36 ( ) Ω λk(k= + )-Δ <γ < (4) L (Ω) φ k λk : (-Δ) /φ γ / k=λγ k φ k { <λ λ λk (k ) D((-Δ) γ / )= {u L (Ω)stu Ω = ; (-Δ) γ / u L (Ω) = k=+ λ γ / k u φ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "36 ( ) Ω λk(k= + )-Δ <γ < (4) L (Ω) φ k λk : (-Δ) /φ γ / k=λγ k φ k { <λ λ λk (k ) D((-Δ) γ / )= {u L (Ω)stu Ω = ; (-Δ) γ / u L (Ω) = k=+ λ γ / k u φ"

Transcript

1 5 3 ( ) Vol5 No3 5 JournalofXiamenUniversity (NaturalScience) May ( 365) : D +α u-δu+(-δ) γ/ D β u= u >-<α< <γ <β< : ; ; : O755 : A : () ρ ut=u +λu +g (xt) (6) xx xtx D +α u-δu+(-δ) γ / D β u= u () ρ λ g(xt) u(x)= u t (x)=u () (xy) Q =R n ()< + -<α< <β<δ= + + ()α=β= Kiane x x n [5] (-Δ) γ / (<γ ) :(-Δ) γ / v=f - ( ξ γ F(v)( ξ )) F F - D +α atar [] D +α u-δu+d β u=h(xt) u (5) ()γ= :-- : (9766) yqx458@6com Carvalho [4] u t=δu-(-δ) γ / u t+u (7) u t-δu+(-δ) γ / D β +u=u (8) D β (Cauto) D β [6] + Riemann-Liouvile [5] lim infu = + x D β f(t)= Γ(n-β t ) (t-τ) n- β- f(n)(τ)dτn = <β (8) [5] [ β ]+ β > (3) -<α<<β< Seredynkska [] Mitidieri [7] Zhang [8] atar Kirane [5] Baras [9] D u+γd + η u+f(u)= (4) () D + η <η< +η Lalacian [5] η [5] () γ Greenberg [3] () 烄 (-Δ) /φ γ k=v φ x Ω; k 烅烆 φ k= x R n \Ω (9)

2 36 ( ) Ω λk(k= + )-Δ <γ < (4) L (Ω) φ k λk : (-Δ) /φ γ / k=λγ k φ k { <λ λ λk (k ) D((-Δ) γ / )= {u L (Ω)stu Ω = ; (-Δ) γ / u L (Ω) = k=+ λ γ / k u φ k <+ } () k= u D((-Δ) γ / ) k=+ (-Δ) γ / u = λ γ / k u φ k φ k k= (D t ω)()=(d t ω)()=c -α (7) uv D((-Δ) γ / ) C ( = -α+η ) Γ( η +) Γ(-α+η ) u(-δ) γ / vdx = Ω v(-δ) γ / udx () Ω Cauto D γ f(t)= Γ(-γ) t (t-τ) -γ f (τ)dτ <γ < () Γ(n-γ) t D γ f(t)= ( ) <α [] β < u L loc(q ) φ C (Q ) φ (t-τ) n-γ- f (n) (τ)dτ n = [γ]+γ > (3) Cauto Riemann-Liouvile D tf(t)= γ Γ(n-γ) (d dt t )n (t-τ) n-γ- f(τ)dτ n = [γ]+ [6] n- D tf(t)= γ f (k) ()t k-γ Γ(+k-γ) + k= Γ(n-γ) (d dt t )n (t-τ) n-γ- f (n) (τ)dτ= n- k= f (k) ()t k-γ Γ(+k-γ) +Dγ f(t) > Riemann-Liouvile Dt f(t)= ( -) n γ Γ(n-γ) (d dt )n (τ-t) n-γ- f(τ)dt t n = [γ]+γ > [9] f (t)(d γ tg)(t)dt= g (t)(d γ t f)(t)dt ω(t)= (- )η + > η α () Dt ω(t)= ( -α+η ) Γ( α η +) Γ(-α+η ) (- )η-α -α + (5) D t ω(t)= ( -α+η )( η-α)γ( η +) Γ(-α+η ) -( ) (- )η -α- + (6) Q () R n L loc(q ) v:r n R + R + R n R + K u L loc(q ) u φdxdt= u(xt)d t φ dxdt- u D α t φ dxdt- D α t φ (x)dx+ [u(xt)- ](-Δ) γ/ D β t φ (xt)dx- u(xt)δφdxdt (8) u () φ φ (x )=D t α φ (x)= <α<<β< -<α<<β<-<α<<β<3 [6] D +α tf=d D α tfd +α t f=-d D t f α (9) D n+α f(t)=d α D n f(t)<α<n= () <α β < u <α β < γ (] < * =+ β +βn-β

3 3 : 37 ()~ () = * γ () >n/(n-γ) n>γ ()~ () φ ( xt)=φ φ (t) φ = ( x / β/ ) φ (t)=(-t/) η η {x R N ; x β/ } (r)= Ω r ; { r ~(5) ε< 3 (r) C/rr D ((-Δ) r/ )(-Δ) r/ B u φ C( Ω φ- λ γ / () φ Q (7)(9)() u φ+ u D α t φ+ D α t φ (x )+ (-Δ) γ / D β t φ (xt)= u(xt)d t φ + u(-δ) γ / D β t φ (x t)+ u(xt)(-δ) φ () = dxdt R N = R Ndxdt () (5)(7) (7) (-Δ) /φ γ = -βγ/ λ γ / φ u φ +C -α u φ +C( -α + - β-βγ) φ = u(xt)d t φ + u(xt)(-δ) γ/ D β t φ (xt)+ u(-δ) Q φ ε u φ + Ω C(ε) Ω φ-q (-Δ) φ q (5) C(ε)= - ( ε) -q=/(-)ω = [] Ω φ- Ω φ- q q D = () Ωdxdt t φ q + (-Δ) γ /φ D β t φ (t) q + q (-Δ) φ φ (t) q ) (6) (6) τ= - ty= - β / x (5)(6) u φ C( + βn -q () + +β n -βq(+γ) + +β n - βq ) (7) < * (7) Q u u=aer n R + = * u C (8) Q (6) φ = φ ( x /(B - β / β/ )) B B () u(xt)(-δ) Q φ u u φ u(xt)d t φ + u(xt)(-δ) γ/ D β t φ (xt)+ u(xt)(-δ) Q φ () εyoung ud t φ = uφ φ - D t φ u ε Ω φ +C(ε) D Ω φ-q t φ q (3) u(-δ) γ/ Dt β Q φ ε u φ + Ω C(ε) Ω φ-q (-Δ) γ / D β t φ q (4) u φ C( Ω u D t φ q + Ω u (-Δ) γ/ φ D β t φ (t) q + C(B) u (-Δ) φ φ (t) ) (9) Ω = [] {x R n ; x B - β / β/ } C(B)= [] {x R n ;B - β / β/ x B - β / β/ } Ω = Ω dxdt C(B) = C(B) dxdt (9) ε Young 3 Holder u φ C( φ Q Ω φ (t) - q D t φ (t) q +

4 38 ( ) Ω φ -q φ (t) -q (-Δ) γ /φ D β t φ (t) q )+C( C(B) u φ )/ 3 ( C(B) φ -q φ (t) (-Δ) φ q ) / q (3) τ= - ty=(/b) - β / x u φ C( + βn -q () B -βn/ + +β n -βq(+γ) β B (-n+γq) )+C +β n -βn B β(-n+q) ( C(B) u φ )/ (3) lim + C(B) u φ =( (8) ) (3) (3) R N u dxdt CB - βn +CB β (-n+γq) (33) >n/(n-γ)b u= aer n R + γ= >n/(n-γ) () u φ C( u D t Ω φ + φ (x/r)d t β φ (t) q + φ -q (-Δ) u (-Δ) γ/ φ D C(B) t β φ (t) + φ (x/r) φ (t) q ) (38) u (-Δ) C(B) φ φ (t) ) (34) t=τ (5)~ (6) (-Δ) γ / (x/r)=r -γ λ γ / (34) ε φ (x/r) Young 3 Holder -α u φ (x/r)+ ( -α + - β R -γ ) u φ C φ Q φ - q D t Ω φ q + C( C(B) u φ )/ ( C(B) φ-q φ -q (-Δ) γ /φ D β t φ (t) q + -qφ (-Δ) C(B) φ φ q ) / q (35) :τ= - ty=(/b) - β / x > u u ()() A -α lim inf + -α lim infu x + x + A -( )q φ ( xt)=φ (x/r) φ (t) φ (t) = (-t/) η η φ D ((-Δ) r/ ) (-Δ) r/ B λ= λ γ / suφ {< x <}(su ) ()(3)~(5) u D α t φ + D α t φ (x)+ (-Δ) γ/ D β t φ (xt) C( φ -q D t φ q + φ -q (-Δ) γ / φ (x/r) C ( -( )q + - βq R -γq +R -q ) φ (x/r) (39) (39) φ (x/r) inf φ (x/r) u φ C + βn -q () B -βn/ + C( +β n -βq(+γ) β B (-n+γq) + +β n - βq B β (-n+q) ) ( C(B) u φ )/ (36) (3) (36) R N u dxdt CB - βn (37) B u=aer N R + u φ (x/r) inf u φ (x/r) φ (x/r) ( -α + - β R -γ )inf + -α inf u C( -( )q + - βq R -γq +R -q ) R

5 3 : 39 -α lim inf + -α C -( )q lim infu lim inf = lim infu = () 4 : inf ( x γ (q-) ) C (44) 3 () lim (44) R inf = lim infu = A = lim inf > A = lim infu > u φ (x/r) C( β -()q R γ + > < A A (+α )(q-) < A A β -βq R -γq+γ + β R -q+γ ) (x/r) )q-α (-α φ () 3 > u (46) () K K K 3 (i)lim inf( x γ (q-) ) K (i)< < +α+ β β lim inf( x γ ())(q-)-β ) K (i)lim inf( x γ ()q-α u ) K 3 (i) (39) > φ (x/r) C( -( )q + - βq R -γq + R -q ) (x/r) φ - C 4 =C 3q() β ()q[()q-β β ]β-()q C( -( )q + R -γq ) (x/r)(4) φ x γ[ β+(-q)()] φ (x/r) (4) * = (q-) ()q γ R φ (x/r) C R γ (x/r) (-q) φ (4) C =C [(q-) - + (q-) q ] (4) suφ {x R x R} C x γ (-q) φ (x/r) (4) φ inf ( x γ(q-) ) x γ (-q) φ (x/r) φ (x/r) (43) (4)(43) x γ (-q) φ (x/r) lim inf( x γ (q-) ) C (45) (i) C 3 ( β -()q R γ + β R -γq+γ ) φ (x/r) * =[ β ()q-β ]- φ (x/r) ()q R γ (46) C 4R γ[ β+(-q)()] φ (x/r) (47) inf ( x γ[(q-)()-β] φ (x/r) C4 ) x γ[ β+(-q)()] x γ[ β+(-q)()] φ (x/r) inf ( x γ[(q-)()-β] ) C 4 (48) R lim inf( x γ[(q-)()-β] (i) ) C4 u φ (x/r) C( α-( )q + φ (x/r) α- βq R -γq + α R -q ) φ (x/r)

6 3 ( ) C 5 ( α-( )q + α R -γq ) φ (x/r) (49) * = [ α ()q-α ]- R γ u φ (x/r) ()q C 6R γ[α-()q] φ (x/r) (5) C 6=C 5q()α - ()q[()q-α] α α-()q ()q (5) suφ {x R x R} u φ (x/r) C 6 x γ[α-()q] φ (x/r) (5) φ inf ( x γ[()q-α] u ) x γ[α-()q] φ (x/r) uφ (x/r) (5) (5)(5) x γ[α-()q] inf ( x γ[()q-α] φ (x/r) u ) C6 R : [] Seredynska MHanyga ANonlinearhamiltonianequa- tionswithfractionaldaming[j]jmathphys4: [] atarn ENonexistenceresultsforafractionalroblem arisinginthermaldifusioninfractalmedia[j]chaos SolitonsandFractals836:5-4 [3] GreenbergJ M MacCamyRMizelVJOntheexist- enceuniquenessandstabilityofsolutionsoftheequation [J]JMath Mech967/9687:77-78 [4] Carvalho A NCholewaJ WAtractorsforstronglyd- amedwaveequationswithcriticalnonlinearities[j]pa- cificjmath7:87-3 [5] KiraneMLaskriYNonexistenceofglobalsolutionstoa hyerbolicequationwithasace-timefractionaldaming [J]Alied Mathematicsand Comutation567: 34-3 [6] SamkoS GKilbasA AMarichev OIFractionalinte- gralsandderivativestheoryandalications[m]new York:GordonandBeachSciencePublishers987 [7] MitidieriEPohozaevSIArioriestimatesandblow-u ofsolutionstononlinearartialdiferentialequationsand inequalities[j]proc SteklovInst Math34:- 383 [8] ZhangQSAblow-uresultforanonlinearwaveequa- tionwithdaming:thecriticalcase[j]cr AcadSciPar- is333:9-4 [9] BarasPKersnerRLocalandglobalsolvabilityofaclass ofsemilineararabolicequations[j]jdiferentialequa- tions98768:38-5 [] emmam RInfinite-dimensionaldynamicalsystemsin mechanicsandhysics[m]new York:Sring-Verlag 998 [] PodlubnyIFractionaldiferentialequationsmathemat- icsinscienceandengineering[m]new York/London: Sringer999 NonexistenceofWeakSolutionsforaFractionalDifferentialEquation XU Yong-qiang (SchoolofMathematicalSciencesXiamenUniversityXiamen365China) Abstract: WeconsidertheCauchyroblemforthefractionaldiferentialequationD +α u-δu+(-δ) r/ D β u= u withgiveninitial dataandwhere>-<α<<r and<β<nonexistenceresultsandnecessaryconditionsforlocalandglobalexistence areestablishedbymeansofthetest-functionmethodheseresultsimroveandextendreviousworks Keywords: nonexistence ;fractionalderivative;weaksolutions;necessaryconditions

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ

Διαβάστε περισσότερα

Α Ρ Ι Θ Μ Ο Σ : 6.913

Α Ρ Ι Θ Μ Ο Σ : 6.913 Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ

Διαβάστε περισσότερα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα x + = 0 N = {,, 3....}, Z Q, b, b N c, d c, d N + b = c, b = d. N = =. < > P n P (n) P () n = P (n) P (n + ) n n + P (n) n P (n) n P n P (n) P (m) P (n) n m P (n + ) P (n) n m P n P (n) P () P (), P (),...,

Διαβάστε περισσότερα

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6. Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω

Διαβάστε περισσότερα

( () () ()) () () ()

( () () ()) () () () ΑΝΑΛΥΣΗ ΙΙ- ΠΟΛΙΤΙΚΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t ( t z( t t I = [ a b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι: d 1 1

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. λέγεται κατακόρυφη ασύμπτωτη της γραφικής παράστασης της f; Μονάδες 5 ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΓΕΝΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΓΙΑ ΤΟ ΕΤΟΣ 216 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ - ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α'

Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α' Ακρότατα'Συναρτησιακών'μίας' Συνάρτησης:'Πρόβλημα+ +4α' Τελικόςχρόνοςt f «ελεύθερος»0τελικήτιμήxt f ) «ελεύθερη»:ασυσχετιστα' Ηεύρεσητουακροτάτουσυνάρτηση)γίνεταιμετηνεπίλυσητηςΔιαφ.Εξισ... Εξίσωση'Euler'...καιοισταθερέςολοκληρώσεωςθαπροκύψουναπότηνικανοποίησητων...

Διαβάστε περισσότερα

γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000

Διαβάστε περισσότερα

A 1 A 2 A 3 B 1 B 2 B 3

A 1 A 2 A 3 B 1 B 2 B 3 16 0 17 0 17 0 18 0 18 0 19 0 20 A A = A 1 î + A 2 ĵ + A 3ˆk A (x, y, z) r = xî + yĵ + zˆk A B A B B A = A 1 B 1 + A 2 B 2 + A 3 B 3 = A B θ θ A B = ˆn A B θ A B î ĵ ˆk = A 1 A 2 A 3 B 1 B 2 B 3 W = F

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 2015-16. Λύσεις του έβδομου φυλλαδίου ασκήσεων. 1. Λύστε την παρακάτω δ.ε. με τη δοσμένη αρχική συνθήκη. Σχεδιάστε τις χαρακτηριστικές καθώς και το γράφημα της λύσης

Διαβάστε περισσότερα

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ

ΠΙΝΑΚΑΣ ΚΑΤΑΤΑΞΗΣ & ΒΑΘΜΟΛΟΓΙΑΣ (άρθρο 21 παρ.11 του Ν.2190/94) ΥΠΟΨΗΦΙΩΝ ΚΑΤΗΓΟΡΙΑΣ YΕ ΚΩΔΙΚΟΣ ΘΕΣΗΣ : 101. Ειδικότητα: ΥΕ ΚΑΘΑΡΙΟΤΗΤΑΣ ΚΡΙΤΗΡΙΑ sort 26 Κ Σ -- Τ051676 Οχι 8 37 67 0 400 0 0 0 727 0 0 134 Οχι 1.261,00 1 68 Χ Π -- Σ134727 Οχι 14 2 72 225 0 0 60 0 972 0 0 0 Οχι 1.257,00 2 32 Κ Μ -- Σ617814 Οχι 10 5 3 39 175 250 0 60 0 741 0 0 0 Οχι

Διαβάστε περισσότερα

( () () ()) () () ()

( () () ()) () () () ΑΝΑΛΥΣΗ ΙΙ- ΜΗΧΑΝΟΛΟΓΟΙ ΜΗΧΑΝΙΚΟΙ ΦΥΛΛΑΔΙΟ /011 1 Έστω r = r( t = ( x( t, ( t, z( t, t I = [ a, b] συνάρτηση C τάξης και r = r( t = r ( t = x ( t + ( t z ( t είναι μία διανυσματική + Nα αποδείξετε ότι:

Διαβάστε περισσότερα

Molekulare Ebene (biochemische Messungen) Zelluläre Ebene (Elektrophysiologie, Imaging-Verfahren) Netzwerk Ebene (Multielektrodensysteme) Areale (MRT, EEG...) Gene Neuronen Synaptische Kopplung kleine

Διαβάστε περισσότερα

ΙΙ. b) Μιγαδικό ολοκλήρωμα

ΙΙ. b) Μιγαδικό ολοκλήρωμα ΙΙ b Μιγαδικό ολοκλήρωμα Οι συναρτήσεις που θα θεωρούμε εδώ πραγματικές ή μιγαδικές θα τις υποθέτουμε παραγωγίσιμες Ορισμοί Έστω g :[α, β] C Αν gt xt + iyt και οι xy, yt είναι παραγωγίσιμες, τότε η παράγωγος

Διαβάστε περισσότερα

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ). Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R

Διαβάστε περισσότερα

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x

ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. x 0. 2 x ΘΕΜΑ A ΘΕΜΑΤΑΚΙΑ ΓΕΝΙΚΑ. Δίνεται η συνάρτηση f με τύπο: f ( ) ln,,. Να δείξετε ότι η f είναι αντιστρέψιμη και να βρείτε το πεδίο ορισμού της αντίστροφής της.. Να δικαιολογήσετε ότι η εξίσωση f ( ) a, a,

Διαβάστε περισσότερα

Spectrum Representation (5A) Young Won Lim 11/3/16

Spectrum Representation (5A) Young Won Lim 11/3/16 Spectrum (5A) Copyright (c) 2009-2016 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 11. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 11 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Γραμμικοποίηση Ευστάθεια Απόκριση Συστημάτων 1 Β.Ε. που περιγράφονται από ΣΔΕ 1 ης τάξης 2 Πρόβλημα/Ερώτημα

Διαβάστε περισσότερα

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x ΕΥΓΕΝΙΑ Ν. ΠΕΤΡΟΠΟΥΛΟΥ ΕΠΙΚ. ΚΑΘΗΓΗΤΡΙΑ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΑΣΚΗΣΕΙΣ ΓΙΑ ΤΟ ΜΑΘΗΜΑ «ΕΦΑΡΜΟΣΜΕΝΑ ΜΑΘΗΜΑΤΙΚΑ ΙΙΙ» ΠΑΤΡΑ 2015 1 Ασκήσεις 1η ομάδα ασκήσεων 1. Να χαρακτηρισθούν πλήρως

Διαβάστε περισσότερα

Prey-Taxis Holling-Tanner

Prey-Taxis Holling-Tanner Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Β ΜΕΡΟΣ. Δίνεται η τέσσερις φορές παραγωγίσιμη στο συνάρτηση f τέτοια ώστε : f (4) () + f () () = ημ + συν, για κάθε και f() =, f () =, f () = - και f () () =. α) Να βρείτε τον

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 8. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 8 Χειμερινό Εξάμηνο 23 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Ανακοινώσεις To μάθημα MATLAB/simulink για όσους δήλωσαν συμμετοχή έως χθες θα γίνει στις 6//24: Office Hours: Δευτέρα -3 μμ,

Διαβάστε περισσότερα

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1 d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n1 x dx = 1 2 b2 1 2 a2 a b b x 2 dx = 1 a 3 b3 1 3 a3 b x n dx = 1 a n +1 bn +1 1 n +1 an +1 d dx d dx f (x) = 0 f (ax) = a f (ax) lim d dx f (ax) = lim 0 =

Διαβάστε περισσότερα

?=!! #! % &! & % (! )!! + &! %.! / ( + 0. 1 3 4 5 % 5 = : = ;Γ / Η 6 78 9 / : 7 ; < 5 = >97 :? : ΑΒ = Χ : ΔΕ Φ8Α 8 / Ι/ Α 5/ ; /?4 ϑκ : = # : 8/ 7 Φ 8Λ Γ = : 8Φ / Η = 7 Α 85 Φ = :

Διαβάστε περισσότερα

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246). Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.

Διαβάστε περισσότερα

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γ. τ. των εικόνων των μιγαδικών z είναι ο κύκλος κέντρου Ο(0,0) κι ακτίνας ρ=2. 4 z. 4 w 4 w 4. Πράγματι: w (1 1) 4

ΑΠΑΝΤΗΣΕΙΣ. Άρα ο γ. τ. των εικόνων των μιγαδικών z είναι ο κύκλος κέντρου Ο(0,0) κι ακτίνας ρ=2. 4 z. 4 w 4 w 4. Πράγματι: w (1 1) 4 ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. Θεώρημα ενδιαμέσων

Διαβάστε περισσότερα

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,. 2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06

Διαβάστε περισσότερα

Πέµπτη, 24 Μα ου 2007 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ

Πέµπτη, 24 Μα ου 2007 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΕΘΝΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 7 Πέµπτη, Μα ου 7 Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ o A.. Aν z, z είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι: z z = z z Α.. Πότε δύο συναρτήσεις f, g λέγονται ίσες; Μονάδες A.. Πότε

Διαβάστε περισσότερα

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ

* * } t. / f. i ^ . «-'. -*.. ;> * ' ί ' ,ΐ:-- ΙΣ Τ Ο Λ Ο Γ ΙΑ Τ Α ΣΥΣΤΗ Μ Α ΤΑ ΟΡΓΑΝΟΝ. Ο.Β.Κ δτο ΥΛΑΣ % r,r,»v: ' $ & '"- -.,.. -., * *» # t -..* ' T. < - 'ί" : ', *».- 7 Λ CV';y * ' f y \ '. :.-ή ; / ' w, * * } t ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΠΑΝΝΙΝΠΝ ΙΑΤΡΙΚΗ ΣΧΟΛΗ V* ι Λ-Α..;. «* '. ft A 1^>>,- 7 - ^Λ' :.-.. ν -»V-

Διαβάστε περισσότερα

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Παναγιώτης Ψαρράκος Αν. Καθηγητής Ανάλυση Πινάκων Κεφάλαιο 1: Νόρμες Διανυσμάτων και Πινάκων Παναγιώτης Ψαρράκος Αν. Καθηγητής Δ.Π.Μ.Σ. Εφαρμοσμένες Μαθηματικές Επιστήμες Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9)

X(t) = A cos(2πf c t + Θ) (1) 0, αλλού. 2 cos(2πf cτ) (9) ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-5: Εφαρµοσµένα Μαθηµατικά για Μηχανικούς Εαρινό Εξάµηνο 05-6 ιδάσκοντες : Γ. Στυλιανού, Γ. Καφεντζής Λυµένες Ασκήσεις - Τυχαίες ιαδικασίες Ασκηση. Εστω

Διαβάστε περισσότερα

!"#$ % &# &%#'()(! $ * +

!#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + ,!"#$ % &# &%#'()(! $ * + 6 7 57 : - - / :!", # $ % & :'!(), 5 ( -, * + :! ",, # $ %, ) #, '(#,!# $$,',#-, 4 "- /,#-," -$ '# &",,#- "-&)'#45)')6 5! 6 5 4 "- /,#-7 ",',8##! -#9,!"))

Διαβάστε περισσότερα

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική

= λ. u t = u xx UT = U T T T = U U. Οσον αφορά τη χρονική εξίσωση έχουμε. T + λt =0 T (t) =e λt. ενώ για τη χωρική Prìlhm Το φυσικό πρόβλημα είναι: τοίχος σε επαφή με λουτρό θερμοκρασίας T = αριστερά και μονωμένος δεξιά, με αρχική θερμοκρασία T =.Θέτουμεu(x, t) = U(x)T (t), οπότεu t = UT και u xx = U T, και προχωράμε

Διαβάστε περισσότερα

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6 # % & ( ) +, %. / % 0 1 / 1 4 5 6 7 8 # 9 # : ; < # = >? 1 :; < 8 > Α Β Χ 1 ; Δ 7 = 8 1 ( 9 Ε 1 # 1 ; > Ε. # ( Ε 8 8 > ; Ε 1 ; # 8 Φ? : ;? 8 # 1? 1? Α Β Γ > Η Ι Φ 1 ϑ Β#Γ Κ Λ Μ Μ Η Ι 5 ϑ Φ ΒΦΓ Ν Ε Ο Ν

Διαβάστε περισσότερα

κινηµατική καταστατική = k θ ισορροπία στροφικό ελατήριο

κινηµατική καταστατική = k θ ισορροπία στροφικό ελατήριο u Η κινηµατική u= sinθ θ θ καταστατική M ισορροπία = k θ M = H cosθ H στροφικό ελατήριο k Μ H k = u ΕΝΕΡΓΕΙΑΚΗ ΙΣΟΡΡΟΠΙΑ δυναµική ενέργεια Π = U + V Π = 1 + k θ H u ( ) καταστατική M = k θ κινηµατική u=

Διαβάστε περισσότερα

Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις

Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Θεωρία Μέτρου και ολοκλήρωσης Ασκήσεις Μιχάλης Μαριάς Τμήμα Α.Π.Θ. Θεσσαλονίκη, Οκτώβριος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m

9.BbF`2iBbB2`mM; A,.Bz2`2Mx2Mp2`7?`2M 7Ƀ` T `ib2hh2.bz2`2mib H;H2B+?mM;2M 8.BbF`2iBbB2`mM; AA, 6BMBi2 1H2K2Mi2 o2`7?`2m R R R K h ( ) L 2 (Ω) H k (Ω) H0 k (Ω) R u h R 2 Φ i Φ i L 2 A : R n R n n N + x x Ax x x 2 A x 2 x 3 x 3 a a n A := a n a nn A x = ( 2 5 9 A = )( x ( ) 2 5 9 x 2 ) ( ) 2x +5x = 2. x +9x 2 Ax = b 2x +5x

Διαβάστε περισσότερα

# % % % % % # % % & %

# % % % % % # % % & % ! ! # % % % % % % % # % % & % # ( ) +,+.+ /0)1.2(3 40,563 +(073 063 + 70,+ 0 (0 8 0 /0.5606 6+ 0.+/+6+.+, +95,.+.+, + (0 5 +//5: 6+ 56 ;2(5/0 < + (0 27,+/ +.0 10 6+ 7 0, =7(5/0,> 06+?;, 6+ (0 +9)+ 5+ /50

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 2012 ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Γ ΛΥΚΕΙΟΥ ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο : Έστω z, z C με R(z ) = και R(z ) = Αν f() ( z )( z )( z

Διαβάστε περισσότερα

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014

1 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ 2014 ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΑΝΑΒΡΥΤΩΝ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΞΕΤΑΣΕΙΣ ΠΡΟΣΟΜΟΙΩΣΗΣ ΘΕΜΑ ο Α. Έστω μια συνάρτηση f: Α R η οποία είναι. Να γράψετε τον ορισμό της αντίστροφης συνάρτησης

Διαβάστε περισσότερα

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ Α Ρ Η Θ Μ Ο : 6.984 ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ ΔΙΑΓΩΝΙΜΟΤ η ε λ Π ά η ξ α ζ ή κ ε ξ α ζ η η ο ε ί θ ν ζ η κ ί α ( 2 1 ) η ν π κ ή λ α Μ α ξ η ί ν π, ε κ έ ξ α Γ ε π η έ ξ α, η ν π έ η ν π ο δ

Διαβάστε περισσότερα

The k-α-exponential Function

The k-α-exponential Function Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Ενέργεια Συστήματος Εικόνα: Στη φυσική, η ενέργεια είναι μια ιδιότητα των αντικειμένων που μπορεί να μεταφερθεί σε άλλα αντικείμενα ή να μετατραπεί σε διάφορες μορφές, αλλά δεν μπορεί

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Διατήρηση της Ενέργειας Εικόνα: Η μετατροπή της δυναμικής ενέργειας σε κινητική κατά την ολίσθηση ενός παιχνιδιού σε μια πλατφόρμα. Μπορούμε να αναλύσουμε τέτοιες καταστάσεις με τις

Διαβάστε περισσότερα

Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση

Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση Ασκήσεις στα Μαθηματικά της Γ Γυμνασίου 4. Παραγοντοποίηση 1 ΠΑΡΑΔΕΙΓΜΑΤΑ a. 15αχ 12χ + 3χ = 3 5αχ 3 4χ+3= 3 (5αχ 4χ+1) Όταν πάλι έχουμε ίδιες μεταβλητές θα βγάζουμε κοινό παράγοντα την κοινή μεταβλητή

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙΔΕΣ ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 ΜΑΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Α ΜΕΡΟΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7-8 Α ΜΕΡΟΣ Δίνεται η παραγωγίσιμη στο συνάρτηση f για την οποία ισχύει : f ()+f()=, για κάθε και f()=e+ α) Να δείξετε ότι f()=+e -, β) Να βρείτε το όριο lim ( lim f(y)) y γ) Να δείξετε

Διαβάστε περισσότερα

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.:

52 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΣΑΒΒΑΪΔΗ-ΜΑΝΩΛΑΡΑΚΗ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 26 και Φιλολάου : Τηλ.: 5 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΓΚΡΑΤΙ : Εκφαντίδου 6 και Φιλολάου : Τηλ.: 107601470-107600179 ΔΙΑΓΩΝΙΣΜΑ : ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 01 ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ: ΘΕΜΑ 1 ο Α. i) Θεωρία, σχολικό

Διαβάστε περισσότερα

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0.

ΘΕΜΑ 151 ο. x -f(t) 2f(x)+f (x)= 2 e dt και f(0) = 0. ΘΕΜΑ 5 ο Έστω συνάρτηση f :[0, + ) παραγωγίσιμη στο διάστημα [0, + ) για την οποία ισχύει : 2 -f(t) 2f()+f ()= 2 e dt και f(0) = 0. i) Να δείξετε ότι + f() 0 για κάθε є [0, + ). ii) Να δείξετε ότι η f

Διαβάστε περισσότερα

MÉTHODES ET EXERCICES

MÉTHODES ET EXERCICES J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3 ΘΕΜΑ Α ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ :3 Α. Να αποδείξετε ότι, αν μία συνάρτηση f είναι παραγωγίσιμη σ ένα σημείο, τότε

Διαβάστε περισσότερα

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1]

4 η ΕΚΑ Α. = g(t)dt, x [0, 1] i) είξτε ότι F(x) > 0 για κάθε x (0, 1] ii) είξτε ότι f(x)g(x) > F(x) για κάθε x (0, 1] και G(x) για κάθε x (0, 1] ΜΑΘΗΜΑ 48 ΓΕΝΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 η ΕΚΑ Α 3. Έστω f συνεχής και γνησίως αύξουσα συνάρτηση στο [, ], µε f() >. ίνεται επίσης συνάρτηση g συνεχής στο [, ], για την οποία ισχύει g() > για κάθε [, ] Ορίζουµε τις

Διαβάστε περισσότερα

Πανελλαδικές εξετάσεις 2015

Πανελλαδικές εξετάσεις 2015 Πανελλαδικές εξετάσεις 5 Ενδεικτικές απαντήσεις στο μάθημα «MΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ» Θέμα Α Α Απόδειξη βιβλίο σχολείου σελ(94) Α Ορισμός βιβλίο σχολείου σελ(88) Α Ορισμός βιβλίο

Διαβάστε περισσότερα

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ

ÖÑÏÍÔÉÓÔÇÑÉÏ ÊÏÑÕÖÇ ÓÅÑÑÅÓ ΜΑΘΗΜΑΤΙΚΑ ΘΕΜΑ Α ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 19 ΜΑΪΟΥ 2010 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 9 ΜΑΪΟΥ 00 ΕΚΦΩΝΗΣΕΙΣ A. Έστω f µια συνάρτηση ορισµένη σε ένα διάστηµα. Αν F είναι µια παράγουσα της f στο, τότε να αποδείξετε ότι: όλες οι συναρτήσεις

Διαβάστε περισσότερα

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes

Aula 00. Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes Aula 00 Curso: Estatística p/ BACEN (Analista - Área 05) Professor: Vitor Menezes ! # # % & () ++,. /0,1 234,5 0 6 +7+,/ /894,5 8 5 8,045, :4 50,8,59;/0 8,04 + 8 097,4 8,0?5 4 59 8,045, :4 50,8,

Διαβάστε περισσότερα

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Teor imov r. ta matem. statist. Vip. 94, 2016, stor eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process

Διαβάστε περισσότερα

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ

ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ ΘΕΩΡΙΑ ΠΙΘΑΝΟΤΗΤΩΝ ΕΙΣΑΓΩΓΙΚΟ ΜΑΘΗΜΑ ΛΥΣΕΙΣ ΑΣΚΗΣΕΩΝ Επιµέλεια: Ι. Σπηλιώτης Άσκηση.3 σελ.45 Εξάγονται δύο σφαίρες από την Α και τοποθετούνται στην Β. Υπάρχουν τρία δυνατά ενδεχόµενα: Ε : εξάγονται δύο

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α. Α.1 βλ. σχολικό βιβλίο σελ Α.2 βλ. σχολικό βιβλίο σελ. 246 Α.3 βλ. σχολικό βιβλίο σελ. 222 Α.4 α Λ, β Σ, γ Σ, δ Λ, ε Σ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 7 ΜΑΪΟΥ 3 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α. βλ. σχολικό βιβλίο

Διαβάστε περισσότερα

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ 6.1 ΚΙΝΗΜΑΤΙΚΗ ΡΟΪΚΟΥ ΣΤΟΙΧΕΙΟΥ 6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ -Λεπτοµέρειες της ροής Απειροστός όγκος ελέγχου - ιαφορική Ανάλυση Περιγραφή πεδίων ταχύτητας και επιτάχυνσης Euleian, Lagangian U U(x,y,,t)

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ Α. ΕΦΑΠΤΟΜΕΝΗ ΟΞΕΙΑΣ ΓΩΝΙΑΣ 1. Στο τρίγωνο ΑΒΓ είναι ΑΒ = 8cm και η γωνία Β = 64 0. Να υπολογίσετε το μήκος της πλευράς ΑΓ. 2. Στο ορθογώνιο τρίγωνο ΑΒΓ είναι ΑΒ = 9cm και εφγ

Διαβάστε περισσότερα

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία - 1-1. 2-18575 Εξίσωση ευθείας Δίνονται τα σημεία Α(1,2) και Β (5,6 ). α) Να βρείτε την εξίσωση της ευθείας που διέρχεται από

Διαβάστε περισσότερα

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει

f ( x) x EΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΛΥΚΕΙΟΥ Συναρτήσεις ( ) 1. Έστω συνάρτηση f γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Συναρτήσεις Έστω συνάρτηση γνησίως αύξουσα στο R τέτοια ώστε να ισχύει Να δείξετε ότι (), για κάθε R ( ) +, για κάθε R Έστω συνάρτηση µε πεδίο ορισµού και σύνολο τιµών το R και τέτοια ώστε ( ) ( ) e +,

Διαβάστε περισσότερα

, 犔 γ. ρ 狌 2 犕 犆. ρ 狌 犆 犇 ( 犚 犇 ( 犚 + 犚犖

, 犔 γ. ρ 狌 2 犕 犆. ρ 狌 犆 犇 ( 犚 犇 ( 犚 + 犚犖 5 5 9 ( ) JournalofXiamenUniversity(NaturalScience) Vol.5 No.5 Sep.!"#$% ( 365) &':!"#$%&' " %()*./ 3456789:; 犔 < = >?@AB. :C)D E E ; ; ;/ (): O75 *.: A */): 438 479 ()5 87 6 ' FGH I)JK " %()*. / [ ] 狋

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΗΣ Γ' ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΟΙ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΑΠΟ ΤΟΥΣ ΚΑΘΗΓΗΤΕΣ κύριο ΦΟΥΝΤΟΥΛΑΚΗ ΜΑΝΩΛΗ κυρία ΦΟΥΝΤΟΥΛΑΚΗ ΑΓΓΕΛΙΚΗ του ΦΡΟΝΤΙΣΤΗΡΙΟΥ www.orion.du.gr

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt

ΑΣΚΗΣΗ 1. εξισώσεις x= π 3, x= π 2. ΑΣΚΗΣΗ 2 Δίνονται οι συναρτήσεις : f (x)= 1. 1 u 2 x. du και g(x)= 1 f (t )dt ΑΣΚΗΣΗ Δίνεται η συνάρτηση f με τύπο: f (x)= ημ x, x (0,π). α) Να μελετήσετε την f ως προς τη μονοτονία και τα κοίλα. β) Να βρείτε της ασύμπτωτες της γραφικής παράστασης της f. γ) Να βρείτε το σύνολο τιμών

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β )

ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β ) ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΤΕΥΘΥΝΣΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ(ΟΜΑΔΑΣ Β ) 6-5- ΘΕΜΑ Α A. Σχολικό βιβλίο σελ. 6-6 A. Σχολικό βιβλίο σελ. 8 A3. α) Σωστό β) Σωστό γ) Λάθος δ) Λάθος ε) Σωστό

Διαβάστε περισσότερα

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu. Kompleksna analiza Zadatak Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z z 4 i objasniti prelazak sa jedne na drugu granu. Zadatak Odrediti tačke grananja, Riemann-ovu

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 05 ΣΕΠΤΕΜΒΡΙΟΥ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ σε µια σελίδα Α4 ανά έτος.. προσαρµοσµένα στις επιταγές του ΝΤ (IMF: 4o µεσοπρόθεσµο.) ( WWF:.εξοικονόµηση πόρων.) MΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 5 ΣΕΠΤΕΜΒΡΙΟΥ... ΜΑΘΗΜΑΤΙΚΑ ΟΜΟΓΕΝΩΝ 7 ΣΕΠΤΕΜΒΡΙΟΥ...

Διαβάστε περισσότερα

8 ) / 9! # % & ( ) + )! # 2. / / # % 0 &. # 1& / %. 3 % +45 # % ) 6 + : 9 ;< = > +? = < + Α ; Γ Δ ΓΧ Η ; < Β Χ Δ Ε Φ 9 < Ε & : Γ Ι Ι & Χ : < Η Χ ϑ. Γ = Φ = ; Γ Ν Ι Μ Κ Λ Γ< Γ Χ Λ =

Διαβάστε περισσότερα

Δεν αποδεικνύεται η τουλάχιστον πολύ καλή γνώση της αγγλικής ή της γαλλικής ή της γερμανικής γλώσσας.

Δεν αποδεικνύεται η τουλάχιστον πολύ καλή γνώση της αγγλικής ή της γαλλικής ή της γερμανικής γλώσσας. Πίνακας απορριπτέων A ομάδας (κωδ. 1-2 & 4-12) ΕΙΔΙΚΟ ΣΥΜΒΟΥΛΙΟ ΕΠΙΛΟΓΗΣ ΠΡΟΪΣΤΑΜΕΝΩΝ (ΕΙ.Σ.Ε.Π.) 1 AK152406 Παρέλκει η εξέταση της αίτησης υποψηφιότητας της εν λόγω υπαλλήλου, δεδομένου ότι κατέθεσε την

Διαβάστε περισσότερα

Μαθηματικά Β' Γυμνασίου ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ

Μαθηματικά Β' Γυμνασίου ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ Μαθηματικά Β' Γυμνασίου ΣΚΗΣΕΙΣ ΕΠΝΛΗΨΗΣ 1. Ν α λυθούν οι εξισώσεις: i. 2x + 5 ( - x + l) = ( - 2 χ + 1) + ii. χ + 1= 2 (χ - 6 ) + iii. 14χ + 1 -------μ (2jc+ 1) 17χ + 4 ----------+χ χ 1 2 2χ 1 ιν. ------

Διαβάστε περισσότερα

m 1, m 2 F 12, F 21 F12 = F 21

m 1, m 2 F 12, F 21 F12 = F 21 m 1, m 2 F 12, F 21 F12 = F 21 r 1, r 2 r = r 1 r 2 = r 1 r 2 ê r = rê r F 12 = f(r)ê r F 21 = f(r)ê r f(r) f(r) < 0 f(r) > 0 m 1 r1 = f(r)ê r m 2 r2 = f(r)ê r r = r 1 r 2 r 1 = 1 m 1 f(r)ê r r 2 = 1 m

Διαβάστε περισσότερα

Ο μετασχηματισμός Fourier

Ο μετασχηματισμός Fourier Μαρία Ντεκουμέ Ο μετασχηματισμός Fourier Πτυχιακή εργασία Εαρινό εξάμηνο 23-24 Τμήμα Μαθηματικών Πανεπιστήμιο Κρήτης Επιτροπή κρίσης: Μιχάλης Κολουντζάκης Θεμιστοκλής Μήτσης Μιχάλης Παπαδημητράκης, επιβλέπων.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΜΑΘΗΜΑΤΙΚΑ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ Κανάρη 6, Δάφνη Τηλ 9794 & 976976 ΜΑΘΗΜΑΤΙΚΑ ΟΠ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α Σχολικό βιβλίο σελ 4 Α Σχολικό βιβλίο σελ 6 Α α) Σ β) Σ γ) Σ δ) Λ ε) Λ ΘΕΜΑ B Β

Διαβάστε περισσότερα

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ (Α κύκλος) Δίνεται η εξίσωση z-=z-3i,zc α) Να αποδείξετε ότι ο γεωμετρικός τόπος των εικόνων του z είναι η ευθεία ε: -3y+4= β) Να βρείτε την εικόνα του μιγαδικού z, για τον οποίο το

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΔΕΥΤΕΡΑ 5 MAΪΟΥ 5 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α A Έστω μια συνάρτηση f, η οποία

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) =α συνεπώς: 2α 4βα+β = 2βα+ 2α 1 2α 4βα+β + 2βα 2α+ 1= 0. α 1= ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ Α 3. Σχολικό βιβλίο σελ.

( ) ( ) ( ) ( ) =α συνεπώς: 2α 4βα+β = 2βα+ 2α 1 2α 4βα+β + 2βα 2α+ 1= 0. α 1= ΘΕΜΑ Α Α 1. Σχολικό βιβλίο σελ Α 3. Σχολικό βιβλίο σελ. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9/4/6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΟΜΑ ΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΚΑΙ ΣΠΟΥ ΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

. / )!! )! +! ) + 4

. / )!! )! +! ) + 4 !! # % & ( ) ) +!,. / )!! )! +! 0 1!+! 2 3. 4 ) + 4! 5! # 6!, / / +! + 7 % + +!! 8 9! : #!! 5!.! ; %! %!! 8:! 0 9 + 8 9 < 4 4 + ) + ;= > ) 5! +! < : + 5 +!! + 1! ; 2! +! + / #!!! + 5 + < + # = ;!+ 1 0

Διαβάστε περισσότερα

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n

{ } x[n]e jωn (1.3) x[n] x [ n ]... x[n] e jk 2π N n Πανεπιστημιο Κυπρου Τμημα Ηλεκτρολογων Μηχανικων και Μηχανικων Υπολογιστων ΗΜΥ : Σηματα και Συστηματα για Μηχανικους Υπολογιστων Κεφάλαιο 5: Μετασχηματισμοί Fourier σε διακριτά σήματα!"#!"#! "#$% Σημειώσεις

Διαβάστε περισσότερα

3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων

3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων ΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ 3.1 3.1. Δυνάμεις μεταξύ ηλεκτρικών φορτίων 1. Έστω φορτίο Q περιέχει n ηλεκτρόνια - θα έχουμε Q = n-q e, επομέ- Q νως n =, αρα: (α) n = 0,625 10 19 e (β) n = 0,625 10 16 e (γ) n = 0,625

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ

ΜΑΘΗΜΑΤΙΚΑ. Β Τάξη Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΜΑΘΗΜΑΤΙΚΑ Β Τάξη Γενικού Λυκείου Θετική και Τεχνολογική Κατεύθυνση ΛΥΣΕΙΣ ΤΩΝ ΑΣΚΗΣΕΩΝ ΣΤΟΙΧΕΙΑ ΕΠΑΝΕΚ ΟΣΗΣ Η επανέκδοση του παρόντος βιβλίου πραγματοποιήθηκε από το Ινστιτούτο Τεχνολογίας Υπολογιστών

Διαβάστε περισσότερα

Θ Ε Μ Α Τ Α Γ ΛΥΚΕΙΟΥ

Θ Ε Μ Α Τ Α Γ ΛΥΚΕΙΟΥ Θ Ε Μ Α Τ Α Π Ρ Ο Α Γ Ω Γ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ - ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - 3 Α Π Ο Λ Υ Τ Η Ρ Ι Ε Σ Ε Ξ Ε Τ Α Σ Ε Ι Σ Θ Ε Τ Ι Κ Η Κ Α Τ Ε Υ Θ Υ Ν Σ Η ΘΕΜΑ ο : Α.. Αν η

Διαβάστε περισσότερα

( ) ( ) ( ) ( ) ( ) ( ) = α συνεπώς: α 2βα +β + α 2α + 1= 0 α β + α 1 = 0 α 1= α β = 0 1 β = 0 β = 1 + = + = συνεπώς: ( ) + 1 για κάθε x R.

( ) ( ) ( ) ( ) ( ) ( ) = α συνεπώς: α 2βα +β + α 2α + 1= 0 α β + α 1 = 0 α 1= α β = 0 1 β = 0 β = 1 + = + = συνεπώς: ( ) + 1 για κάθε x R. ΑΡΧΗ ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α Α. Σχολικό βιβλίο σελ. 6-6 Α. Σχολικό βιβλίο σελ. 9 Α. Σχολικό βιβλίο σελ. 69 Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑ Α Β ) ΣΑΒΒΑΤΟ 9/4/6 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΟΜΑ ΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

Διαβάστε περισσότερα

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2014 ΜΑΘΗΜΑΤΙΚΑ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Στασίνου 6, Γραφ. 1, Στρόβολος, Λευκωσία Τηλ. 57-7811 Φαξ: 57-791 cms@cms.org.cy, www.cms.org.cy ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 14 ΜΑΘΗΜΑΤΙΚΑ Ημερομηνία: Δευτέρα, Ιουνίου 14 ΠΡΟΤΕΙΝΟΜΕΝΕΣ

Διαβάστε περισσότερα

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. Β κύκλος ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Β κύκλος ) Δίνεται η παραγωγίσιμη συνάρτηση f για την οποία ισχύει : [f()] 8 +α[f()] = -e f(), α>,για κάθε. α) Να δείξετε ότι f()=c, για κάθε,όπου c αρνητική σταθερά. β) Να βρείτε τις

Διαβάστε περισσότερα

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις

Μιχάλης Παπαδημητράκης. Μερικές Διαφορικές Εξισώσεις Μιχάλης Παπαδημητράκης Μερικές Διαφορικές Εξισώσεις Περιεχόμενα 1 Γενικά. 1 1.1 Μερικές διαφορικές εξισώσεις............................ 1 1.2 Διαφορικοί τελεστές................................. 2 1.3

Διαβάστε περισσότερα

Γενικά Θέματα στην Κατεύθυνση της Γ Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ

Γενικά Θέματα στην Κατεύθυνση της Γ Α. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ stergiu@otenet.gr Σελίδα από 4 Γενικά Θέματα στην Κατεύθυνση της Γ Αγαπητοί συνάδελφοι - Φίλοι μαθητές! Προσπάθησα να συγκεντρώσω ηλεκτρονικά μερικά γενικά επαναληπτικά θέματα που έφτιαξα ο ίδιος ή συνάντησα,

Διαβάστε περισσότερα

Physics by Chris Simopoulos. Άρα. Άρα. sec. Άρα ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε

Physics by Chris Simopoulos. Άρα. Άρα. sec. Άρα ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε . ΦΘΙΝΟΥΣΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΦΘΙΝΟΥΣΕΣ ΕΞΑΝΑΓΚΑΣΜΕΝΕΣ ΛΥΣΕΙΣ. Από την εξίσωση του πλάτους για τη φθίνουσα ταλάντωση έχουμε n Άρα t t, t,8,,8 n n n n n n,7 n t,8 ( n t,8 n n (,8,8,8 n,8,. Από την εξίσωση του

Διαβάστε περισσότερα

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o G G - - -- - W - - - R S - q k RS ˆ W q q k M G W R S L [ RS - q k M S 4 R q k S [ RS [ M L ˆ L [M O S 4] L ˆ ˆ L ˆ [ M ˆ S 4 ] ˆ - O - ˆ q k ˆ RS q k q k M - j [ RS ] [ M - j - L ˆ ˆ ˆ O ˆ [ RS ] [ M

Διαβάστε περισσότερα

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2 Περιεχόμενα Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης Σειρά ΙΙ 2 Πεδίο ταχύτητας Όγκος Ελέγχου Καρτεσιανές Συντεταγμένες w+(/)dz z y u dz u+(/ x)dx x dy dx w Σειρά ΙΙ 3 1. Εισαγωγή 1.1 Εξίσωση

Διαβάστε περισσότερα

ϕ α βi(k) ξ β αi(k ) ω β0 + ε β iα E β V αn (k α ), ϕ σ ββ(k σ ) = m β dk Kαβ (k, k )U β (k ) r β (ω βk ω β0 )

ϕ α βi(k) ξ β αi(k ) ω β0 + ε β iα E β V αn (k α ), ϕ σ ββ(k σ ) = m β dk Kαβ (k, k )U β (k ) r β (ω βk ω β0 ) Collecton of cal formulae Lublana, 12 September 2016, p.: 7 In a compact notaton (see precse form of ε n the prevous table): K (k, k ) ϕ (k) ξ (k ) Below V N and V Δ stand for the pon nter., for sgma.

Διαβάστε περισσότερα

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ

ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÒÄÆÉÖÌÄ. ÀÒÀßÒ ÉÅÉ ÓÀÌÀÒÈÉ ÖÍØÝÉÏÍÀËÖÒ-ÃÉ ÄÒÄÍÝÉÀËÖÒÉ ÂÀÍÔÏËÄÁÄÁÉÓÈÅÉÓ ÃÀÌÔÊÉ- ÝÄÁÖËÉÀ ÀÌÏÍÀáÓÍÉÓ ÅÀÒÉÀÝÉÉÓ ÏÒÌÖËÄÁÉ, ÒÏÌËÄÁÛÉÝ ÂÀÌÏÅËÄÍÉËÉÀ ÓÀßÚÉÓÉ ÌÏÌÄÍÔÉÓÀ ÃÀ ÃÀÂÅÉÀÍÄÁÄÁÉÓ ÛÄÛ ÏÈÄÁÉÓ Ä ÄØÔÉ, ÀÂÒÄÈÅÄ

Διαβάστε περισσότερα

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ

ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΥΠΑΡΞΗ ΣΕ ΙΣΟΤΗΤΑ Ή ΑΝΙΣΟΤΗΤΑ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: Πρακτικές και καινοτομίες στην εκπαίδευση και στην έρευνα. Χρόνης Χ. Παναγιώτης pachronis@gmail.com Περίληψη Στόχος της εργασίας αυτής είναι να καταδείξει

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. α) Αν z=x+yi 0, z = ρ και θ ένα όρισµα του z, να αποδείξετε ότι ο z παίρνει τη µορφή z=ρ (συνθ + iηµθ) Μονάδες 8,5 ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΤΡΙΤΗ 7 ΣΕΠΤΕΜΒΡΙΟΥ 2002 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚA (ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ) ΣΥΝΟΛΟ ΣΕΛΙ

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 0 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΘΕΜΑ Α Α. Να αποδείξετε ότι η παράγωγος της ταυτοτικής συνάρτησης f()= είναι f ()=, για κάθε R Μονάδες 7 Α. Έστω μια συνάρτηση

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ

ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ ΜΑΘΗΜΑΤΙΚΟ ΤΥΠΟΛΟΓΙΟ Στθερές. π = 03,459 6535 89793 3846 643... e = 0,788 884 59045 3536 087... e π = 3,4069 637 7969 006... π e =,4595 7783 6045 4734 75... e e = 5,546 44 7964 90... = 0,44 3563 73095

Διαβάστε περισσότερα