Modular καµπύλες. Αριστείδης Κοντογεώργης. 1 εκεµβρίου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/26
|
|
- Νίκη Γαλάνη
- 5 χρόνια πριν
- Προβολές:
Transcript
1 Modular καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 1 εκεµβρίου 2014, 1/26
2 Το υπερβολικό επίπεδο H = {z : I(z) > 0} Το Θεώρηµα σύµµορφης απεικόνισης του Riemann (Riemann mapping theorem) µας λέει ότι οι απλά συνεκτικές επιφάνειες Riemann είναι πολύ συγκεκριµµένεσ: Θεώρηµα Κάθε απλά συνεκτική επιφάνεια Riemann είναι ισόµορφη µε ακριβώς µία εκ των H (ισοδύναµα τον µοναδιαίο δίσκο D), C και C = P 1 (C)., 2/26
3 Αυτοµορφισµοί του H Αν γ SL 2 (R) και z H τότε έχουµε ότι γ(z) H, δηλαδή η SL 2 (R) δρα στο H. Πράγµατι, αν: ( ) a b γ = c d τότε I(γ(z)) = I(z) cz + d 2. ίνοντας τώρα στην SL 2 (R) και στο H τις συνήθεις τοπολογίες, η δράση αυτή είναι συνεχής. {( ) } cos θ sin θ SO 2 (R) =, θ R. sin θ cos θ Παρατηρούµε ότι η SO 2 (R) είναι κλειστή υποοµάδα της SL 2 (R), συνεπώς ότι το πηλίκο SL 2 (R)/SO 2 (R) είναι Hausdorff., 3/26
4 ράση της SL 2 (R) Θεώρηµα 1. Η SL 2 (R) δρα µεταβατικά στο R : για κάθε z 1, z 2 H υπάρχει γ SL 2 (R) τέτοιο ώστε γ(z 1 ) = z Η δράση της SL 2 (R) στο H επάγει ισοµορφισµό: SL 2 (R)/±I Aut(H) 3. Η σταθεροποιούσα του i είναι η SO 2 (R) 4. Η απεικόνιση φ : SL 2 (R)/SO 2 (R) H µε φ(γso 2 (R)) = γ(i) είναι οµοιοµορφισµός., 4/26
5 ράση της SL 2 (R) 1. Ο πίνακας ( y x 0 1 απεικονίζει το i στο z = x + yi. Αν γ 1, γ 2 είναι οι πίνακες που απεικονίζουν το i στα z 1 και z 2 αντίστοιχα, τότε ο γ 2 γ 1 1 απεικονίζει το z 1 στο z Αν A SL 2 (R) δρα ταυτοτικά στο H τότε είναι άµεσο να ότι ϑα πρέπει να είναι διαγώνιος και η συνθήκη της ορίζουσάς του επιβάλει A = ±I. Εστω τώρα ένας αυτοορφισµός γ του H. Απ ο το προηγούµενο ερώτηµα, υπάρχει α SL 2 (R τέτοιο ώστε α(i) = γ(i), άρα µπορούµε να υποθέσουµε πως γ(i) = i. Η απεικόνιση ) f : H D : f(z) = z i z + i είναι ισοµορφισµός µε f(i) = 0. Αρα, η απεικόνιση f γ f 1 είναι, ισοµορφισµός του D που σταθεροποιεί το 0. 5/26
6 ράση της SL 2 (R) Οι αυτοµορφισµοί του D που σταθεροποιούν το 0 είναι, γνωστό ότι είναι της µορφής z λz µε λ = 1. Αρα, f γ f 1 (z) = e 2θi z, το οποίο σηµαίνει ότι ( ) cos θ sin θ γ(z) = z, sin θ cos θ δηλαδή γ SO 2 (R). 3. Παρατηρούµε ότι γ(i) = a(i) + b c(i) + d = i a = d, b = c δηλαδή, επειδή η ορίζουσα είναι 1, αν και µόνο αν γ SO 2 (R)., 6/26
7 Οµάδες Fuchsian και η δράση τους στο H Ορισµός Μια διακριτή υποοµάδα της SL 2 (R) ονοµάζεται οµάδα Fuchsian. Η (full) modular group ειναι η οµάδα των 2 2 πινάκων µε ακέραια στοιχεία και διακρίνουσα 1, {( ) } a b SL 2 (Z) =, a, b, c, d Z, ad bc = 1. c d Συχνά, ορίζουµε τα παραπάνω µε τον ίδιο τρόπο modulo ±I (γιατί είδαµε ότι αυτό απαιτείται για την δράση στο άνω µιγαδικό επίπεδο). Οι αντίστοιχες οµάδες συµβολίζονται µε PSL 2 (R) και PSL 2 (Z)., 7/26
8 SL(2, Z) Θεώρηµα Η modular ( group ) παράγεται ( από τα) στοιχεία T = και S = , 8/26
9 Η οµάδα Γ(N) Ορισµός Για κάθε N N ορίζουµε την οµάδα {( ) } a b Γ(N) = : a d 1modN, b c 0modN. c d Η Γ(N) ονοµάζεται πρωταρχική οµάδα ισοτιµίας ύψους N. Μια υποοµάδα της modular group ονοµάζεται υποοµάδα ισοτιµιάς ύψους N αν περιέχει την Γ(N)., 9/26
10 Οµάδες ισοτιµίας ύψους N {( ) } a b Γ 0 (N) = : c 0modN c d {( ) } a b Γ 0 (N) = : b 0modN c d {( ) } a b Γ 1 (N) = : a d 1modN, c 0modN c d {( ) } a b Γ 1 (N) = : a d 1modN, b 0modN c d, 10/26
11 Αριθµητικές οµάδες Fuchs Θα συµβολίζουµε µε H f G όταν η υποοµάδα H της G έχει πεπερασµένο δείκτη στην G. Ορισµός ύο υποοµάδες H 1, H 2 της G λέγονται commensurable αν H 1 H 2 f H 1 και H 1 H 2 f H 2. Ορισµός Μια υποοµάδα της SL 2 (Q) που είναι commensurable µε την SL 2 (Z) καλείται αριθµητική Fuchsian οµάδα., 11/26
12 Παραδείγµατα Πρόταση Οι πρωταρχικές οµάδες ισοτιµίας είναι αριθµητικές Fuchsian οµάδες. Απόδειξη: Η ϕυσική απεικόνιση επάγει έναν ισοµορφισµό SL 2 (Z) SL 2 (Z/NZ) SL 2 (Z)/Γ(N) SL 2 (Z/NZ). Οπότε υπολογίζουµε τον πεπερασµένο δείκτη [SL 2 (Z) : Γ(N)] = SL 2 (Z/NZ) = N 3 p N (1 1p2 )., 12/26
13 Πηλίκα του υπερβολικού χώρου Ορισµός Μια ϑεµελιώδης περιοχή για την Γ είναι ένα ανοικτό συννεκτικό χωρίο D του H τέτοιο ώστε να µην υπάρχουν Γ-ισοδύναµα στοιχεία του (δηλαδή στην ίδια τροχιά), και να ισχύει H = γ D όπου η ένωση διατρέχει τα στοιχεία της Γ. Πρόταση Εστω η modular οµάδα SL 2 (Z). Μια ϑεµελιώδης περιοχή της είναι το χωρίο D = {z H : z > 1, R(z) < 1 2 }, 13/26
14 Πηλίκα του υπερβολικού χώρου Η γνώση µιας ϑεµελιώδης περιοχής για µια διακριτή υποοµάδα της SL 2 (R) µας επιτρέπει να κατασκευάσουµε, µια ϑεµελιώδη περιοχή για µια πεπερασµένου δείκτη υποοµάδα της. Πρόταση Εστω Γ µια διακριτή υποοµάδα της SL 2 (R) µε ϑεµελιώδη περιοχή D, και Γ 1 µια υποοµάδα [G : G 1 ] <. Συµβολίζουµε µε Γ και Γ 1 τις εικόνες τους στην Aut(D). Τότε, αν διαλέξουµε γ i Γ, i = 1, 2, 3,...m, τέτοια ώστε m Γ = Γ 1 γ i i=1 ϕτιάχνουµε µια ϑεµελιώδη περιοχή D 1 της Γ 1 ως εξής D 1 = m γ i D i=1, 14/26
15 Cusps ιαισθητικά µιλώντας, τα cusps είναι τα σηµεία που οι ϑεµελιώδεις περιοχές ακουµπάνε στο τοπολογικό σύνορο του H. Αρα, το P 1 (Q) αποτελεί το σύνολο που οι ϑεµελι χδεις περιοχές της ακουµπούν στο R. Ενα cusp τώρα για την Γ είναι µια τροχιά της στο P 1 (Q)., 15/26
16 Ταξινόµιση πινάκων Κάθε 2 2 πίνακας που δεν είναι ϐαθµωτός έχει κανονική µορφή Jordan µια εκ των εξής δύο: ( a 1 0 a ) ( a 0, a C, 0 b ), a b, a, b C Στην πρώτη περίπτωση ο πίνακας είναι συζυγής µε µια απεικόνιση µεταφοράς κατά a 1, και ο πίνακας ονοµάζεται παραβολικός. Στην δεύτερη περίπτωση, ο πίνακας αντιστοιχεί σε πολλαπλασιασµό µε έναν έναν αριθµό c 1. Αν έχουµε ότι c = 1, ο πίνακας ονοµάζεται ελλειπτικός, αν είναι ϑετικός πραγµατικός αριθµός ονοµάζεται υπερβολικός, ενώ αλλιώς ονοµάζεται λοξοδροµικός., 16/26
17 Ταξινόµιση πινάκων Πρόταση Εστω ένας πίνακας ( a b γ = c d ) SL 2 (C). Τότε, ο γ είναι: 1. παραβολικός Tr(γ) = ±2 2. ελλειπτικός Tr(γ) R και Tr(γ) < 2 3. υπερβολικός Tr(γ) R και Tr(γ) > 2 4. λοξοδροµικός Tr(γ) C - R., 17/26
18 Σταθερά σηµεία Πρόταση Αν γ SL 2 (R) και δεν είναι λοξοδροµικός, τότε µπορούµε να κάνουµε την εξής διάκριση για τα σταθερά του σηµεία: 1. Αν ο γ είναι παραβολικός και δεν είναι ένας εκ των ±I, τότε έχει ακριβώς ένα σταθερό σηµείο, το οποίο ανήκει στο R { }. 2. Αν ο γ είναι ελλειπτικός, τότε έχει ένα σταθερό σηµείο στο H και ένα συµµετρικό του στο κάτω µιγαδικό ηµιεπίπεδο. 3. Αν ο γ είναι υπερβολικός, τότε έχει ακριβώς δύο σταθερά σηµεία στο R { }., 18/26
19 Σταθερά σηµεία εφινιτιον Εστω Γ µια οµάδα Fuchsian. Τότε, ένα z H λέγεται ελλειπτικό αν µένει σταθερό από κάποιο ελλειπτικό σηµείο της Γ, και ένα σηµείο z R { } λέγεται cusp αν µένει σταθερό από κάποιο παραβολικό στοιχείο της Γ. Πρόταση Αν το z είναι ελλειπτικό σηµείο µιας Γ τότε η υποοµάδα της Γ z = {γ Γ : γ(z) = z} είναι πεπερασµένη κυκλική. Απόδειξη: Εστω ένα α SL 2 (R) τέτοιο ώστε α(i) = z. Τότε η συζυγία επάγει ισοµορφισµό γ α 1 γα Γ z = (γ Γ : γ(z) = z) SO 2 (R) (α 1 Γα)., 19/26
20 Σταθερά σηµεία Η οµάδα SO 2 (R) (α 1 Γα) είναι διακριτή και συµπαγής, άρα πεπερασµένη. Εχουµε τους ισοµορφισµούς άρα R/Z = S 1 = SO2 (R) Q/Z = SO 2 (R) tors Αρα η Γ z είναι ισόµορφη µε κάποια πεπερασµένη υποοµάδα της Q/Z και άρα κυκλική., 20/26
21 Παράδειγµα Μας ενδιαφέρει να κατατάσσουµε τα cusps και τα ελλειπτικά σηµεία της Γ µέχρις Γ-ισοδυναµίας. Τα cusps της modular οµάδας είναι το P 1 (Q) = Q { }, και όλα αυτά τα σηµεία είναι SL 2 (Z)-ισοδύναµα, άρα η SL 2 (Z) έχει ένα cusp. Τα ελλειπτικά σηµεία της SL 2 (Z) είναι (µέχρις SL 2 (Z)- ισοδυναµίας) τα i και ρ = (1 + 3i)/2. Τα cusps της τυχαίας Γ υποοµάδας της πεπερασµένου δείκτη είναι τα ίδια, όπου τώρα οι κλάσεις της Γ-ισοδυναµίας είναι περισσότερες., 21/26
22 Modular καµπύλες H το επεκτεταµένο µιγαδικό επίπεδο H P 1 (Q) ή το H {i } (δηλαδή το επ άπειρον σηµείο στην κατέυθυνση του κάθετου άξονα). Για την modular group οι δύο συµβολισµοί αυτοί δεν έχουν ουσιαστικά διαφορά. SL 2 (Z) = Γ(1)., 22/26
23 Μιγαδική δοµή Θεωρούµε την προβολή P : H Γ(1)\H, Q p(q) = P Αν το Q δεν είναι ελλειπτικό σηµείο, διαλέχουµε περιοχή U του Q τέτοια ώστε ο p να είναι οµοιοµορφισµός U p(u). Τότε το (p(u), p 1 ) είναι τοπικός χάρτης για το P. Αν ϐρούµε έναν χάρτη για το ελλειπτικό i, τότε µε Γ(1)-µεταφορές ϐρίσκουµε χάρτες και για κάθε άλλο ελειπτικό σηµείο. Η απεικόνιση z z i z + i ορίζει ισοµορφισµό ανάµεσα σε κάποια S-σταθερή ανοιχτή περιοχή U του i και έναν ανοικτό δίσκο D του 0, και η δράση του S στην U µεταφέρεται στον D-αυτοµορφισµό σ : z z., 23/26
24 Μιγαδική δοµή Οι S \U και σ \D είναι οµοιοµορφικοί και τροφοδοτούµε τον S \U µε την µιγαδική δοµή ώστε η παραπάνω απεικόνιση να είναι αµφιολόµορφος ισοµορφισµός. Αρα η απεικόνιση ( z i z z + i είναι ολόµορφη ορισµένη σε µια περιοχή του i που είναι S-αναλλοίωτη, κι άρα ορίζει ολόµορφη συνάρτηση σε µια περιοχή του p(i). Μπορούµε να πάρουµε αυτήν σαν τοπικό χάρτη στο p(i). Τα άλλα ελλειπτικά σηµεία αντιµετωπίζονται οµοίως. ) 2, 24/26
25 Συµπαγοποίηση, Γ(1)\H 1ος τρόπος Προσθέτουµε το επ άπειρον σηµείο στο H παίρνοντας έτσι το επεκτεταµένο άνω µιγαδικό ηµιεπίπεδο H και ϑεωρούµε τον χώρο των τροχιών Γ(1)\H. 2ος τρόπος Για τον χώρο πηλίκο Γ(1)\H ϑεωρούµε το ϑεµελιώδες χωρίο του D και του επισυνάπτουµε το επ άπειρον σηµείο που αντιστοιχεί στον κάθετο άξονα. Σε κάθε µία από τις παραπάνω περιπτώσεις λαµβάνουµε την ίδια συµπαγή επιφάνεια Riemann, µε περιοχές του επ άπειρον σηµείου να είναι οι U α, = {z H : R(z) > α} Την µη συµπαγή επιφάνεια Riemann Γ(1)\H που ορίσαµε την συµβολίζουµε µε Y(1) Y(Γ(1)). Την συµπαγοποίηση Γ(1)\H της Y(1) που ορίσαµε την συµβολίζουµε µε X(1) X(Γ(1))., 25/26
26 Συµπαγοποίηση, Γ(1)\H Πρόταση Η συµπαγής επιφάνεια Riemann X(1) έχει γένος 0, άρα είναι ισόµορφη µε την σφαίρα του Riemann. Θεωρούµε τώρα µια οποιαδήποτε υποοµάδα Γ της Γ(1) πεπερασµένου δείκτη σε αυτήν. Με παρόµοιο τρόπο ορίζεται µιγαδική δοµή και στις επιφάνειες Γ\H και Γ\H. Το συµπλήρωµα της Γ\H στην Γ\H είναι το σύνολο των ξένων κλάσεων ισοδυναµίας των cusps της Γ, και συµβολίζονται µε Y(Γ) και X(Γ) αντίστοιχα. Υιοθετούµε τον συµβολισµό X(N) για την X(Γ(N)), X 0 (N) για την X(Γ 0 (N)) κ.ο.κ. Ορισµός Κάθε συµπαγής επιφάνεια Riemann της µορφής X(Γ) ονοµάζεται Modular Καµπύλη., 26/26
Modular καµπύλες. Αριστείδης Κοντογεώργης. 9 εκεµβρίου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/41
Modular καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 9 εκεµβρίου 2014, 1/41 Το υπερβολικό επίπεδο H = {z : I(z) > 0} Aut(H) = SL(2, R) Η απεικόνιση µε φ : SL 2 (R)/SO 2 (R)
Ελλειπτικές Καµπύλες υπέρ του σώµατος C
Ελλειπτικές Καµπύλες υπέρ του σώµατος C Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 11 Νοεµβρίου 2014, 1/18 ιακριτές υποοµάδες του C Ορισµός Εστω ω 1, ω 2 δύο µιγαδικοί αριθµοί µε Im(ω
Galois module structure χώρων ολόµορφων διαφορικών
Galois module structure χώρων ολόµορφων διαφορικών Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 11 εκεµβρίου 2014, 1/17 Αλγεβρικές Καµπύλες X αλγεβρική καµπύλη, προβολική πάνω από ένα
Παραδείγµατα από Modular forms
Παραδείγµατα από Modular forms Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 16 εκεµβρίου 2014, 1/42 Modular forms Εστω Γ µια υποοµάδα της SL 2 (Z), πεπερασµένου δείκτη στην SL 2 (Z),
Εισαγωγή στις Ελλειπτικές Καµπύλες
Εισαγωγή στις Ελλειπτικές Καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 4 Νοεµβρίου 2014, 1/19 Το ϑεώρηµα Riemann-Roch Θεωρούµε µια επιφάνεια Riemann M και το σώµα των F των
Εισαγωγή στην Τοπολογία
Ενότητα: Κατασκευή νέων τοπολογικών χώρων Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Θεωρία Τελεστών. Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών
Ενότητα: Χώροι µε νόρµα - Χώροι Hilbert Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
G = a. H = g n. a m = a nq+r = a nq a r = (a n ) q a r = a r = (a n ) q a m. h = a m = a nq = (a n ) q a n
236 5. Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες, τις υποοµάδες τους, και τους γεννήτο- ϱές τους. Οι ταξινοµήσεις αυτές ϑα ϐασιστούν στην
Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )
Συνεχείς συναρτήσεις πολλών µεταβλητών 7 Η Ευκλείδεια απόσταση που ορίσαµε στον R επιτρέπει ( εκτός από τον ορισµό των ορίων συναρτήσεων και ακολουθιών και τον ορισµό της συνέχειας συναρτήσεων της µορφής
Θεωρητικά Θέµατα. Ι. Θεωρία Οµάδων. x R y ή x R y ή x y(r) [x] R = { y X y R x } X. Μέρος Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις
202 Μέρος 4. Θεωρητικά Θέµατα Ι. Θεωρία Οµάδων 1. Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις 1.1. Σχέσεις ισοδυναµίας. Εστω X ένα µη-κενό σύνολο. Ορισµός 1.1. Μια σχέση ισοδυναµίας επί του X είναι ένα
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι
ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασµένων Οµάδων Ι Χρησιµοποιώντας το θεώρηµα του Weddebu για ηµιαπλούς δακτυλίους αναπτύσσουµε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασµένων
KΕΦΑΛΑΙΟ 1 ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ. { 1,2,3,..., n,...
KΕΦΑΛΑΙΟ ΧΡΗΣΙΜΕΣ ΜΑΘΗΜΑΤΙΚΕΣ ΕΝΝΟΙΕΣ Βασικές έννοιες διαιρετότητας Θα συµβολίζουµε µε, τα σύνολα των φυσικών αριθµών και των ακεραίων αντιστοίχως: {,,3,,, } { 0,,,,, } = = ± ± ± Ορισµός Ένας φυσικός αριθµός
Αρµονική Ανάλυση. Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young. Απόστολος Γιαννόπουλος.
Ενότητα: Το ϑεώρηµα παρεµβολής του Riesz και η ανισότητα Hausdorff-Young Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Δώδεκα Αποδείξεις του. Θεμελιώδους Θεωρήματος της Άλγεβρας
Δώδεκα Αποδείξεις του Θεμελιώδους Θεωρήματος της Άλγεβρας Mία εκδοχή της αρχικής απόδειξης του Gauss f ( z) = T ( z) + iu ( z) T = r cos φ + Ar 1 cos(( 1) φ + α) + + L cosλ U = r si φ + Ar 1 si(( 1) φ
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Ταξινόµηση Κυκλικών Οµάδων και των Υποοµάδων τους Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 236 5. Ταξινόµηση
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα
ΚΕΦΑΛΑΙΟ 5: Τανυστικά Γινόµενα Στο κεφάλαιο αυτό εισάγουµε την έννοια του τανυστικού γινοµένου προτύπων. Θα είµαστε συνοπτικοί καθώς αναπτύσσουµε µόνο εκείνες τις στοιχειώδεις προτάσεις που θα βρουν εφαρµογές
οµή οµάδας σε Ελλειπτικές Καµπύλες
οµή οµάδας σε Ελλειπτικές Καµπύλες Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 18 Νοεµβρίου 2014, 1/24 Ο προβολικός χώρος Εστω K ένα σώµα. Στον χώρο K n+1 {0,..., 0} ορίζουµε την σχέση
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 3 Μαρτίου 2016 Αν (G, ) είναι
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Σχέσεις Ισοδυναµίας, ιαµερίσεις, και Πράξεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 202 Μέρος 4. Θεωρητικά
Ας ξεκινήσουμε υπενθυμίζοντας τον ορισμό της συνέχειας σε μετρικούς χώρους. διατυπώνεται και με τον ακόλουθο τρόπο: για κάθε σφαίρα
33.4.Συνεχείς συναρτήσεις Η έννοια της συνεχούς συνάρτησης είναι θεμελιώδης και μελετάται κατ αρχήν για συναρτήσεις μιας και κατόπιν δύο ή περισσότερων μεταβλητών στα μαθήματα του Απειροστικού Λογισμού.
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου
Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)
Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων
Εκπαιδευτικός Οµιλος ΒΙΤΑΛΗ
Συναρτήσεις Πολλών Μεταβλητών ρ. Κωνσταντίνος Κυρίτσης Μακράς Στοάς 7 & Εθνικής Αντιστάσεως Πειραιάς 185 31 12 Μαρτίου 2008 Περίληψη Οι παρούσες σηµειώσεις αποσκοπούν στο να δώσουνε µια σύνοψη της ϑεωρίας
Γραµµική Αλγεβρα Ι. Ενότητα: Εισαγωγικές Εννοιες. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών
Ενότητα: Εισαγωγικές Εννοιες Ευάγγελος Ράπτης Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση
44 ιανυσµατικά πεδία Όπως έχουµε ήδη αναφέρει ένα διανυσµατικό πεδίο είναι µια συνάρτηση F : U R R. Για εµάς φυσικά µια τέτοια συνάρτηση θα θεωρείται ότι είναι τουλάχιστον συνεχής και συνήθως C και βέβαια
= s 2m 1 + s 1 m 2 s 1 s 2
ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.
Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη
Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 17 Οκτωβρίου 2012 Ασκηση 1.
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση
6 Συνεκτικοί τοπολογικοί χώροι
36 6 Συνεκτικοί τοπολογικοί χώροι Έστω R διάστημα και f : R συνεχής συνάρτηση τότε, όπως γνωρίζουμε από τον Απειροστικό Λογισμό, η f έχει την ιδιότητα της ενδιάμεσου τιμής. Η ιδιότητα αυτή δεν εξαρτάται
Γεωµετρικη Θεωρια Ελεγχου
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων, Τµηµα Μαθηµατικων Τοµεας Γεωµετριας Γεωµετρικη Θεωρια Ελεγχου Πρώτη Εργασία, 2017-2018 1. ίνεται ϱοή φ(p, t). (αʹ) είξτε ότι το ω οριακό
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι διάστηµα και f : Ι συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f ( Ι )
Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως
Καµπύλες στον R 9. Ορισµός Μια καµπύλη στον R είναι µια συνεχής συνάρτηση σ : Ι R R όπου Ι διάστηµα ( συνήθως κλειστό και φραγµένο ) στον R. Συνήθως φανταζόµαστε την µεταβλητή t Ι ως τον χρόνο και την
Εισαγωγή στην Τοπολογία
Ενότητα: Τοπικές έννοιες Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Εισαγωγή στην Τοπολογία
Ενότητα: Σύγκλιση και Συνέχεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
Τελεστές Hecke. Αριστείδης Κοντογεώργης. 13 Ιανουαρίαου Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. , 1/28
Τελεστές Hecke Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. 13 Ιανουαρίαου 2015, 1/28 Τελεστές Hecke Οι τελεστές Hecke πρωτοεµφανίζονται στην εργασία του Mordell όπου έλυσε την εικασία
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017
L = F +. Είναι, 1 F, άρα και 1 L. Επεκτείνουµε τις πράξεις του F έτσι ώστε
ΕΠΕΚΤΑΣΕΙΣ ΣΩΜΑΤΟΣ Προκαταρκτικά Σώµα = Αντιµεταθετικό σώµα, χαρακτηριστικής µηδενός Τα σώµατα αυτά καλούνται και αριθµητικά σώµατα Θα τα συµβολίζουµε µε τα γράµµατα F, F, L κλπ Έστω ότι κάποια ανάγκη
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 10 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 16 Ιανουαρίου 2013 Ασκηση
τη µέθοδο της µαθηµατικής επαγωγής για να αποδείξουµε τη Ϲητούµενη ισότητα.
Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Εισαγωγή στην Αλγεβρα Τελική Εξέταση 15 Φεβρουαρίου 2017 1. (Οµάδα Α) Εστω η ακολουθία Fibonacci F 1 = 1, F 2 = 1 και F n = F n 1 + F n 2, για n
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι
ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους
v y = 12x 2 y + 4y v(x, y) = 6x 2 y 2 + y 4 + y + c(x). f(z) = u(z, 0) + iv(z, 0) = z + i(z 4 + c), f(z) = iz 4 + z i.
ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ Εξετάσεις στη Μιγαδική Ανάλυση ΟΜΑΔΑ: Α 0 Ιουλίου, 0 Θέμα. (αʹ) Να βρεθεί η τιμή του a R για την οποία η συνάρτηση u(x, y) ax 3 y +4xy
Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p.
Κεφάλαιο 9 Οµάδες συγκεκριµένης τάξης Στο κεφάλαιο αυτό ϑα εφαρµόσουµε τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κεφάλαια για να περιγράψουµε οµάδες τάξης pq, όπου p, q είναι διακεκριµένοι πρώτοι αριθµοί,
11 Το ολοκλήρωµα Riemann
Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την
f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )
302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας
Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).
Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από
Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών. ( )
ΚΕΦΑΛΑΙ 6 ΕΥΘΕΙΑ-ΕΠΙΠΕ 6 Γεωµετρικοί τόποι και εξισώσεις στο χώρο Στην παράγραφο αυτή θα δούµε τις διάφορες µορφές εξισώσεων των κα- µπύλων του χώρου και των επιφανειών ρισµός 6 Θεωρούµε τη συνάρτηση F:Α,
ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 Ε_.ΜλΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου 4 ιάρκεια Εξέτασης: ώρες Α. Να αποδείξετε
Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης
Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Υποοµάδες και το Θεώρηµα του Lagrange Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 210 2. Υποοµάδες και το Θεώρηµα
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2
Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση
ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 2017
Πανεπιστηµιο Πατρων Πολυτεχνικη Σχολη Τµηµα Μηχανικων Η/Υ & Πληροφορικης ΜΑΘΗΜΑΤΙΚΑ ΙΙ ιδάσκων : Ε. Στεφανόπουλος 12 ιουνιου 217 Θ1. Θεωρούµε την συνάρτηση f(x, y, z) = 1 + x 2 + 2y 2 z. (αʹ) Να ϐρεθεί
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε
Θεωρία Τελεστών. Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή. Αριστείδης Κατάβολος. Τµήµα Μαθηµατικών
Ενότητα: Το Φασµατικό Θεώρηµα - Εισαγωγή Αριστείδης Κατάβολος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
( y) ( x) ( 0) ( ) ( 0) ( y) ( ) ( ) ( ) Παραδείγµατα και εφαρµογές. 1)Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα 1
76 Παραδείγµατα και εφαρµογές )Έστω D απλά συνεκτικός τόπος στο R που φράσσεται από την ( κατά τµήµατα C ) καµπύλη Αποδείξτε ότι το εµβαδόν Α ( D) του D δίνεται από τους τύπους Α D = d = d Απόδειξη (Ι)
Αρµονική Ανάλυση. Ενότητα: L 2 -σύγκλιση σειρών Fourier. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: L -σύγκλιση σειρών Fourier Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες,
Το θεώρηµα αντίστροφης απεικόνισης. ) και ακόµη ότι η g f 1 1. g y
5 Έστω Το θεώρηµα αντίστροφης απεικόνισης Ι R ανοικτό διάστηµα, : Ι R διαφορίσιµη της κλάσης a Ι : '( a) 0 Τότε από την συνέχεια της ' υπάρχει 0 ' 0 για κάθε ( a δ, a+ δ) δ > :( a δ, a δ) C και + Ι και
Κ ε φ α λ ά ( ) ( ) ηµθ + = ( )
ΑΣΚΗΣΗ ίνονται οι µιγαδικοί αριθµοί z + 0i για τους οποίους ισχύει: z 4 =. z i. Να δείξετε ότι z =. ii. Αν επιπλέον ισχύει Re( z) Im( z) iii. = να υπολογίσετε τους παραπάνω µιγαδικούς αριθµούς. Για τους
Εισαγωγή στην Τοπολογία
Ενότητα: Συµπάγεια Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου
ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ. Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: Τότε. Ν-οστή ρίζα µιγαδικού
ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ ΒΑΣΙΚΟΙ ΤΥΠΟΙ ΣΤΗ ΜΙΓΑ ΙΚΗ ΑΝΑΛΥΣΗ Τύπος de Moivre Έστω ένας µιγαδικός αριθµός: z r(cosϑ + isi ϑ) Τότε z r (cos ϑ + isi ϑ ) Ν-οστή ρίζα µιγαδικού / ϑ + π ϑ+ π z r cos + isi όπου 0,,,, Συνθήκες
Εισαγωγή στην Τοπολογία
Ενότητα: Τοπολογικοί χώροι Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
5 Παράγωγος συνάρτησης
5 Παράγωγος συνάρτησης Ας ϑεωρήσουµε µια συνάρτηση f µε πεδίο ορισµού το [a, b]. Για κάθε 0 [a, b] ορίζουµε µια νέα συνάρτηση µε τύπο µε πεδίο ορισµού D(Π 0 ) = D(f ) { 0 }. Την συνάρτηση Π 0 Π 0 () =
ιδασκοντες: x R y x y Q x y Q = x z Q = x z y z Q := x + Q Τετάρτη 10 Οκτωβρίου 2012
ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 1 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τετάρτη 10 Οκτωβρίου 2012 Ασκηση 1.
4 Συνέχεια συνάρτησης
4 Συνέχεια συνάρτησης Σε αυτή την ενότητα ϑα µελετήσουµε την έννοια της συνέχειας συνάρτησης. Πιο συγκεκριµένα πότε ϑα λέγεται µια συνάρτηση συνεχής σε ένα σηµείο το οποίο ανήκει στο πεδίο ορισµού της
Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών
Παρουσία µηδενιστών στη θεωρία τοπολογικών αλγεβρών Μαρίνα Χαραλαµπίδου Τµήµα Μαθηµατικών Τοµέας Αλγεβρας και Γεωµετρίας Πανεπιστηµίο Αθηνών Σεµινάριο Τοµέα Αλγεβρας και Γεωµετρίας 11/12/2012 1 / 47 Περιεχόµενα
Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n
Κεφάλαιο 8 Η οµάδα S n Στο κεφάλαιο αυτό ϑα µελετήσουµε την οµάδα µεταθέσεων ή συµµετρική οµάδα S n εφαρµόζοντας τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κε- ϕάλαια. Η σηµαντικότητα της S n εµφανίστηκε
Αρµονική Ανάλυση. Ενότητα: Μέτρο Lebesgue. Απόστολος Γιαννόπουλος. Τµήµα Μαθηµατικών
Ενότητα: Μέτρο Lebesgue Απόστολος Γιαννόπουλος Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.
4.3 Παραδείγµατα στην συνέχεια συναρτήσεων
5. Η συνάρτηση είναι συνεχής στο R. 6. Η συνάρτηση sin είναι συνεχής στο R. 7. Η συνάρτηση cos είναι συνεχής στο R. 8. Η συνάρτηση tan είναι συνεχής σε κάθε R µε k π + π/2, k Z. 9. Η συνάρτηση cotan είναι
{ } S= M(x, y,z) : x= f (u,v), y= f (u,v), z= f (u,v), για u,v (1.1)
ΚΕΦΑΛΑΙΟ 1 ΕΠΙΦΑΝΕΙΕΣ ΕΥΤΕΡΟΥ ΒΑΘΜΟΥ 1. Γενικά Επειδή οι επιφάνειες δευτέρου βαθµού συναντώνται συχνά στη µελέτη των συναρτήσεων πολλών µεταβλητών θεωρούµε σκόπιµο να τις περιγράψουµε στην αρχή του βιβλίου
Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Διπλωματική Εργασία Παναγιώτης Σπανός Εξωτερικοί Αυτομορφισμοί Ομάδων Επιφανειών Τριμελής Επιτροπή: Ευάγγελος Ράπτης Δημήτριος Βάρσος Μιχαήλ Συκιώτης (Επιβλέπων)
n xt ( ) ( x( t),..., x( t)) U n, , i 1,..., n. Έτσι, η εξέλιξη του συστήματος των χημικών ουσιών διέπεται από το σύστημα των διαφορικών εξισώσεων:
ΜΑΘΗΜΑ 1: ΑΠΟ ΤΟ ΠΕΙΡΑΜΑ ΣΤΟ ΜΑΘΗΜΑΤΙΚΟ ΝΤΕΤΕΡΜΙΝΙΣΤΙΚΟ ΠΡΟΤΥΠΟ Ας θεωρήσουμε ως παράδειγμα ένα σύστημα χημικών ουσιών που υπεισέρχονται σε μια χημική αντίδραση. Η στιγμιαία κατάσταση κάθε ουσίας χαρακτηρίζεται
( ) = inf { (, Ρ) : Ρ διαµέριση του [, ]}
7 ΙΙΙ Ολοκληρωτικός Λογισµός πολλών µεταβλητών Βασικές έννοιες στη µια µεταβλητή Έστω f :[ ] φραγµένη συνάρτηση ( Ρ = { t = < < t = } είναι διαµέριση του [ ] 0 ( Ρ ) = Μ ( ) όπου sup f ( t) : t [ t t]
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι. Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών
Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Πινάκες και Γραµµικές Απεικονίσεις Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 7 Πινακες και Γραµµικες Απεικονισεις Στα προηγούµενα
Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
00 Υπολογισµός τριπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Στην παράγραφο αυτή θα δούµε πως µπορεί να χρησιµοποιηθεί το θεώρηµα Fubini για τον υπολογισµό τριπλών ολοκληρωµάτων. Ξεκινούµε µε την διατύπωση
Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα
Μιχάλης Παπαδημητράκης Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα 1 Παράγωγος στο. Ας θυμηθούμε ότι μια μιγαδική συνάρτηση f ορισμένη σε ένα υποσύνολο του μιγαδικού επιπέδου λέμε ότι είναι
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ 2011 ΕΚΦΩΝΗΣΕΙΣ
ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α A Έστω µια συνάρτηση f ορισµένη σε ένα διάστηµα και ένα εσωτερικό σηµείο του Αν η f παρουσιάζει τοπικό ακρότατο στο και είναι παραγωγίσιµη στο σηµείο αυτό, να αποδείξετε
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρμογή: Το θεώρημα του Bursde a b Θα αποδείξουμε εδώ ότι κάθε ομάδα τάξης pq ( p, q πρώτοι) είναι επιλύσιμη Το θεώρημα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιμοποίησε τη νέα
Ε Μέχρι 18 Μαΐου 2015.
Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα
Μιχάλης Παπαδημητράκης. Μιγαδική Ανάλυση. Τμήμα Μαθηματικών. Πανεπιστήμιο Κρήτης
Μιχάλης Παπαδημητράκης Μιγαδική Ανάλυση Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Περιεχόμενα Οι μιγαδικοί αριθμοί.. Οι μιγαδικοί αριθμοί..................................2 Το Ĉ, η στερεογραφική προβολή και
Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois
Οµάδες Κοτσίδων και δράσεις της απόλυτης οµάδας Galois Αριστείδης Κοντογεώργης Τµήµα Μαθηµατικών Πανεπιστηµίου Αθηνών. Συνέδριο Αλγεβρας Θεσσαλονίκη 2-3 Μαΐου 2014 Η παρούσα έρευνα έχει συγχρηµατοδοτηθεί
Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.
4 Συνεκτικά σύνολα Έστω, Ι R διάστηµα και f : Ι R συνεχής, τότε η f έχει την ιδιότητα της ενδιαµέσου τιµής, δηλαδή, η f παίρνει κάθε τιµή µεταξύ δύο οποιονδήποτε διαφορετικών τιµών της, συνεπώς το f (
14 Εφαρµογές των ολοκληρωµάτων
14 Εφαρµογές των ολοκληρωµάτων 14.1 Υπολογισµός εµβαδών µε την µέθοδο των παράλληλων διατοµών Θεωρούµε µια ϕραγµένη επίπεδη επιφάνεια A µε οµαλό σύνορο, δηλαδή που περιγράφεται από µια συνεχή συνάρτηση.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2012-13 ΜΕΤΑΠΤΥΧΙΑΚΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ Ι Καθηγητής: Σ. Πνευματικός ΘΕΜΑΤΑ ΜΕΛΕΤΗΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΙΣΜΟΥ Μάθημα 2 ο : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΣΤΟΥΣ
Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός
Έχοντας υπόψιν το Λήμμα του Urysohn, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν
3 4.3 Τελείως κανονικοί χώροι ( ). 3 2 Έχοντας υπόψιν το Λήμμα του Urysoh, είναι φυσικό να θέσουμε το ακόλουθο ερώτημα: Αν κανονικός χώρος, x και κλειστό ώστε x. Υπάρχει τότε συνεχής συνάρτηση f :, ώστε
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Burnside
ΚΕΦΑΛΑΙΟ 8: Εφαρµογή: Το θεώρηµα του Bursde Θα αποδείξουµε εδώ ότι κάθε οµάδα τάξης a q b (, q πρώτοι) είναι επιλύσιµη. Το θεώρηµα αυτό αποδείχτηκε από τον Bursde το 904 ο οποίος χρησιµοποίησε τη νέα τότε
Εισαγωγή στην Τοπολογία
Ενότητα: Συνεκτικότητα Γεώργιος Κουµουλλής Τµήµα Μαθηµατικών Αδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε
Μαθηματικά Θετικής και Τεχνολογικής Κατεύθυνσης Γ Λυκείου Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ
Η ΕΝΝΟΙΑ ΤΟΥ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Το Σύνολο C των Μιγαδικών Αριθμών Είναι γνωστό ότι η εξίσωση x δεν έχει λύση στο σύνολο IR των πραγματικών αριθμών, αφού το τετράγωνο κάθε πραγματικού αριθμού είναι μη αρνητικός
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4
ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 27 Απριλίου 2014 ιάρκεια Εξέτασης: 3 ώρες ΑΠΑΝΤΗΣΕΙΣ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ε_.ΜλΘΤ(α) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Ηµεροµηνία: Κυριακή 7 Απριλίου ιάρκεια Εξέτασης: ώρες ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεωρία
Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις σας)
Τµήµα Μαθηµατικών, Πανεπιστηµίου Κρήτης Εξεταστική περίοδος Ιουνίου ακαδηµαϊκού έτους 29-21 Παρασκευή, 1 Ιουνίου 21 Εφαρµοσµένη Άλγεβρα ιδάσκων: Α. Τόγκας Θέµατα ( ικαιολογείστε πλήρως όλες τις απαντήσεις
f(t) = (1 t)a + tb. f(n) =
Παράρτημα Αʹ Αριθμήσιμα και υπεραριθμήσιμα σύνολα Αʹ1 Ισοπληθικά σύνολα Ορισμός Αʹ11 (ισοπληθικότητα) Εστω A, B δύο μη κενά σύνολα Τα A, B λέγονται ισοπληθικά αν υπάρχει μια συνάρτηση f : A B, η οποία
Ε Μέχρι 31 Μαρτίου 2015.
Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες
Κεφάλαιο 3β. Ελεύθερα Πρότυπα (µέρος β)
Κεφάλαιο 3β Ελεύθερα Πρότυπα (µέρος β) Ο σκοπός µας εδώ είναι να αποδείξουµε το εξής σηµαντικό αποτέλεσµα. 3.3.6 Θεώρηµα Έστω R µια περιοχή κυρίων ιδεωδών, F ένα ελεύθερο R-πρότυπο τάξης s < και N F. Τότε
πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων.
πυθαγόρειες τριάδες, τριγωνομετρία και υπολογισμός ολοκληρωμάτων. Αριστείδης Κοντογεώργης -Τμήμα Μαθηματικών ΕΚΠΑ Πρότυπο Λύκειο Ευαγγελικής Σχολής Σμύρνης 21 Οκτωβρίου 2015 1 το τελευταίο θεώρημα του
Séminaire Grothendieck
Séminaire Grothendieck in memoriam 28 March 928 3 November 204 Αριστείδης Κοντογεώργης 7 Φεβρουαρίου 205 Συνιστώμενη βιβλιογραφία. J.S Milne, Étale Cohomology 2. P. Deligne, SGA 4 2 Cohomologie étale Εισαγωγή
Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση
8 Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση Υπάρχουν δύο θεµελιώδη αποτελέσµατα που µας βοηθούν να υπολογίζουµε πολλαπλά ολοκληρώµατα. Το πρώτο αποτέλεσµα σχετίζεται µε τον υπολογισµό ενός
ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ. Ασκήσεις. Επιµέλεια.: Κάτσιος ηµήτρης. Μεθοδολογία Παραδείγµατα Ασκ ΜΕΘΟ ΟΛΟΓΙΑ 1
εθοδολογία Παραδείγµατα σκ σκήσεις πιµέλεια.: άτσιος ηµήτρης Ρ ια να προσθέσουµε (ή να αφαιρέσουµε) δύο µιγαδικούς, προσθέτουµε (ή αφαιρούµε) τα πραγµατικά και τα φανταστικά τους µέρη, δηλαδή: ± = [Re