40 4 2015 4 GeomaticsandInformationScienceofWuhanUniversity Vol.40No.4 Apr.2015 DOI:10.13203/j.whugis20130727 :1671-8860(2015)04-0469-05 Triple-Colocation 1 1 1,,430079 :, - AMSR-E SSM/I,, Triple-Colocation, -,, AMSR-E SSM/I, ; : ;AMSR-E;SSM/I;Triple-Colocation; ; ; :P237.9 :A [1], AMSR-E SSM/I, Triple-Colo-, cation,, -, [2-3],, [4-5] 1.1 Triple-Colocation, Triple-Colocation(TC) Stofelen [1] Foster, Scatermeter, [8] ANSA MODIS, [9,10] AMSR-E QuikSCAT [11] [6] Liu, TC ANSA [7], 100 [9], ( (ordinarykriging, 1 Triple-Colocation OK) AMSR-E SSM/I ), : :2013-12-02 : (41171313,41331175); (201329); (2014CFB725) :,, E-mail:xujianhui306@163.com :,, E-mail:shu hong@whu.edu.cn
470 2015 4 sdpx =αx +β xsdptrue +εx 烄 sdpy =αy +βysdptrue +εy 烆 sdpz =αz +β zsdptrue +ε z (1),sdptrue ;sdpx sdpy sdpz OK(01,OK) AMSR-E SSM/I ;εx εy εz OK AMSR-E SSM/I, 0 烆 sdp xsdp z / sdp xsdp y (1) 1.2 - AMSR-E SSM/I β (i=x,y,z),sdp i * =(sdpiαi)/ β i,εi * =εi/ β i, :, [12] : 烄 sdp x * =sdptrue +ε x * s^dpm =ωxsdpx +ωysdpy +ωzsdpz (6) sdp * y =sdptrue +ε *,s^dpm ;sdpx sdpy y sdp z * =sdptrue 烆 +ε z * sdpz OK,AMSR-E (2) SSM/I ;ωx ωy ωz OK AM- (2) SR-E SSM/I, ωx +ωy+ωz sdptrue,, =1 (6) : εx * εy * εz *, <εx εy * > = <εx * εz * >=<εy * εz * ωx =σ >=0 y σ z *2 /(σ x *2 y + y σ z *2 +σ z *2 σ x *2 ) 烄烄 σ x *2 = ε x *2 = (sdp x * -sdp * )( y sdp x * -sdp z * ωy =σ z *2 σ x *2 /(σ x *2 y + y σ z *2 +σ z *2 σ x *2 ) ) y = ε *2 y = (sdp * y -sdp z * )(sdp * y -sdp x * ) 烆 ωz =σ x *2 /( y σ x *2 y + y σ z *2 +σ z *2 σ x *2 ) (7) σ z *2 = ε z *2 = (sdp z * -sdp x * )(sdp z 烆 * -sdp * y ) (3),< >, (1) αi β i(i =x,y,z) N~49 12 N,79 48 E~92 36 E, sdptrue, sdpok, αx=0, β x=1 (1),εx *2 εy *2 εz *2 (1) : (3), : σ x *2 = sdp 2 x - sdp xsdp y 烄 sdp xsdp z / sdp y sdp z y = sdp 2 y - sdp xsdp y sdp y sdp z / sdp xsdp z σ z *2 = sdp 2 z - sdp y sdp z sdpx =sdptrue +εx 烄 sdpy =αy +βysdptrue +εy 烆 sdpz =αz +β zsdptrue +ε z AM- (4) SR-E SSM/I (4) (, ), (4), [13] Chang, sdp =sdp-<sdp>,,, : 25km βy = sdp y sdp z / sdp xsdp z, 0.01 { β z = sdp y sdp z / sdp xsdp y ( 48 αy = sdpy -βy sdpx ) { αz = sdpz -β z sdpx, (5) 2, 42 12 ( ) ( ),, 6300 m, 170m
40 4 : Triple-Colocation 471 1, OK Tab.1 CorrelationCoeficient(R)BetweenDiferent, 10% (5 Snow DepthProducts : ), 90% (43 ) OK, 0.01 0.01 OK AMSR-E SSM/I 450 259 2007 1 1 (001) 1 3 15 (015) 1 30 (030)OK AM- SR-E SSM/I 3.2 3.1 1 - AMSR-E SSM/I, 5cm, TC, AMSR-E SSM/I 001 015, 030 3dOK AMSR-E SSM/I 0 5cm, AMSR- E sdp =sdp-<sdp>(sdp,<sdp> 0,AMSR-E SSM/I,sdp ) [13] 5cm ; TC, AMSR-E SSM/I 0 (5) 5cm OK TC,, OK 1,AMSR-E SSM/I AMSR-E OK, OK SSM/I AMSR-E SSM/I Chang, -,,, 1, OK OK, OK AMSR-E SSM/I, TC, AMSR-E SSM/I, (7), OK 2, AMSR-E OK, SSM/I 1 2,, ROK-AMSR-E ROK-SSM/I RAMSR-E-SSM/I 001 0.160 * 0.127 * 0.713 * 015 0.245 * 0.204 * 0.598 * 030 0.179 * 0.133 * 0.576 * : * p<0.0001 Tab.2 2 TC WeightsofDiferentSnow DepthProducts Obtainedfrom Triple-Colocation ωok ωamsr-e ωssm/i 001 0.223 0.625 0.152 015 0.327 0.418 0.255 030 0.349 0.467 0.184,,, 1 TC 1 1,2007 1,
472 2015 4 1 Fig.1 Merged MapofTCfrom DiferentSnow DepthProducts 3.3 2(a)~2(c) 43 AM- 0.307( 3(a)) 0.568( 3 SR-E SSM/I TC (b)) 0.428( 3(c)), AMSR-E SSM/I AMSR-E 0.307(001) 0.424(015) 0.314 (030), SSM/I 0.312, AMSR-E SSM/I, 0.377 0.298, TC TC 0.616 0.780 0.753, 1 15, 67.98% 69.09% 10.42% 27.88%(001) 19.72% 30.09% 3(a)~3(c) 5 (015) 24.24% 37.63%(030) 2 AMSR-E SSM/I TC (43 ) Fig.2 ComparisonofAMSR-E,SSM/IandTC-basedSnow DepthProducts(43Stations) 3 AMSR-E SSM/I TC (5 ) Fig.3 ComparisonofAMSR-E,SSM/IandTC-basedSnow DepthProducts(FiveStations)
40 4 : Triple-Colocation 473 4 theaccuracyoftheafwa-nasa (ANSA)Blen- AMSR-E ded Snow-cover Product over the Lower Great SSM/I, LakesRegion[J].Hydrology and Earth System Sciences Discusions,2012,9(1):1141-1161, [6] FosterJL,HalD K,EylanderJB,etal.A Blen- ded GlobalSnow Product Using Visible,Passive, MicrowaveandScaterometerSateliteData[J].In-, ternationaljournalof RemoteSensing,2011,32,, (5):1371-1395 ( ), [7] LiuY,Peters-LidardCD,KumarS,etal.Assimi-, latingsatelite-basedsnow DepthandSnow Cover ProductsforImprovingSnow PredictionsinAlaska, [J].Advancesin Water Resources,2013,54:208- : 227, [8] Stofelen A.TowardtheTrue Near-surface Wind (htp://westdc.westgis.ac.cn) Speed:Error ModelingandCalibration Using Tri- AMSR-E SSM/I ple-colocation[j].journalof Geophysical Re- search:oceans (1978-2012),1998,103 (C4): 7755-7766 [9] ScipalK,HolmesT,DeJeuR,etal.A Possible [1] ZhaoLiang,Zhu Yuxiang,Yang Hong,etal.A Solutionforthe Problem ofestimatingthe Error DynamicApproachtoRetrievingSnow DepthBased StructureofGlobalSoilMoistureDataSets[J].Ge- onthe TechnologyofIntegratingSatelite Remote ophysicalresearch Leters,2008,35(24):L24403 SensingandinSitu Data[J].Acta Meteorologica [10]LerouxDJ,KerrY H,RichaumeP,etal.Spatial- Sinica,2013,71(4):769-782 (,, DistributionandPossibleSourcesofSMOS Errors,. attheglobalscale[j].remotesensingof Environ- [J].,2013,71 ment,2013,133:240-250 (4):769-782) [11]FangH,WeiS,JiangC,etal.TheoreticalUncer- [2] Liu Hai,ChenXiaoling,SongZhen,etal.Studyof tainty Analysis of Global MODIS,CYCLOPES, CharacteristicParametricSelectionand ModelCon- andglobcarbon LAIProductsUsingaTriple- structionfor Snow Depth Retrievalfrom MODIS Colocation Method[J].RemoteSensingof Envi- Image[J].GeomaticsandInformation Scienceof ronment,2012,124:610-621 Wuhan University,2011,36(1):113-116 (, [12]YilmazM T,Crow W T,Anderson M C,etal.An,,.MODIS Objective Methodology for Merging Satelite-and [J]. Model-basedSoilMoistureProducts[J].Water Re-,2011,36(1):113-116) sourcesresearch,2012,48(11):w11502,doi:10. [3] LiuYan,Ruan Huihua,ZhangPu,etal.Kriging 1029/2011WR011682 InterpolationofSnow DepthattheNorthofTians- [13]Che Tao.Study on Passive Microwave Remote han MountainsAssistedby MODISData[J].Geo- SensingofSnowandSnow DataAssimilation Meth- maticsandinformation Scienceof Wuhan Univer- od[d].lanzhou:coldand AridRegionsEnviron- sity,2012,37(4):403-405(,,,. mentaland Engineering ResearchInstitute,CAS, MODIS Kriging [J].,2012,37(4): 403-405) [4] FosterJL,HalD K,EylanderJ,etal.Blended Visible,PassiveMicrowaveandScaterometerGlob- alsnowproducts[c].the64theasternsnow Con- ference,newfoundland,canada,2007 [5] HalD K,FosterJL,KumarS,etal.Improving 2006 (. [D]. :,2006) ( 486 )
486 2015 4 Forthesurfacecoveredbyvegetation,surfaceemissivitywasretrievedbyAMSR-E withthehelpof themodisatmosphericprofileproduct.throughanalyzingthestatisticalrelationshipofemissivity polarizationdiference,analgorithmforretrievingpwv wasbuilt.comparedwiththegpsresults, therootmeansquareerrorofouralgorithmis7.4 mm.regionalconsistencywasfoundbetweenthe resultsfrom MODISandouralgorithm. Keywords:Beijing-Tianjin-HebeiRegion;precipitablewatervapor;AMSR-E;polarizationdiference Firstauthor:WANG Yongqian,PhD,associateprofessor,specializesinthetheoriesandmethodsofretrievingsurfaceandatmosphere parametersbyremotesensing.e-mail:wyqq@cuit.edu.cn Foundationsupport:TheNationalNaturalScienceFoundationofChina,Nos.41471305,41301653,41405036;theOpenResearchFund ProgramofChongqing MeteorologicalBureau,No.Kfj-201402;theProjectofPreeminent Youth FundofSichuan Prorince,No. 2015JQ0037. 檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪 ( 473 ) TheTriple-Colocation-basedFusionofIn-situandSatelite RemoteSensingDataforSnowDepthRetrieval XUJianhui 1 SHU Hong 1 1 StateKeyLaboratoryofInformationEngineeringinSurveying,MappingandRemoteSensing, WuhanUniversity,Wuhan430079,China Abstract:Becauseoftheinsuficientaccuracyandspatialresolutionofsnowdepthproductsretrieved bypassivemicrowaveremotesensing,anew multi-sourcesdatafusionapproachisdevelopedforre- trievingsnowdepth.thedatafromdiferentsourcescontainsvisible,passivemicrowavesateliteand in-situdata.thedailyin-situ,amsr-eandssm/iretrievedsnow depthproductsareusedinthis study.first,combiningin-situ snow depth,thesnow depth of Northern Xinjiangisestimated throughgeostatisticalanalysis.thentheerrorvariancesofeachproductarecalculatedusingatriple colocation (TC)method.Finaly,thenew snow depthproductsareobtainedby mergingin-situ, AMSR-EandSSM/Isnowdepthdatainaleastsquarescriterionwheretheoptimalweightsofeach productaredetermined withthetc-basederrorvariances.the mergedsnow depthisvalidateda- gainstin-situsnowdepthandexhibitsahighercorrelationwithin-situobservationsthanthatwitho- riginalamsr-eandssm/isnowdepth.theresultswithhigheraccuracydemonstratetheefective- nessofourapproach. Keywords:snowdepth;AMSR-E;SSM/I;Triple-Colocation;leastsquaremethod;remotesensing retrieval;datafusion Firstauthor:XUJianhui,PhDcandidate,specializesinspatio-temporaldataanalysisanddataassimilation.E-mail:xujianhui306@163. com Correspondingauthor:SHU Hong,PhD,professor.E-mail:shu hong@whu.edu.cn Foundationsupport:TheNationalNaturalScienceFoundationofChina,Nos.41171313,41331175;theOpenResearchFundoftheKey LaboratoryofGeo-informaticsofNationalAdministrationofSurveying,MappingandGeoinformation,No.201329;theHubeiProvincial NaturalScienceFoundationofChina,No.2014CFB725.