [J]., 2006, 39(3): 280 283. Liu Donghai, Feng Shouzhong, Zhong Denghua, et al. Project schedule real-me forecasng and control based on simulsted construcon process[j]. Journal of Tianjin University, 2006, 39(3): 280 283. (in Chinese) [9] Kim B C. Forecasng project progress and early warning of project overruns with probabilisc methods[d]. Texas: Texas A&M University, 2007. [10],. [J]., 2010, 24(3):318 322. Chen Dongfang, Chen Jianguo. Progress early-warning model and its applicaon for construcon projects[j]. Journal of Engineering Management, 2010, 24(3): 318 322. (in Chinese) [11] Henley E J, Kumamoto H. Probabilisc Risk Assessment and Management for Engineers and Sciensts[M]. New York: IEEE Press, 1996. [12] Li X, Wang D, Li K, et al. A green train scheduling model and fuzzy mul-objecve opmizaon algorithm[j]. Applied Mathemacal Modeling, 2013, 37(4): 2063 2073. [13],,,. [J]., 2011, 26(5): 599 607. Nan Guofang, Hao Lei, Li Minqiang, et al. Task allocaon model for sensor networks based on mul-objecve opmizaon[j]. Journal of Systems Engineering, 2011, 26(5): 599 607. (in Chinese) [14]. Bayes [J]., 2004(4): 10 13. Zhang Jinhuai. The different methods and analysis of determining prior distribuon on reliability growth tesng[j]. Quality and Reliability, 2004(4): 10 13. (in Chinese) : (1982 ),,,,, :, Email: xiaofengheu@163.com; (1982 ),,,,, :, Email: lixiang@mail.buct.edu.cn; (1979 ),,,,, :, Email: liujiaguo@gmail.com.