Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Robust Markowitz Portfolio Selection in a Stochastic Factor Model

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Prey-Taxis Holling-Tanner

DOI /J. 1SSN

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Decision making under model uncertainty: Hamilton-Jacobi-Belman-Isaacs approach, weak solutions and applications in Economics and Finance

Congruence Classes of Invertible Matrices of Order 3 over F 2

Applying Markov Decision Processes to Role-playing Game

On the Galois Group of Linear Difference-Differential Equations

Second Order Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Homomorphism in Intuitionistic Fuzzy Automata

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Mean-Variance Hedging on uncertain time horizon in a market with a jump

J. of Math. (PRC) Shannon-McMillan, , McMillan [2] Breiman [3] , Algoet Cover [10] AEP. P (X n m = x n m) = p m,n (x n m) > 0, x i X, 0 m i n. (1.

(020) (020)

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Section 8.3 Trigonometric Equations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

D Alembert s Solution to the Wave Equation

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

m i N 1 F i = j i F ij + F x

On Generating Relations of Some Triple. Hypergeometric Functions

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. 1.3.Ξένες γλώσσες Αγγλικά πολύ καλά 1.4.Τεχνικές γνώσεις


X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

SPECIAL FUNCTIONS and POLYNOMIALS

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Research on Economics and Management

EE101: Resonance in RLC circuits

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

() min. xt δεν έχει μετασχηματισμό LAPLACE () () () Αν Λ= το σήμα ( ) Αν Λ, έστω σ. Το σύνολο μιγαδικών αριθμών. s Q το ολοκλήρωμα (1) υπάρχει.

Higher Derivative Gravity Theories

Statistical Inference I Locally most powerful tests

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

A MAXIMUM PRINCIPLE FOR STOCHASTIC DIFFERENTIAL GAMES WITH PARTIAL INFORMATION

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

The Pohozaev identity for the fractional Laplacian

The k-α-exponential Function

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Slides 4. Matthieu Gomez Fall 2017

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-215: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 2013 ιδάσκων : Π.

Mathematical model for HIV spreads control program with ART treatment

High order interpolation function for surface contact problem

Second Order RLC Filters

Supplementary Appendix

4.6 Autoregressive Moving Average Model ARMA(1,1)

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Risk! " #$%&'() *!'+,'''## -. / # $

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

MathCity.org Merging man and maths

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

The ε-pseudospectrum of a Matrix

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Η Έννοια και η Σημασία της Τιμής

Stochastic Target Games with Controlled Loss

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Heisenberg Uniqueness pairs

Part III - Pricing A Down-And-Out Call Option

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Forced Pendulum Numerical approach

Additional Results for the Pareto/NBD Model

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Motion analysis and simulation of a stratospheric airship

ST5224: Advanced Statistical Theory II

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Stoqastikˆ montèla gia ta epitìkia. Oikonomikì Panepist mio Ajhn n

Οι ιδιότητες και οι µέθοδοι επίλυσης διαφορικών εξισώσεων παρουσιάζονται σε µία σειρά εγχειριδίων µαθηµατικών

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Όταν θα έχουµε τελειώσει το Κεφάλαιο αυτό θα µπορούµε να:

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

A summation formula ramified with hypergeometric function and involving recurrence relation

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Solutions - Chapter 4

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Example Sheet 3 Solutions

(1) A lecturer at the University College of Applied Sciences in Gaza. Gaza, Palestine, P.O. Box (1514).

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

6.3 Forecasting ARMA processes

36 ( ) Ω λk(k= + )-Δ <γ < (4) L (Ω) φ k λk : (-Δ) /φ γ / k=λγ k φ k { <λ λ λk (k ) D((-Δ) γ / )= {u L (Ω)stu Ω = ; (-Δ) γ / u L (Ω) = k=+ λ γ / k u φ

Probability and Random Processes (Part II)

Transcript:

Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov. [7]. [8]. HJBI,. [8]. [8] : 2013-05-16 : 2013-09-06 (11271375); (XJ120106; XJ120109; XJ130246). : (1983 ),,,, :.

780 Vol. 34 1.. HJBI, -. 2.,, [8]. 2 2.1 : (1) ; (2) ; (3)., (Ω, F t, P ),, F t P. [9], dc(t) = αdt βdw 1 (t),, α > 0, β > 0,, W 1 (t). dc(t) = (1 + v)αdt, v > 0. dx(t) = c(t)dt dc(t) = vαdt + βdw 1 (t)., a(t) 1. 0 a(t) 1, a(t) = 1, a(t) = 0. a(t) < 0,. η, η > v. dx(t, a(t)) = (v ηa(t))αdt + (1 a(t))βdw 1 (t).,, (), t {B(t), t 0} db(t) = r 0 B(t)dt, r 0 > 0. (), t {S(t), t 0} ds(t) = S(t)[rdt + dw 2 (t)], r r 0, > 0, W 2 (t), W 1 (t), W 2 (t).. π(t) t, X(t, u(t)) π(t), X(t, u(t)), u(t) = (a(t), π(t))., X(t, u(t)) dx(t, u(t)) = [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))]dt +(1 a(t))βdw 1 (t) + π(t)dw 2 (t). (2.1) 1 u( ) = (a( ), π( )), u( ) {F t }, t 0 u( ) : (1) T 0 [π(t)] 2 dt < a.e. T < ;

No. 4 : 781 (2) a(t) 1; (3) (1) {u(t), t 0}. U. {θ(t), t 0} (Ω, F t, P ), (1) {θ(t), t 0} F t ; (2) (t, ω) [0, + ) Ω, θ(t) = θ(t, ω) < 1; (3) E T 0 θ2 (t)dt <. θ(t) Θ(t). {θ(t), t 0} Θ {Z θ (t), t 0} Z θ (t) = ex{ Ito t 0 θ(s)dw 1 (s) t 0 θ(s)dw 2 (s) t 0 θ 2 (s)ds}. dz θ (t) = Z θ (t)θ[dw 1 (t) + dw 2 (t)]. (2.2) Z θ (t) (F t, P ), {θ(t), t 0} P -, Z θ (0) = Z 0 (0 < Z 0 < 1), Z θ (t) (F t, P ), EZ θ (T ) = EZ θ (0) = 1. dp θ dp = Zθ (T ), θ Θ, P θ. 2.2 W, W > 0, W < 0, W. u( ), P θ V u,θ (t, x) = E θ [W (XT u) Xu t = x], E θ P θ.,.,, u( ). su inf V u,θ (t, x) = V u,θ (t, x) = V (t, x), (2.3) θ Θ u U u, θ., u, θ V (t, x). 3 3.1 W (x) = 1 m e mx, m > 0.,. 3.1.1 ηα β(r r0) 1 g 1 (t) g 1(t) + g 1 (t)mα(η v)e r0(t t) g 1(t) 4 (r r 0 ηα β )2 = 0, g 1 (T ) = 1, (3.1) g 1 (t) = ex{ mα(η v) r 0 [e r0(t t) 1] T t ( r r 0 ηα 4 β )2 }. (3.2)

782 Vol. 34 (3.1) (3.2).. 1 (2.3) π = a = 1 e r0(t t) 2m 2 e r0(t t) (r r 0 ηα ); (3.3) β (ηα β(r r 0) 2mβ 2 θ = 1 2 (r r 0 + ηα β ); (3.4) ). (3.5) V (t, x) = 1 m g 1(t) ex{ mxe r0(t t) }, (3.6) g 1 (t) (3.2). u( ), θ( ), X(t, u) (2.1), Ito, (3.1) d[ 1 m g 1(t)Z θ (t)e mx(t,u)er 0 (T t) ] 1 m zg 1(t)e mxer 0 (T t) = Z θ (t)e mx(t,u)er 0 (T t) { 1 m g r0(t t) 1(t) r 0 X(t, u)g 1 (t)e m 2 g 1(t)e 2r0(T t) [β 2 (1 a) 2 + 2 π 2 ] +g 1 (t)e r0(t t) [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))] g 1 (t)e r0(t t) [(1 a)β + π]θ}dt + 1 m g 1(t)θZ θ (t)e mx(t,u)er 0 (T t) [dw 1 (t) + dw 2 (t)] +g 1 (t)θz θ (t)e r0(t t) e mx(t,u)er 0 (T t) θ[(1 a)βdw 1 (t + πdw 2 (t] = Z θ (t)e mx(t,u)er 0 (T t) { m2 2 g 1(t)e 2r0(T t) [π(t) π (t)] 2 mβ2 2 g 1(t)e 2r0(T t) [a(t) a (t)] 2 + g 1(t) 2m [θ(t) θ (t)] 2 }dt + 1 m g 1(t)θZ θ (t)e mx(t,u)e r 0 (T t) [dw 1 (t) + dw 2 (t)] +g 1 (t)θz θ (t)e r0(t t) e mx(t,u)er 0 (T t) θ[(1 a)βdw 1 (t) + πdw 2 (t)], π, a, θ (3.3) (3.5), t T, Z θ (t) = z, X(t, u) = x P, Beyes, V u,θ (t, x) = 1 m g 1(t)e mxer 0 (T t) + 1 z E{ T t Z θ (s)e mx(s,u)er 0 (T s) [ m2 2 g 1(s)e 2r0(T s) [π(s) π (s)] 2 mβ2 2 g 1(s)e 2r0(T s) [a(s) a (s)] 2 + g 1(s) 2m [θ(s) θ (s)] 2 ]}ds.

No. 4 : 783 g 1 (t) > 0, Z θ (t) > 0,.. 1 (3.3), (3.4), a < 1,, (π < 0). 3.1.2 ηα < β(r r0) 2 g 2 (t) g 2(t) + g 2 (t)mα(η v)e r0(t t) = 0, g 2 (T ) = 1, (3.7) mα(η v) g 2 (t) = ex{ [e r0(t t) 1]}. (3.8) r 0 (3.7) (3.8).. 2 (2.3) π = 0; (3.9) a = 1; (3.10) θ = r r 0. (3.11) V (t, x) = 1 m g 2(t) ex{ mxe r0(t t) }, (3.12) g 2 (t) (3.8). (3.4) ηα < β(r r0), a > 1, a = 1. a = 1 (2.1), 1 zg m 2(t)e mxer 0 (T t) Ito, (3.8) 1.. 2 (3.9), (3.10), a = 1,,. 3 [8], ρ = 0 1 2. [8] HJBI, - ( ρ = 0, ρ 0 - ). 3.2 W (x) = x (0 < < 1),,. 3.2.1 ηα β(r r0) 3 f 1 (t), h 1 (t) f 1(t) + f 1 (t)[r 0 + 4(1 ) (r r 0 ηα) 2 ] = 0, f 1 (T ) = 1, (3.13) h 1(t) r 0 h 1 (t) + (η v)α = 0, h 1 (T ) = 0, (3.14)

784 Vol. 34 f 1 (t) = ex{[r 0 + 4(1 ) (r r 0 ηα) 2 ](T t)}, (3.15) (η v)α h 1 (t) = [1 e r0(t t) ]. r 0 (3.16) (3.13), (3.14) (3.15), (3.16).. 3 (2.3) π = x h 1(t) 2(1 ) (r r 2 0 ηα ); (3.17) β π = 1 x h 1(t) 2(1 )β (ηα β(r r 0) ); (3.18) 2 θ = 1 2 ((r r 0) + ηα β ). (3.19) V (t, x) = f 1 (t) [x h 1(t)], (3.20) f 1 (t), h 1 (t) (3.15), (3.16). u( ), θ( ), X(t, u) (2.1), Ito, (3.13), (3.14) d[f 1 (t) [x h 1(t)] Z θ (t)] f 1 (t) [X(t, u) h 1(t)] z θ = Zθ (t) {f 1(t)[X(t, u) h 1 (t)] + f 1 (t)( [X(t, u) h 1 (t)] 1 h 1(t) +[X(t, u) h 1 (t)] 1 [(v ηa(t))α + π(t)(r r 0 ) + r 0 X(t, u(t))] + 1 2 ( 1)[X(t, u) h 1(t)] 2 [β 2 (1 a) 2 + 2 π 2 ] [X(t, u) h 1 (t)] 1 [(1 a)β + π]θ)}dt f 1 (t) [x h 1(t)] Z θ (t)θ(t)[dw 1 (t) + dw 2 (t)] +f 1 (t)[x(t, u) h 1 (t)] Z θ (t)[(1 a)βdw 1 (t) + πdw 2 (t) = Zθ (t) { 1 2 ( 1)2 [X(t, u) h 1 (t)] 2 [π(t) π (t)] 2 + 1 2 ( 1)β2 [X(t, u) h 1 (t)] 2 [a(t) a (t)] 2 + 1 2 (1 )β [θ(t) 2 θ (t)] 2 }dt f 1 (t) [x h 1(t)] Z θ(t)θ (t)[dw 1 (t) + dw 2 (t)] +f 1 (t)[x(t, u) h 1 (t)] Z θ (t)[(1 a)βdw 1 (t) + πdw 2 (t)],

No. 4 : 785 π, a, θ (3.17) (3.19), t T, Z θ (t) = z, X(t, u) = x P, Beyes, V u,θ (t, x) = f 1 (t) [X(t, u) h 1(t)] + 1 z E{ T t Z θ (s) [ 1 2 ( 1)2 [X(s, u) h 1 (s)] 2 [π(s) π (s)] 2 + 1 2 ( 1)β2 [X(s, u) h 1 (s)] 2 [a(s) a (s)] 2 + 1 2 ( 1)β [X(s, u) h 1(s)] 2 [θ(s) θ (s)] 2 }ds, 2.. 4 (3.17), (3.18), a < 1,, ( π < 0 ).. 3.2.2 ηα < β(r r0) 4 f 2 (t), h 2 (t) f 2(t) + r 0 f 2 (t) = 0, f 2 (T ) = 1, (3.21) h 2(t) r 0 h 2 (t) + (η v)α = 0, h 2 (T ) = 0, (3.22) f 2 (t) = e r0(t t), (3.23) (η v)α h 2 (t) = h 1 (t) = [1 e r0(t t) ]. r 0 (3.24) (3.21), (3.22) (3.23), (3.24).. 4 (2.3) π = 0; (3.25) π = 1; (3.26) θ = r r 0. (3.27) V (t, x) = f 2 (t) [x h 2(t)], (3.28) f 2 (t), h 2 (t) (3.23), (3.24). (3.4) ηα < β(r r0), a > 1, a = 1. a = 1 (2.1), f 2 (t) [X(t,u) h2(t)] z θ Ito, (3.23), (3.24) 3.. 5 (3.25), (3.26), a = 1,,..

786 Vol. 34 [1] Browne S. Otimal investment olicies for a firm with a random risk rocess: exonential utility and minimizing the robability of ruin[j]. Mathematics Methods Oerator Research, 1995, 20(4): 937 957. [2] Yang H, Zhang L. Otimal investment for insurer with jum diffusion risk rocess[j]. Insurance: Mathematics and Economics, 2005, 37(3): 615 634. [3] Bai L, Guo J. Otimal roortional reinsurance and investment with multile risky assets and no-shorting constraint[j]. Insurance: Mathematics and Economics, 2008, 42(3): 968 975. [4] Isaacs R. Differential games [M]. New York: Wiley, 1965. [5] Mataramvura S, Sendal B. Risk minimizing ortfolios and HJBI equations for stochastic differential games [J]. Stochastics An International Journal of Probability and Stochastic Processes, 2008, 4: 317 337. [6] Siu T K. A game theoretic aroach to otion valuation under Markovian regime-switching models[j]. Insurance: Mathematics and Economics, 2008, 42(3): 1146 1158. [7] Browne S. Stochastic differential ortfolio games [J]. Journal of Alied Probability, 2000, 37(1): 126 147. [8],. [J]., 2101, 8: 48 52. [9] Promislow D S, Young V R. Minimizing the robability of ruin when claims follow Brownian motion with drift[j]. North American Actuarial Journal, 2005, 9(3): 109 128. STOCHASTIC DIFFERENTIAL GAMES WITH REINSURANCE AND INVESTMENT YANG Peng (Deartment of Basic, Xijing College, Xi an 710123, China) Abstract: This aer investigates a stochastic differential games roblem with reinsurance and investment. Under exonential utility and ower utility, by using linear-quadratic control theory, we obtain otimal reinsurance strategies, investment strategies and otimal market strategies as well as the value function closed form exressions. We generalize the results of aer [8]. Through this research when the market is worst, we can guide insurance comany to select the aroriate reinsurance and investment strategies to maximize his wealth. Keywords: stochastic differential games; linear-quadratic control; exonential utility; ower utility 2010 MR Subject Classification: 91A30; 91B30