11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

Σχετικά έγγραφα
: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00


Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

IUTeich. [Pano] (2) IUTeich

Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

Modular καµπύλες. Αριστείδης Κοντογεώργης. 9 εκεµβρίου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/41

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

The k-α-exponential Function

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Discriminantal arrangement

Uniform Convergence of Fourier Series Michael Taylor

Nonholomorphic Eisenstein series, the Kronecker limit formula, and the hyperbolic Laplacian

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Functional equations for Mahler measures of genus-one curves (joint with Mat Rogers, University of British Columbia) Matilde N.

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Jean Bourgain Institute for Advanced Study Princeton, NJ 08540

cz+d d (ac + cd )z + bc + dd c z + d

Theta Function Identities and Representations by Certain Quaternary Quadratic Forms II

Galois module structure χώρων ολόµορφων διαφορικών

page: 2 (2.1) n + 1 n {n} N 0, 1, 2

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

About these lecture notes. Simply Typed λ-calculus. Types

Palestine Journal of Mathematics Vol. 2(1) (2013), Palestine Polytechnic University-PPU 2013

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Wishart α-determinant, α-hafnian

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

The k-bessel Function of the First Kind

MÉTHODES ET EXERCICES

Παραδείγµατα από Modular forms

Research Article Some Properties of Certain Class of Integral Operators

Iterated trilinear fourier integrals with arbitrary symbols

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Statistical Inference I Locally most powerful tests

L p approach to free boundary problems of the Navier-Stokes equation

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ιοφαντικές εξισώσεις, Θεωρία κλάσεων σωµάτων, κρυπτογραφία

A summation formula ramified with hypergeometric function and involving recurrence relation

x xn w(x) = 0 ( n N)

Ó³ Ÿ , º 3(180).. 313Ä320

Congruence Classes of Invertible Matrices of Order 3 over F 2

arxiv: v1 [math.sp] 29 Mar 2010

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Cyclic or elementary abelian Covers of K 4

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

The Pohozaev identity for the fractional Laplacian

Heisenberg Uniqueness pairs

Representation by Quaternary Quadratic Forms whose Coefficients are 1, 2, 7 or 14

On the Galois Group of Linear Difference-Differential Equations

Hecke Operators on the q-analogue of Group Cohomology

1 What is CFT? 1. 3 Strange duality conjecture (G) Geometric strange duality conjecture... 5

Reminders: linear functions

Homomorphism in Intuitionistic Fuzzy Automata

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Abstract Storage Devices




Fractional Colorings and Zykov Products of graphs

A General Note on δ-quasi Monotone and Increasing Sequence

On Inclusion Relation of Absolute Summability

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Subclass of Univalent Functions with Negative Coefficients and Starlike with Respect to Symmetric and Conjugate Points

Modular καµπύλες. Αριστείδης Κοντογεώργης. 1 εκεµβρίου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/26

Prey-Taxis Holling-Tanner

On Hilbert s 8th Problem

Higher spin gauge theories and their CFT duals

The q-commutators of braided groups

Research Article A Characterization of Planar Mixed Automorphic Forms

The k-mittag-leffler Function

Limit theorems under sublinear expectations and probabilities

Τελεστές Hecke. Αριστείδης Κοντογεώργης. 13 Ιανουαρίαου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/28

n=2 In the present paper, we introduce and investigate the following two more generalized

C ab, Algorithms for computations in Jacobian group of C ab curve and their application to discrete-log based public key cryptosystems.

*❸341❸ ❸➈❽❻ ❸&❽❼➅❽❼❼➅➀*❶❹❻❸ ➅❽❹*➃❹➆❷❶*➈❹1➈. Pa X b P a µ b b a ➁❽❽❷➂➂%&'%➁❽➈❽)'%➁❽❽'*➂%➁❽➄,-➂%%%,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻ ,❹❽➀➂'❹➄%,❹❽❹'&,➅❸%&❹-❽❻

TORSION UNITS FOR FOR A REE GROUP, TITS GROUP AND A STEINBERG TRIALITY GROUP

Α Ρ Ι Θ Μ Ο Σ : 6.913

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Ψηφιακή Επεξεργασία Φωνής

Computable error bounds for asymptotic expansions formulas of distributions related to gamma functions

Math-Net.Ru Общероссийский математический портал

Numerical Methods for Civil Engineers. Lecture 10 Ordinary Differential Equations. Ordinary Differential Equations. d x dx.

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Séminaire Grothendieck

Reccurence Relation of Generalized Mittag Lefer Function

a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.

The Laplace transform of Dirichlet L-functions

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

Mantel & Haenzel (1959) Mantel-Haenszel


On the k-bessel Functions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ON INTEGRAL MEANS FOR FRACTIONAL CALCULUS OPERATORS OF MULTIVALENT FUNCTIONS. S. Sümer Eker 1, H. Özlem Güney 2, Shigeyoshi Owa 3

Transcript:

Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) = γ SL 2 (Z) γ ( ) } mod M 0 1 Γ 1 (M) k H = {z C Im(z) > 0} f : H C f ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d ( a c ) b Γ 1 (M)) d M k (Γ 1 (M)) C M 5 Z[1/M] X 1 (M) 1

X 1 (M) ω C X 1 (M) C ω C M k (Γ 1 (M)) C = H 0 (X 1 (M) C, ω k C ). X 1 (M) Γ 1 (M) Γ 1 (M) Z[1/M] R Γ 1 (M) k R R X 1 (M) R ω R M k (Γ 1 (M)) R = H 0 (X 1 (M) R, ω k R ) 1.1.2 q f M k (Γ 1 (M)) R q f (q) R (Z[1/M][[q]]) Z[1/M] R S f M k (Γ 1 (M)) S M k (Γ 1 (M)) R f (q) R (Z[1/M][[q]]) S (Z[1/M][[q]]) q 1.1.3 Hecke l Hecke T l l M U l l M M k (Γ 1 (M)) R f R M k (Γ 1 (M)) R 1.1.4 p N 5 p N p f = (f i ) i Z 0 f i M ki (Γ 1 (N)) Q (f i ) (q) Q[[q]] Q p [[q]] Z p [[q]] p [Ser, 1.4 (b)] (k i ) i X = Z/(p 1)Z Z p p [Ser, 1.4 (c), Théorème 2]. Z X X p f N χ p Q p M χ (Np ) X (weight space) Q p W Q p W(Q p ) p Q p X 1 (N) Qp Q p X 1 (N) ord Q p X 1 (N) Qp X 1 (N) ord Q p X 1 (N) Qp ordinary locus 1.1. X 1 (N) p X 1 (N) ord Q p p 2

χ X X 1 (N) ord Q p ω χ Q p M χ (Np ) = H 0 (X 1 (N) ord Q p, ω χ Q p ) χ = k Z ω χ Q p = ω k X1 (N) ord M k (Γ 1 (N)) Qp M χ (Np ) Qp p q p M χ (Np ) Hecke p Hecke U p q n 0 a n q n n 0 a pn q n 1.2. canonical subgroup p p M χ (Np ) Hecke T p U p M χ (Np ) p 1.1.5 p p 2 q p p p ) p X p W Q p X = W(Q p ) Z p Z p W( Q p ) Z p O Qp Coleman Coleman-Mazur eigencurve eigenvariety p 1.1.6 m 1 v p v p (p) = 1 p M k (Γ 1 (Np m )) C U p v p slope Q 0 {+ } U p 3

S k (Γ 1 (2)) C U 2 [Buz, Introduction] (k 2)/2 2-newform 2-oldform k 1 2-oldform k 12 3,8 14 6,6 16 3,7,12 18 4,8,13 20 3,9,9,16 22 5,10,10,16 24 3,7,11,16,20 26 4,12,12,12,21 1990 k 3, 6, 3, 4, 3, 5, 3, 4 S k (Γ 1 (2)) C [Eme, Theorem 1.1, Lemma 1.2] Gouvêa-Mazur Buzzard-Kilford-Coleman-Mazur Coleman U p p 1.2 Drinfeld Drinfeld 1.2.1 Drinfeld Drinfeld A = F q [t] m { Γ 1 (m) = γ GL 2 (A) γ ( ) } mod m 0 1 Drinfeld Ω Ω = C \ F q ((1/t)) Ω F q ((1/t)) Ω GL 2 (A) ( ) a b γ = GL 2 (A), z Ω γ(z) = az + b c d cz + d k Z m Z/(q 1)Z Γ 1 (m) k m Drinfeld Ω f : Ω C f ( ) az + b = (cz + d) k (ad bc) m f(z) ( z Ω, γ = cz + d ( a c ) b Γ 1 (m)) d 4

[Gos1, Gek] M k,m (Γ 1 (m)) C Drinfeld 1.3. Drinfeld C \ R Drinfeld Drinfeld Drinfeld 2 Drinfeld 1.4. S A S Drinfeld S L V (L) A S Zariski V (L) G a = Spec(O S [X]) F q A O S t [t](x) = tx + a 1 X q + a 2 X q2 a 2 O S (S) Drinfeld Γ 1 (m) X 1 (m) A[1/m] m q 1 Γ 1 (m) Γ 1 (m) [Hat3, 4.1] X1 (m) A[1/m] X1 (m) Drinfeld ω M k,m (Γ 1 (m)) C H 0 (X1 (m) C, ω k C ) F q A[1/m] R R Drinfeld M k,m (Γ 1 (m)) R 1.2.2 x Drinfeld f M k,m (Γ 1 (m)) R x f (x) R A (A[1/m][[x]]) t f x x [Hat3, Proposition 5.1] 1.2.3 Hecke A v Hecke T v v m U v v m M k,m (Γ 1 (m)) R 1.2.4 Drinfeld n A \ F q n Drinfeld Drinfeld f = (f i ) i Z 0 f i M ki,m i (Γ 1 (n)) Fq (t) (f i ) (x) F q (t)[[x]] K[[x]] 5

O K [[x]] [Vin, Definition 2.5] [Gos2, Definition 5] Goss Drinfeld S = Z/(q d 1)Z Z p [Gos2, Definition 3] S p Drinfeld f = (f i ) i χ S χ S χ Drinfeld 1.2.5 Drinfeld p Eisenstein p [Gos2, Theorem 2] W W(Q p ) = Z/(p 1)Z Z p Goss S Drinfeld W(K) = S W W O K Frobenius p [Jeo, Lemma 2.1] W 1.2.6 Drinfeld U p = 2 q = 2 = t Γ 1 (t) k Drinfeld U t U t Bandini-Valentino [BV, (6)] k 5 1, 5 2 6 1, 2, 3, + 2 7 1, 3, 7 2 2 8 1, 2, 4 3, + 2 9 1, 5 2 2, 9 2 3 10 1, 2, 3, 5 3, + 3 4, + 3 11 1, 3, 5, 11 2 12 1, 2, 4, 5, 6 3, + 4 k 13 1, 5 2 2, 5, 13 4 4 14 1, 2, 3, 6, 7 5, + 4 15 1, 3, 7 2 2, 7, 15 4 5 16 1, 2, 4 3, 8 5, + 5 17 1, 5 2 2, 9 2 2, 17 6 5 18 1, 2, 3, 5 3, 9 5, + 6 19 1, 3, 5, 11 2 2, 9, 19 6 6 20 1, 2, 4, 5, 6, 9, 10 7, + 6 1 1 4 5 2 2, 2, 3, 2 8 3, 7 2 2, 4 3, 9 2 2, 3, 5, 4, 5 6

q = 2 k 60 q = 4 k 82 q = 8 k 126 q = 9 k 108 p Emerton [Eme] [Eme] X 0 (2) 0 [BV] 0 Drinfeld > 0 p Drinfeld 2 2.1. 1. [Hat3, Theorem 5.9] i = 1, 2 f i M ki,m i (Γ 1 (n)) OK x (f 1 ) (x) (f 2 ) (x) 0 mod n k 1 k 2 mod (q d 1)p log p (n) Drinfeld S 2. [Hat3, Proposition 5.10] χ S X1 (n)ord K ωχ K n χ Drinfeld H 0 (X1 (n)ord K, ωχ K ) 3. [Hat3, Theorem 5.11] n q 1 f Γ 1 (n) Γ 0 ( ) k m Drinfeld x A ( ) f n k Drinfeld 3 2.1 2 1 Drinfeld Drinfeld ω χ K S 1 3 2 Drinfeld 1 3.1 Drinfeld B k( ) Ē B Drinfeld Ē ordinary [Sha, Definition 2.11]. Hodge Hasse Drinfeld Hasse p 1 Eisenstein 7

E p 1 p q d 1 Drinfeld-Eisenstein g d E p 1 [Gek, (6.8)] B O K E B Drinfeld E ordinary reduction E B/ B Ē B E n E[ n ] B q dn C n (E) Ē n q d Frobenius [Hat3, Lemma 3.5] E n 3.2 Hodge-Tate- 1 p [Kat, Corollary 4.4.2] [Kat] Cartier Hodge- Tate G S ω G G Cartier Car(G) Car(G) = Hom S (G, G m ) S G m = Spec(O S [X, X 1 ]) dx/x Hodge-Tate HT G : Car(G) ω G E p Z p R E[p n ] C n Cartier HT Cn Car(C n ) R/p n R ω E R R/p n R de Rham [Kat, Corollary 4.4.2] Drinfeld E Cartier Hodge-Tate v finite v-module A [Tag, 4] S A C S Carlitz C 1 Drinfeld C = V (O S ) = G a = Spec(O S [Z]) t [t](z) = tz+z q E C = Hom Fq,S(C, G a ) = n 0 O SZ qn E (q) C S q Frobenius E C C q Frobenius t O S φ C : E (q) C E C, ψt C : E C E C O S v C : E C E (q) C, Zqn Z qn 1 (t qn t) + Z qn 1 ψ C t t = φ C v C ψ C t v v-structure S v S A G O S E G v v G : E G E (q) G 8

v O K A 0 G O K v O K v X 1 (n) O K S v G G D G D = Hom v,s (G, C) S v Hom v A C dz Hodge-Tate- HTT G : G D ω G B O K E B Drinfeld C n (E) HTT Cn (E) C n (E) D A B/ n B ω E B B/ n B [Hat3, Proposition 3.8] Cartier 3.3 Riemann-Hilbert X ord n X1 (n) O K /( n ) ω Xn ord ω n ord Xord n Drinfeld n C n,n Yn ord C n,n v Hodge-Tate- HTT : C D n,n A O Y ord n ω n ord Y ord n Frobenius Tate-Drinfeld HTT C n,n Xn ord v C n,n Katz Riemann-Hilbert [Kat, Proposition 4.1.1] [Hat3, Lemma 5.6] HTT Frobenius C n,n D Frobenius ωord n Riemann-Hilbert [Hat3, Proposition 5.8] f i f 1 /f 2 ( ω n ord ) k 1 k 2 Frobenius Frobenius ( ω n ord ) k 1 k 2 [Hat3, Corollary 5.7] Riemann-Hilbert C n,n D k 1 k 2 C n,n D π 1(Xn ord ) (A/ n A) [Hat3, Lemma 5.3] k 1 k 2 (A/ n A) exponent (q d 1)p log p (n) 9

[BV] A. Bandini and M. Valentino: On the diagonalizability of the Atkin U-operator for Drinfeld cusp forms, preprint, arxiv:1702.08801. [Buz] K. Buzzard: Questions about slopes of modular forms, Automorphic forms I, Astérisque 298 (2005), 1 15. [Eme] M. Emerton: 2-adic modular forms of minimal slope, thesis (1998). [Gek] E.-U. Gekeler: On the coefficients of Drinfeld modular forms, Invent. Math. 93 (1988), no. 3, 667 700. [Gos1] D. Goss: π-adic Eisenstein series for function fields, Compos. Math. 41 (1980), no. 1, 3 38. [Gos2] D. Goss: A construction of v-adic modular forms, J. Number Theory 136 (2014), 330 338. [Hat1],, 61. [Hat2], Coleman-Mazur, 2017. [Hat3] S. Hattori, Duality of Drinfeld modules and -adic properties of Drinfeld modular forms, preprint, arxiv:1706.07645v2. [Jeo] S. Jeong: On a question of Goss, J. Number Theory 129 (2009), no. 8, 1912 1918. [Kat] N. M. Katz: p-adic properties of modular schemes and modular forms, Modular functions of one variable III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), pp. 69 190. Lecture Notes in Mathematics, Vol. 350, Springer, Berlin, 1973. [Ser] J.-P. Serre: Formes modulaires et fonctions zêta p-adiques, Modular functions of one variable III (Proc. Internat. Summer School, Univ. Antwerp, 1972), pp. 191 268. Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973. [Sha] S. M. Shastry: The Drinfeld modular Jacobian J 1 (n) has connected fibers, Ann. Inst. Fourier (Grenoble) 57 (2007), no. 4, 1217 1252. [Tag] Y. Taguchi: A duality for finite t-modules, J. Math. Sci. Univ. Tokyo 2 (1995), no. 3, 563 588. [Vin] C. Vincent: On the trace and norm maps from Γ 0 (p) to GL 2 (A), J. Number Theory 142 (2014), 18 43. 10