ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

High order interpolation function for surface contact problem

Vol. 41 No Journal of Jiangxi Normal University Natural Science Nov. 2017

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Approximation Expressions for the Temperature Integral

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Congruence Classes of Invertible Matrices of Order 3 over F 2

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Κβαντικη Θεωρια και Υπολογιστες

ER-Tree (Extended R*-Tree)

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

A summation formula ramified with hypergeometric function and involving recurrence relation

ΑΝΑΛΥΤΙΚΗ ΔΥΝΑΜΙΚΗ. Εμμανουήλ Αντ. Δρης από τη Νάξο Ομότιμος Καθηγητής Ε.Μ.Πολυτεχνείο

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Envelope Periodic Solutions to Coupled Nonlinear Equations

L p approach to free boundary problems of the Navier-Stokes equation

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Quick algorithm f or computing core attribute

Space-Time Symmetries

Research on model of early2warning of enterprise crisis based on entropy

Homomorphism in Intuitionistic Fuzzy Automata

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Prey-Taxis Holling-Tanner

Single-value extension property for anti-diagonal operator matrices and their square

Second Order Partial Differential Equations

Constitutive Relations in Chiral Media

Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

Higher spin gauge theories and their CFT duals

X g 1990 g PSRB

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Spherical Coordinates

Relativistic particle dynamics and deformed symmetry

Motion analysis and simulation of a stratospheric airship

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Probabilistic Approach to Robust Optimization

PACS: Pj, Gg

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Research on real-time inverse kinematics algorithms for 6R robots

: Rydberg,, PACS: Ee, q. . Gallgher [14,15] Rb Rydberg van. . Raithel [16,17] Rb Rydberg. condenstate(bec) [3 5], Rydberg

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Numerical simulation of Earth s gravitational field recovery from SST based on the energy conservation principle

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

n=2 In the present paper, we introduce and investigate the following two more generalized

The k-α-exponential Function

Eulerian Simulation of Large Deformations

Fundamentals of Signals, Systems and Filtering

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

On the Galois Group of Linear Difference-Differential Equations

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

:,,, Raman PACS: Jp, Jd, j

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

A research on the influence of dummy activity on float in an AOA network and its amendments

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

Analytical Mechanics ( AM )

A System Dynamics Model on Multiple2Echelon Control

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

, Snowdon. . Frahm.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Fragility analysis for control systems

2.1

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

SPECIAL FUNCTIONS and POLYNOMIALS

Class 03 Systems modelling

On the k-bessel Functions

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Parametrized Surfaces

Supporting Information

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

D Alembert s Solution to the Wave Equation

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Discriminantal arrangement

n+1 v x x 3 u2 1 + u2 2 1 ) + 1 (u 1, u 2 ) = 1 v2 1 ) (v 1, v 2 ) =

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Advance in Nanorealgar Studies

[4-7] Rosenbrock ( ) Runge-Kutta(RK)

Acta Phys. Sin. Vol. 61, No. 9 (2012) ) 1) 1) 2) 1) 1) (,, ) 2) (, ) ( ; )

Transcript:

39 1 Vol. 39 No. 1 2009 1 25 ADVANCES IN MECHANICS Jan. 25, 2009 *, 100081. 5 3. Noether, Lie,, Lagrange,,.,,, 1 1.1 1687 Newton (1642 1727), 3,., Newton. 1743 d Alembert (1717 1783), Newton, d Alembert. 1788 Lagrange (1736 1813), Euler, d Alembert,, Lagrange,, 2 Lagran. 1834 1835, Hamilton (1805 1865), Hamilton, Hamilton, 3 Hamilton. 1894 Hertz,, 4. Hamilton, Birkhoff, Hamilton. 1927 Birkhoff, [1]. 1983 Santilli II, Hamilton Birkhoff, Birkhoff, Birkhoff Hamilton [2]. Birkhoff 5. 20 50, Pauli, Martin Hamilton Hamilton. Hamilton Hamilton,, [3]. Hamilton 5.,, 1.,. [4], Hamilton,,. 1, 1.1 Birkhoff ; 1.2 Birkhoff Hamilton ; 1.3 Birkhoff? : 2008-06-26, : 2008-08-16 (10572021, 10772025) E-mail: meifx@bit.edu.cn

38 2009 39 1 1.2 Newton 3 :,. 3. Lagrange Hamilton Lagrange Hamilton,.,,.,., Newton,,. [5 7],,,, ( ),. Birkhoff,, Birkhoff, Birkhoff,.. 1.3.,, Birkhoff 3. 3,,,?, Newton, Lagrange Hamilton,,. 1918 Noether [8], Noether. Hamilton. Noether [9]. [10], Noether, Lie,, Lagrange,. 2 Noether. Noether Hamilton. Noether ;, Noether. Noether.,. Noether, Birkhoff.

1 : 39 Lagrange Noether E s (L) = 0, s = 1,, n (1) E s = d dt (2) q s L ξ 0 + X (1) (L) + ĠN = 0 (3) X (1) = ξ 0 t + ξ s + q s ( ξs q s ξ0 ) (4) ξ 0, ξ s, Noether I N = Lξ 0 + L (ξ s q s ξ 0 ) + G N = (5) Noether ξ 0, ξ s G N = G N (t, q, q), (5). Noether. Lagrange, Noether, (5) [11,12]., Noether, [13 15], (5). [2,9,16 18]. Birkhoff Noether Noether?., Lagrange, Lagrange [19,20], Hamilton [6,9,11,14,21]. Noether,. 2.1 2.2 Noether, Noether t, q, q 2.3 Noether Noether. Noether?, Noether : Noether Noether,.,, Noether, Killing. Noether, [19,20,22 25], [23,26]. 3 Lie., Lie Lie, [27 29]. 1979 Lutzky Lie [30]. Prince [31] Kepler Lie. [32] Lie. [33 39] Birkhoff Lie., Lie Noether Noether. Lie. Hojman1992 [40], Lagrange Hamilton. Hojman [41 47]. Lagrange (1), Lie q s = F s (t, q, q) (6) ξ s q s ξ0 2 ξ 0 F s = X (1) (F s ) (7), (7) d d dt dt ξ s = F s q k ξ k + F s q k d dt ξ k (8) d dt = t + q s + F s (9) q s Hojman, µ = µ (t, q, q) I H = 1 (µξ s ) + 1 µ q s µ F s + d ln µ = 0 (10) dt. ( µ d ) dt ξ s = (11) Lie (8) (11)., Hojman Noether [48].

40 2009 39 Hojman, Lagrange Hamilton.,. Noether Lie Hojman. Lie. 3.1 [48]? 3.2 Hojman Noether, Noether., Noether, Noether? 4, Lagrange, Hamilton,,, Birkhoff,. L = L Lagrange (1), Lagrange ) (t, q, dq dt = L (t, q, q)+εx (1) (L)+O ( ε 2) (12) (12) (1), ε 2, G F } E s {X (1) (L) = 0 (13) = G F (t, q, q) X (1) (L) d dt ξ 0 + X { } (1) X(1) (L) + d dt G F = 0 (14) X (1) = ξ 0 t + ξ s + q s I F = X (1) (L) ξ 0 + X (1) (L) ( ) d dt ξ d s q s dt ξ 0 (15) (ξ s q s ξ 0 )+G F = (16),, (16)., 2000 [49]., Lie, Noether, [50 78]. Mei, [50 57,59 63,68,74,76,77].. (13), (14) (16). Noether Lie (16). Noe- ther Noether, Lie Hojman [78]. 4.1. (16) Noether, Noether. Noether, Noether? 4.2 [19,20] Noether? 3, 2, NS Noether, LS Lie, FI. 5 Lagrange 2 NS, LS, FI [2], Lagrange L = 1 2 ( q 2 q 2) (17) L 1 = 1 6 q3 cos t + 1 2 q q2 sin t q 2 q cos t (18) L 2 = 2 q q arctan q q ln ( q 2 + q 2) (19) q + q = 0 (20) (17) d L dt q L q = ( q + q) SA (21)

1 : 41 d L dt q L q = [I (t, q, q) ( q + q) SA ] SA (22) I I 1 = q cos t + q sin t = c 1 (23) I 2 = ( q 2 + q 2) 1 = c2 (24), (18) (17), (19) (17) Lagrange, (23), (24). 1966 Currie Saletan Lagrange, [79]. 1981 Hojman Harleston [80]. [9] Lagrange,. [81] Lagrange. Birkhoff, Birkhoff [82]. Lagrange Noether, Lie,, Lagrange,., Birkhoff, Birkhoff Birkhoff,. 5.1 Lagrange. Lagrange Lagrange, Lagrange? 5.2 Birkhoff,? 5.3 Lagrange Noether, Noether, Noether, Noether? 6 [18] Birkhoff, Lie.. Birkhoff Ω µν ȧ ν B a µ R µ = 0 (25) t Ω µν = R ν a µ R µ a ν (26) Birkhoff, B = B (t, a) Birkhoff, R µ (t, a) Birkhoff. t = t + εξ 0 (t), a µ = a µ + εξ µ (t, a) (27) F µ = Ω µν ȧ ν B a µ R µ t (28) X (1) F µ = δ ν µf ν, µ, ν = 1,, 2n (29), [18] det ( δ ν µ) 0 (30) (27) Birkhoff Lie, δµ ρ = (SΩ µν ) Ω νρ ξ ν + Ω µν a l Ω lρ δµ ρ ξ 0 t µ, ν, l, ρ = 1,, 2n (31) S = (ξ µ ȧ µ ξ 0 ) a µ (32) Birkhoff Lie ξ 0 = ξ 0 (t), ξ µ = ξ µ (t, a), (31) δ ρ µ., Birkhoff Noether Lie [78],, Noether, (31) δ ρ µ, Noether Noether.,.. 6.1. 6.2 Noether. 7,,.., 1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2, 4.1, 4.2, 5.1, 5.2, 5.3, 6.1, 6.2.

42 2009 39. 1 Birkhoff G D. Dynamical Systems. Providence RI: AMS College Publ, 1927 2 Santilli R M. Foundations of Theoretical Mechanics. NewYork: Springer-Verlag, 1983 3,,.. :.. :, 1992 4,,.. :, 1994 5 Ne mark I, Fufaev N A. Dinamika Negolonomnyh Sistem Moskva: Nauka, 1967 6.. :, 1985 7.., 1991, 21(1): 83 95 8 Noether E. Invariante Xariationsprobleme. Nachr Kal Ges Wiss Göttingen Math Phys K I, 1918, 235 237 (Noether E..., 2005, 35(1): 116 124) 9,.. :, 1999 10,.., 1993, 23(3): 360 372 11 Djukić Dj S, Vujanović B D. Noether s theory in classical nonconservative mechanics. Acta Mech, 1975, 23: 17 27 12 Bahar L Y, Kwatny H G. Extension of Noether s theorem to constrained nonconservative dynamical systems. Int J Non-Linear Mech, 1987, 22: 125 138 13,. Noether., 1986, 6(3): 41 47 14.. :, 1993 15.., 1989, 21(1): 75 83 16 Mei F X. The Noether s theory of Birkhoffian systems. Science in China, Serie A, 1993, 36(12): 1456 1467 17,,,. Birkhoff. :, 1996 18 Galiullin A S, Gafarov G G, Mala xka R P, Hvan A M. Anali tiqeska Dinamika Sistem Gelьmgolьca, Birkgofa, Nambu. Moskva: UFN, 1997 19 Arnold V I. Mathematical Methods of Classical Mechanics. New York: Springer-Verlag, 1980 20 José J V, Saletan E J. Classical Dynamics: A Contemporary Approach. Cambridge: Cambridge Univ Press, 1998 21 Bogoliubov N N, Shirkov D V. Introduction to the Theory of Quantized Fields. NewYork: Wiley, 1958 22 Crampin M. Tangent bundle geometry for Lagrangian dynamics. J Phys A: Math Gen, 1983, 16: 3755 3772 23 Marsden J E, Ratiu T S. Introduction to Mechanics and Symmetry. NewYork: Springer-Verlag, 1994 24 De León M, Rodrigues P R. Methods of Differential Geometry in Analytical Mechanics. Amsterdam: NHPC, 1989 25,,.. :, 1991 26,,. : Lagrange., 2004, 34(4): 477 492 27 Olver P J. Applications of Lie Groups to Differential Equations. NewYork: Springer-Verlag, 1986 28 Bluman G W, Kumei S. Symmetries and Differential Equations. NewYork: Springer-Verlag, 1989 29 Ibragimov N H. CRC Handbook of Lie Analysis of Differential Equations. Boca Raton: CRC Press, 1994 30 Lutzky M. Dynamical symmetries and conserved quantity. J Phys A : Math Gen, 1979, 12(7): 973 981 31 Prince G E, Eliezer C J. On the symmetries of the classical Kepler problem. J Phys A : Math Gen, 1981, 14: 587 596 32. Lie., 1994, 26(3): 380 384 33 Wu R H, Mei F X. On the Lie symmetries of the nonholonomic mechanical systems. J of BIT, 1997, 6(3): 229 235 34,,. HeTaeB Lie., 1998, 30(4): 468 474 35 Fu J L, Liu R W, Mei F X. Lie symmetries and conserved quantities of holonomic mechanical system in terms of quasi-coordinates. J of BIT, 1998, 7(3): 215 220 36 Mei F X. Lie symmetries and conserved quantities of holonomic variable mass systems. Appl Math Mech, 1999, 20(6): 619 634 37 Mei F X, Zhang Y F, Shang M. Lie symmetries and conserved quantities of Birkhoffian system. Mech Res Comm, 1999, 26(1): 7 12 38,. Lie., 2001, 50(1): 1 7 39.. :, 1999 40 Hojman S A. A new conservation law constructed without using either Lagrangians and Hamiltonians. J Phys A: Math Gen, 1992, 25: L291 295 41. Hojman (I)., 2003, 27(3): 193 195 42,. Noether Hojman., 2004, 53(3): 6 10 43,,. Noether Hojman., 2004, 53(3): 2035 2039 44,,. Birkhoff., 2004, 53(11): 3644 3647 45,. Hojman., 2004, 53(12): 4041 4044 46,,,. Hojman., 2004, 54(6): 2489 2493 47,,. Chetaev Hojman., 2007, 56(2): 649 654 48 Pillay T, Leach PGL. Comment on a theorem of Hojman and its generalizations. J Phys A: Math Gen, 1996, 26: 6999 7002 49 Mei F X. Form invariance of Lagrange system. J of BIT, 2000, 9(2): 120 124 50. Hamilton Mei, Noether Lie., 2003, 52(12): 2941 2944 51. Hamilton Mei, Noether Lie., 2004, 53(1): 5 10 52,,. Lagrange Hamilton Mei., 2005, 54(2): 496 499 53,,. Mei., 2005, 54(2): 500 503 54. Mei., 2005, 25(3): 1015 1017 55,. Mei., 2005, 54(4): 1464 1467 56. Mei., 2005, 54(7): 2980 2984

1 : 43 57,. Vacco Mei Lie Noether., 2005, 54(9): 3983 3986 58,. Lie-., 2005, 54(11): 4985 4988 59,,. Lie-Mei., 2006, 55(8): 3821 3824 60,. Hamilton Mei., 2006, 55(8): 3829 3832 61,. Emden Mei, Lie Noether., 2006, 55(11): 5594 5597 62. Mei., 2007, 56(1): 1 4 63,. Tzénoff Mei., 2007, 56(2): 661 665 64 Wang S Y, Mei F X. On the form invariance of Nielsen equations. Chin Phys, 2001, 10(5): 373 375 65 Wang S Y, Mei F X. Form invariance and Lie symmetry of equations of nonholonomic systems. Chin Phys, 2002, 11(1): 5 8 66 Zhang Y, Mei F X. Form invariance for systems of generalized classical mechanics. Chin Phys, 2003, 12(10): 1058 1061 67 Qiao Y F, Zhao S H, Li R J. Form invariance and conserved quantities of Nielsen equations of relativistic variable mass nonholonomic systems. Chin Phys, 2004, 13(3): 292 296 68 Li H, Fang J H. Lie symmetry and Mei symmetry of a rotational relativistic system in phase space. Chin Phys, 2004, 13(8): 1187 1190 69 Qiao Y F, Li R J, Ma Y S. Form invariance of Raitzin s canonical equations of a nonholonomic mechanical system. Chin Phys, 2005, 14(1): 12 16 70 Mei F X, Xu X J. Form invariances and Lutzky conserved quantities for Lagrange systems. Chin Phys, 2005, 14(3): 449 451 71 Wu H B. Lie-form invariance of Lagrange systems. Chin Phys, 2005, 14(3): 452 454 72 Lou Z M. The parametric orbits and the form invariance of three-body in one-dimension. Chin Phys, 2005, 14(4): 660 662 73 Xia L L, Wang J, Hou Q B, Li Y C. Lie-form invariance of nonholonomic mechanical systems. Chin Phys, 2006, 15(3): 467 469 74 Zheng S W, Jia L Q, Yu H S. Mei symmetry of Tzénoff equations of holonomic system. Chin Phys, 2006, 15(7): 1399 1402 75 Wang J, Li Y C, Xia L L, Hou Q B. Lie-form invariace of nonholonomic systems with unilateral constraints. Chin Phys, 2006, 15(8): 1665 1668 76 Liu H J, Fu J L, Tang Y F. A series of non-noether conservative quantities and Mei symmetries of nonconservative systems. Chin Phys, 2007, 16(3): 599 600 77 Fang J H, Ding N, Wang P. A new type of conserved quantity of Mei symmetry for Lagrange system. Chin Phys, 2007, 16(4): 887 890 78.. :, 2004 79 Currie D F, Saletan E J. q-equivalent particle Hamiltonians I. The classical one-dimensional case. J Math Phys, 1966, 7(6): 967 974 80 Hojman S, Harleston H. Equivalent Lagrangians: multidimensional case. J Math Phys, 1981, 22(7): 1414 1419 81 Mei F X, Wu H B. Symmetry of Lagrangians of nonholonomic systems. Phys Lett A, 2008, 372: 2141 2147 82 Mei F X, Gang T Q, Xie J F. A symmetry and a conserved quantity for the Birkhoff system. Chin Phys, 2006, 15(8): 1678 1681 ADVANCES IN THE SYMMETRIES AND CONSERVED QUANTITIES OF CLASSICAL CONSTRAINED SYSTEMS * MEI Fengxiang Department of Mechanics, Beijing Institute of Technology, Beijing 100081, China Abstract This paper summarized the recent progress in the symmetries and conserved quantities of classical constrained mechanical systems. The five stages of classical mechanics are introduced and the three problems are proposed. The Noether symmetry, the Lie symmetry, the form invariance, the symmetry of Lagrangians, the conformal invariance and the conserved quantities of the systems are dsicussed, and some future research problems are proposed. Keywords classical mechanics, symmetry, conserved quantity, integral The project supported by the National Natural Science Foundation of China (10572021, 10772025) E-mail: meifx@bit.edu.cn