Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017

Σχετικά έγγραφα
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

coupon effects Fisher Cohen, Kramer and Waugh Ordinary Least Squares OLS log


SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HONDA. Έτος κατασκευής

Parts Manual. Trio Mobile Surgery Platform. Model 1033

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

(... )..!, ".. (! ) # - $ % % $ & % 2007

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

m 1, m 2 F 12, F 21 F12 = F 21

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Math221: HW# 1 solutions

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

The one-dimensional periodic Schrödinger equation

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

A 1 A 2 A 3 B 1 B 2 B 3

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

ITU-R P (2009/10)

Jeux d inondation dans les graphes

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Solutions - Chapter 4

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Το άτομο του Υδρογόνου

m i N 1 F i = j i F ij + F x

Homework for 1/27 Due 2/5

Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

SPECIAL FUNCTIONS and POLYNOMIALS

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Multi-dimensional Central Limit Theorem

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Geodesic Equations for the Wormhole Metric

rs r r â t át r st tíst Ó P ã t r r r â

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Quantitative Finance and Investments Core Formula Sheet. Spring 2016

Every set of first-order formulas is equivalent to an independent set


r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

#%" )*& ##+," $ -,!./" %#/%0! %,!

Multi-dimensional Central Limit Theorem

Homework 8 Model Solution Section


LEM. Non-linear externalities in firm localization. Giulio Bottazzi Ugo Gragnolati * Fabio Vanni

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

TeSys contactors a.c. coils for 3-pole contactors LC1-D

u(x, y) =f(x, y) Ω=(0, 1) (0, 1)

Points de torsion des courbes elliptiques et équations diophantiennes

Assessment of otoacoustic emission probe fit at the workfloor

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i


Contribution à l évolution des méthodologies de caractérisation et d amélioration des voies ferrées

a(z) = k 0 1 z k = k 0 2 k z k = k 0 z k = (1 + z) n. k

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής


Alterazioni del sistema cardiovascolare nel volo spaziale

Coupling strategies for compressible - low Mach number flows

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Empirical best prediction under area-level Poisson mixed models

! : ;, - "9 <5 =*<

Lecture 7: Overdispersion in Poisson regression

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)



UNIVtrRSITA DEGLI STUDI DI TRIESTE


Answer sheet: Third Midterm for Math 2339

SECTION II: PROBABILITY MODELS

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Na/K (mole) A/CNK

MÉTHODES ET EXERCICES

CNS.1 Compressible Navier-Stokes Time Averaged

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Matrices and Determinants

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Vers un assistant à la preuve en langue naturelle

Exam Statistics 6 th September 2017 Solution


!"#$ % &# &%#'()(! $ * +


ITU-R SA (2010/01)! " # $% & '( ) * +,

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Transcript:

Quanave Fnance and Invesmens Advanced Formula Shee Fall 2016/Sprng 2017 Mornng and afernoon exam bookles wll nclude a formula package dencal o he one aached o hs sudy noe. The exam commee beleves ha by provdng many key formulas, canddaes wll be able o focus more of her exam preparaon me on he applcaon of he formulas and conceps o demonsrae her undersandng of he syllabus maeral and less me on he memorzaon of he formulas. The formula shee was developed sequenally by revewng he syllabus maeral for each major syllabus opc. Canddaes should be able o follow he flow of he formula package easly. We recommend ha canddaes use he formula package concurrenly wh he syllabus maeral. No every formula n he syllabus s n he formula package. Canddaes are responsble for all formulas on he syllabus, ncludng hose no on he formula shee. Canddaes should carefully observe he somemes suble dfferences n formulas and her applcaon o slghly dfferen suaons. Canddaes wll be expeced o recognze he correc formula o apply n a specfc suaon of an exam queson. Canddaes wll noe ha he formula package does no generally provde names or defnons of he formula or symbols used n he formula. Wh he wde varey of references and auhors of he syllabus, canddaes should recognze ha he leer convenons and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. Werushayouwllfndhenclusonofheformulapackageobeavaluablesudyade ha wll allow for more of your preparaon me o be spen on maserng he learnng objecves and learnng oucomes. 1

Ineres Rae Models - Theory and racce, Brgo and Mercuro Chaper 3 Table 3.1 Summary of nsananeous shor rae models Model Dynamcs r > 0 r AB AO V dr = k[θ r ]d + σdw N N Y Y CIR dr = k[θ r ]d + σ r dw Y NCχ 2 Y Y D dr = ar d + σr dw Y LN Y N EV dr = r [η a ln r ]d + σr dw Y LN N N HW dr = k[θ r ]d + σdw N N Y Y BK dr = r [η ³ a ln r ]d + σr dw Y LN N N MM dr = r hη λ ln r d + σr dw Y LN N N γ 1+γ CIR++ r = x + ϕ, dx = k[θ x ]d + σ x dw Y* SNCχ 2 Y Y EEV r = x + ϕ, dx = x [η a ln x ]d + σx dw Y* SLN N N *raes are posve under suable condons for he deermnsc funcon ϕ. (3.5) dr() =k[θ r()]d + σdw(), r(0) = r 0 (3.6) r() =r(s)e k( s) + θ 1 e k( s) + σ R s e k( u) dw (u) (3.7) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = σ2 1 e 2k( s) 2k (3.8) B(,T )r() (, T )=A(, T )e (3.9) dr() =[kθ B(, T )σ 2 kr()]d + σdw T () (3.11) dr() =[kθ (k + λσ)r()]d + σdw 0 (), r(0) = r 0 (3.12) dr() =[b ar()]d + σdw 0 () (3.13) r() =r(s)e a( s) + b 1 e a( s) + σ R s a dw 0 (u) (3.14) ˆα = n n r r 1 n r n r 1 n n r2 1 ( n r 1) 2 n (3.15) ˆβ = [r ˆαr 1 ] n(1 ˆα) (3.16) V c 2 = 1 h n r ˆαr 1 n ˆβ(1 2 ˆα) (3.19) E {r() F s } = r(s)e a( s) and Var{r() F s } = r 2 (s)e ³e 2a( s) σ2 ( s) 1 (3.20) (, T )= rp R sn(2 r snh y) R f(z)sn(yz)dzdy + 2 π 2 0 0 Γ(2p) rp K 2p (2 r) (3.21) dr() =k(θ r())d + σ p r()dw (), r(0) = r 0 (3.22) dr() =[kθ (k + λσ)r()]d + σ p r()dw 0 (), r(0) = r 0 2

(3.23) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = r(s) σ2 e k( s) e 2k( s) + θ σ2 1 e k( s) 2 k 2k (3.24) B(,T )r() (, T )=A(, T )e (3.25) 2kθ/σ 2 2h exp {(k + h)(t )/2} A(, T )= 2h +(k + h)(exp {(T )h} 1) B(, T )= 2(exp{(T )h} 1) 2h +(k + h)(exp {(T )h} 1), h = k 2 +2σ 2 (3.27) dr() =[kθ (k + B(, T )σ 2 )r()]d + σ p r()dw T () (3.28) p T r() r(s) (x) =p χ 2 (υ,δ(,s))/q(,s)(x) =q(, s)p χ 2 (υ,δ(,s))(q(, s)x) q(, s) =2[ρ( s)+ψ + B(, T )] and δ(, s) = 4ρ( s)2 r(s)e h( s) q(, s) age 68 R(, T )=α(, T )+β(, T )r(), B(,T )r() (, T )=A(, T )e (3.29) σ f (, T )= B(, T ) σ(, r()) T age 69 dr() = b(, r())d + σ(, r())dw () b(, x) =λ()x + η(), σ 2 (, x) =γ()x + δ() B(, T )+λ()b(, T ) 1 2 γ()b(, T )2 +1=0, B(T,T)=0 [ln A(, T )] η()b(, T )+1 2 δ()b(, T )2 =0, A(T,T)=1 age 69/70 Vascek λ() = k, η() =kθ, γ() =0, δ() =σ 2 age 70 CIR λ() = k, η() =kθ, γ() =σ 2, δ() =0 b(x) =λx + η, σ 2 (x) =γx + δ µ θ age 71 lm E{r() F s } =exp a + σ2 4a µ µ 2θ (3.31) lm Var{r() F s } =exp a + σ2 σ 2 exp 1 2a 2a (3.32) dr() =[ϑ() a()r()]d + σ()dw () (3.33) dr() =[ϑ() ar()]d + σdw() (3.34) ϑ() = fm (0,) + af M (0,)+ σ2 T 2a (1 e 2a ) (3.35) r() =r(s)e a( s) + R s e a( u) ϑ(u)du + σ R s e a( u) dw (u) = r(s)e a( s) + α() α(s)e a( s) + σ R s e a( u) dw (u) (3.36) where α() =f M (0,)+ σ2 2a 2 (1 e a ) 2 3

(3.37) E{r() F s } = r(s)e a( s) + α() α(s)e a( s) Var{r() F s } = σ2 1 e 2a( s) 2a (3.38) dx() = ax()d + σdw(), x(0) = 0 age 74 x() =x(s)e a( s) + σ R s e a( u) dw (u) (3.47) E{x( +1 ) x( )=x,j } = x,j e a =: M,j Var{x( +1 ) x( )=x,j } = σ2 1 e 2a =: V 2 2a r 3 (3.48) x = V 1 3=σ 2a [1 e 2a 1 µ M,j (3.49) k =round x +1 (3.50) p u = 1 6 + η2 j,k + η j,k 6V 2 2,p m = 2 3V 3 η2 j,k,p 3V 2 d = 1 6 + η2 j,k 6V 2 2 3V (3.64) dx α = μ(x α ; α)d + σ(x α ; α)dw x (3.65) x (, T )=Π x (, T, x α ; α) (3.66) r = x + ϕ(; α), 0 h (3.67) (, T )=exp R T ϕ(s; α)ds Π x (, T, r ϕ(; α); α) (3.68) ϕ(; α) =ϕ (; α) :=f M (o, ) f x (0,; α) (3.69) h exp R T ϕ(s; α)ds = Φ (, T, x 0 ; α) := M (0,T) Π x (0,,x 0 ; α) Π x (0,T,x 0 ; α) M (0,) (3.70) Π(, T, r ; α) =Φ (, T, x 0 ; α)π (, T, r ϕ (; α); α) (3.71) V x (, T, τ, K) =Ψ x (, T, τ, K, x α ; α) dϕ(; α) (3.74) dr = kθ + kϕ(; α)+ kr d + σdw d age 100 ϕ VAS (; α) =f M (0,)+(e k 1) k2 θ σ 2 /2 k 2 η j,k σ2 2k 2 e k (1 e k ) x 0 e k age 101 (, T )= M (0,T)A(0,)exp{ B(0,)x 0 } M (0,)A(0,T)exp{ B(0,T)x 0 } A(, T )exp{ B(, T )[r ϕ VAS (; α)]} (3.76) dx() =k(θ x())d + σ p x()dw (), x(0) = x 0, r() =x()+ϕ() (3.77) ϕ CIR (; α) =f M (0,) f CIR (0,; α) f CIR 2kθ(exp{h} 1) (0,; α) = 2h +(k + h)(exp{h} 1) + x 4h 2 exp{h} 0 [2h +(k + h)(exp{h} 1)] 2 h = k 2 +2σ 2 4

Chaper 4 (4.4) r = x()+y()+ϕ(), r(0) = r 0 (4.5) dx() = ax()d + σdw 1 (), x(0) = 0 dy() = by()d + ηdw 2 (), y(0) = 0 (4.6) E{r() F s } = x(s)e a( s) + y(s)e b( s) + ϕ() Var{r() F s } = σ2 1 e 2a( s) + η2 1 e 2b( s) +2ρ ση 1 e (a+b)( s) 2a 2b a + b (4.7) r() =σ R 0 e a( u) dw 1 (u)+η R 0 e b( u) dw 2 (u)+ϕ() (4.8) dx() = ax()d + σdfw 1 () dy() = by()d + ηρdfw 1 ()+η p 1 ρ 2 dfw 2 () where dw 1 () =ddfw 1 () and dw 2 () =ρdfw 1 ()+ p 1 ρ 2 dfw 2 () ) ) 1 e a(t 1 e b(t (4.9) M(, T )= x()+ y() a b (4.10) V (, T )= σ2 T + 2 a 2 a e a(t ) 1 2a e 2a(T ) 3 2a + η2 T + 2 b 2 b e b(t ) 1 2b e 2b(T ) 3 2b +2ρ ση ab (4.11) (, T )=exp T + e a(t ) 1 a ½ R T + e b(t ) 1 b ϕ(u)du 1 e a(t ) x() a e (a+b)(t ) 1 a + b ) 1 e b(t y()+ 1 ¾ b 2 V (, T ) (4.12) ϕ() =f M (0,T)+ σ2 1 e at 2 + η2 1 e bt 2 + ρ ση 2a 2 2b 2 ab (1 e at )(1 e bt ) n (4.13) exp R o T ϕ(u)du = M (0,T) ½ M (0,) exp 12 ¾ [V (0,T) V (0,)] (4.14) (, T )= M (0,T) exp {A(, T )} M (0,) A(, T ):= 1 ) ) 1 e a(t 1 e b(t [V (, T ) V (0,T)+V(0,)] x() y() 2 a b (4.15) (, T )=A(, T )exp{ B(a,, T )x() B(b,, T )y()} (4.16) σ f (, T )= p σ 2 e 2a(T ) + η 2 e 2b(T ) +2ρσηe (a+b)(t ) 5

age 152 Cov(df (, T 1 ),df(, T 2 )) d = σ 2 B T (a,, T 1) B T (a,, T 2)+η 2 B T (b,, T 1) B T (b,, T 2) B +ρση T (a,, T 1) B T (b,, T 2)+ B T (a,, T 2) B T (b,, T 1) = σ 2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) +ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) Corr(df (, T 1 ),df(, T 2 )) = σ2 e a(t 1+T 2 2) + η 2 e b(t 1+T 2 2) σ f (, T 1 )σ f (, T 2 ) + ρση e at 1 bt 2 +(a+b) + e at 2 bt 1 +(a+b) σ f (, T 1 )σ f (, T 2 ) age 153 f(, T 1 T 2 )= ln (, T 1) ln (, T 2 ) T 2 T 1 df (, T 1,T 2 )=...d + B(a,, T 2) B(a,, T 1 ) σdw 1 () T 2 T 1 + B(b,, T 2) B(b,, T 1 ) ηdw 2 () T 2 T 1 σ f (, T 1,T 2 )= p σ 2 β(a,, T 1,T 2 ) 2 + η 2 β(b,, T 1,T 2 ) 2 +2ρσηβ(a,, T 1,T 2 )β(b,, T 1,T 2 ) where β(z,, T 1,T 2 )= B(z,, T 2) B(z,,T 1 ) T 2 T 1 Cov(df (, T 1,T 2 ),df(, T 3,T 4 )) d σ 2 B(a,, T 2) B(a,, T 1 ) B(a,, T 4 ) B(a,, T 3 ) T 2 T 1 T 4 T 3 +η 2 B(b,, T 2) B(b,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) T 2 T 1 T 4 T 3 B(a,, T2 ) B(a,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) +ρση T 2 T 1 T 4 T 3 + B(a,, T 4) B(a,, T 3 ) B(b,, T 2 ) B(b,, T 1 ) T 4 T 3 T 2 T 1 s age 160 σ 3 = dz 3 () = σ 2 1 + σ2 2 (ā b) 2 +2 ρ σ 1σ 2 b ā σ 1 dz 1 () σ 2 ā b dz 2(), σ 4 = σ 2 σ 3 ā b age 161 a =ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 6

ϕ() =r 0 e ā + R 0 θ(v)e ā( v) dv ā = a, b = b, σ1 = p σ 2 + η 2 +2ρση, σ 2 = η(a b) ρ = σρ + η p σ2 + η 2 +2ρση, θ() =dϕ() + aϕ() d Managng Cred Rsk: The Grea Challenge for Global Fnancal Markes, Caouee, e. al. Chaper 20 (20.2) R p = N X EAR (20.3) V p = N j=1 (20.5) UAL p = N age 403 N X X j σ σ j ρ j j=1 N X X j σ σ j ρ j 1 CV ar(cl)=ead LGD µ µ ρφ 1 (CL)+Φ 1 (D) Φ D 1 ρ 1+(M 2.5) b(d) 1 1.5b(D) Bond-CDS Bass Handbook: Measurng, Tradng and Analysng Bass Trades, Elzalde, Docor, and Saluk age 13, Equaon 1 S = D (1 R) age 15, Equaon 2 FR = U AI RA + FC age 18, Equaon 3 V[c + p] B SS = RF A age 25, Equaon 4 BT1 =CN (100 R U C F C)+BN (R+CR B FC) age 25, Equaon 5 BT2 =BN (100 + CR B FC) CN (U + C + FC) age 43, Equaon 7 CN = B R 100 R U BN 7

A Survey of Behavoral Fnance, Barbers and Thaler (1) (x, p : y,q) =π(p)v(x) +π(q)v(y) (2) π v(x ) where v = xα f x 0 λ( x) α f x<0 and π = w( ) w( ), w( )= γ ( γ +(1 ) γ ) 1/γ (3) D +1 D = e g D+σ D ε +1 (4) (5) C +1 = e g C+σ C η +1 C µ µµ µ ε 0 1 w N, η 0 w 1 (6) E 0 ρ C1 γ =0 1 γ " µc+1 γ (7) 1 = ρe R +1# C,..d.over me (8) R +1 = D +1 + +1 = 1+ +1/D +1 D +1 /D D (9) r +1 = d +1 +cons. d +1 d +cons. (10) E π v[(1 w)r f,+1 + wr +1 1] (11) E 0 ρ C1 γ 1 γ + b 0C γ ˆv(X +1 ) =0 (13) R +1 = +1 + D +1 (14) p d = E ρ d +1+j E (15) E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽ(x +1,z ) ρ r +1+j + E lm ρ j (p +j d +j )+cons. j (16) r r f = β.1 (F 1 r f )+...+ β,k (F K r f ) (17) r r f, = α + β,1 (F 1, r f, )+...+ β,k (F K, r f, )+ε (18) R f = 1 ρ eγg C+0.5γ 2 σ 2 C (19) 1 = ρ 1+f e g D γg C +0.5(σD 2 +γ2 σc 2 2γσ Cσ D w) f (20) R +1 = D +1 + +1 = 1+ +1/D +1 D +1 = 1+f /D D f e g D+σ D ε +1 8

CAIA Level II: Advanced Core Topcs n Alernave Invesmens, Black, Chambers, Kazem Chaper 16 (16.1) repored (16.2) repored (16.3) rue (16.4) rue = α + β 0 rue = α rue =(1/α) repored = repored 1 + β 1 rue 1 + β 2 rue 2 + + α(1 α) rue 1 + α(1 α) 2 rue 2 + [(1 α)/α] repored 1 +[(1/α) ( repored repored 1 )] (16.5) R,repored β 0 R,rue + β 1 R 1,rue + β 2 R 2,rue + (16.6) repored (16.7) repored =(1 ρ) rue =(1 ρ) rue + ρ repored 1 + ρ repored 1 (16.8) R,repored (1 ρ)r,rue + ρr 1,repored (16.9) R,rue =(R,repored ρr 1,repored )/(1 ρ) (16.10) ˆρ = corr(r,repored R 1,repored ) (16.11) ρ,j = σ j /(σ σ j ) (16.12) R repored Chaper 21 age 262 = α + β 1 R repored 1 + β 2 R repored 2 + + β k R repored k + ε Y = S I E H where Y = yeld, S = oal solar radaon over he area per perod, I = fracon of solar radaon capured by he crop canopy, E = phoosynhec effcency of he crop (oal plan dry maer per un of solar radaon), H = harves ndex (fracon of oal dry maer ha s harvesable) Managng Invesmen orfolo: A Dynamc rocess, Magnn, Tule, no, McLeavey Chaper 8 age 523 TRCI = CR + RR + SR age 553 RR n, =(R + R 1 + R 2 +...+ R n )/n age 554 r n DD = r, 0)] 2 n 1 age 555 ARR rf Sharpe Rao = SD age 556 ARR rf Sorno Rao = DD 9

The Secular and Cyclc Deermnans of Capalzaon Raes: The Role of ropery Fundamenals, Macroeconc Facors, and "Srucural Changes," Chervachdze, Cosello, Wheaon (1) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, )+a 4 RTB + a 7 Q2 (1.1) RRI j, s = RR j, /M RR j +a 8 Q3 + a 9 Q4 + a 10 D j (2) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB (2.1) DEBTFLOW = TNBL /GD +a 5 SREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j (3) Log(C j, )=a 0 + a 1 log(c j, 1 )+a 2 log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB +a 5 SREAD + a 6 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 (4) Log(C j, )=a 0 + a 1 yearq + a 2 log(c j, 1 )+a 3 log(c j, 4 )+a 4 log(rri j, s )+a 5 RT B +a 6 SREAD + a 7 DEBTFLOW + a 7 Q2 + a 8 Q3 + a 9 Q4 + a 10 D j Analyss of Fnancal Tme Seres, Tsay Chaper 9 (9.1) r = α + β 1 f 1 + + β m f m +, =1,...,T,,...,k (9.2) r = α + βf +, =1,...,T (9.3) R = α 1 T + Fβ 0 + E (9.4) R = Gξ 0 + E (9.5) r = α + β r m +, =1,...,k =1,...,T (9.11) Var(y )=wσ 0 r w, =1,...,k (9.12) Cov(y,y j )=wσ 0 r w j,, j =1,...,k (9.13) k Var(r )=r(σ r )= k λ = k Var(y ) (9.14) ˆΣ r [ˆσ j,r ]= 1 T 1 (9.15) ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1(r r)(r r) 0, r = 1 T T r =1 (9.16) r μ = βf + (9.17) Σr = Cov(r )=E[(r μ)(r μ) 0 ]=E[(βf + )(βf + ) 0 ]=ββ 0 + D (9.18) Cov(r, f )=E[(r μ)f]=βe(f 0 f)+e( 0 f)=β 0 (9.19) ˆβ [ ˆβ j ]= hpˆλ1 ê 1 pˆλ2 ê 2 pˆλm ê m (9.20) LR(m) = T 1 16 (2k +5) 23 m ³ ln ˆΣ r ln ˆβ ˆβ 0 + ˆD 10

Handbook of Fxed Income Secures, Fabozz Chaper 69 (69 4) Asse Allocaon s (w s w B s ) R B s (69 5) Secury Selecon s w s (R s R B s ) (69 12) α k f k αb k f B k = s α k,s f k,s s α B k,s f B k,s Chaper 70 (70 1) Asse Allocaon w µ w s s w wb s (TR B w B s TR B ) (70 2) Secor Managemen ws (TRs TRs B ) s (70 3) Top-Level Exposure (w w B ) TR B (70 4) Asse Allocaon w µ w s s w wb s (ER B w B s ER B ) (70 5) Secor Managemen ws (ERs ERs B ) s (70 6) Top-Level Exposure (w w B ) ER B (70 7) Ouperformance from average carry yavg yavg B (70 8) Key rae conrbuons ω j yj yavg ω B j yj yavg B j (70 9) Ouperformance from avg. parallel shfs OAD OAD B y avg (70 10) Ouperformance from reshapng KRD j KRDj B ( yj y avg ) j (70 11) Asse Allocaon OASD µ w s OASDs wb s OASDs B OASD OASD B s (70 12) Secury Selecon s OAS s B OAS B w s OASD s OAS s OAS B s (70 13) Spread Duraon Msmach (OASD OASD B ) OAS B w s OASDs ws B OASDs B OAS B s (70 14) Asse Allocaon s (70 15) Secury Selecon s w s OASD s OAS s OAS B s 11

Inroducon o Cred Rsk Modelng, 2nd ed., Bluhm, Overbeck, Wagner Chaper 6 age 237 M n = M1 n Guaranees and Targe Volaly Funds, Morrson and Tadrowsk age 4 w equy ˆσ equy =mn µ σarge ˆσ equy 2 = λ ˆσ equy, 100% 2 +(1 λ) 1 µ µ 2 S ln S roxy Funcons for he rojecon of Varable Annuy Greeks, Clayon, Morrson, Turnbull, and Vysnasuskas age 4 ( ˆV V proxy (S,R σ )) 2 proxy (S, R, σ) = S V proxy (S, R, σ) ρ proxy (S, R, σ) = R V proxy (S, R, σ) V proxy (S, R, σ) = σ V proxy (S, R, σ) age 5 S sress1 S sress2 S sress3 S base S base S base R sress1 R sress2 R sress3 R base R base R base ( ˆ proxy (S,R,σ )) 2 (ˆρ ρ proxy (S,R,σ )) 2 ( ˆV V proxy (S,R,σ )) 2 ( ˆV base V proxy (S,R,σ )) 2 σ sress1 σ sress2 σ sress3 σ base σ base σ base ˆ ˆρ ˆV = ˆV sress1 ˆV sress2 ˆV sress3 ˆV base ˆV base base ˆV 12

age 6 µ S S w h S µ S w h S, R R h R, S S h S, σ σ ³ ˆV base h σ V proxy, R R h R 2 (S,R,σ ), σ σ ³ 2 ˆV base h σ V proxy (, S,R,σ ) Recen Advances n Cred Rsk Modelng, Capuano, Chan-Lau, Gasha, Mederos, Sanos, and Souo (II.1) E =max(0,v D) ln V µ D + μ 1 2 σ2 T (II.2) DD T = σ T (II.3) x = a M + p 1 a 2 Z (II.4) rob{x < x M} = q ( M) =Φ Ã! x a M p 1 a 2 (II.5) p K+1 (0, M) =p K (0, M)(1 q K+1 ( M)) (II.6) p K+1 (l, M) =p K (l, M)(1 q K+1 ( M)) + p K (l 1, M)q K+1 ( M), l =1,...,K (II.7) p K+1 (K +1, M) =p K (K, M)q K+1 ( M) (II.8) p(l, ) = R pn (l, M)φ(M)dM (III.1) τ =nf{ 0 V K} 13

Marke Models: A Gude o Fnancal Daa Analyss, Chaper 6, Aledander (6.1) = XW (6.2) X = w 1 1 + w 2 2 + + w k k (6.3) σ K σ AT M = b(k S) (6.4) (σ K σ AT M )=w K1 1 + w K2 2 + w K3 3 (6.5) = γ S + ε (6.6) σ AT M = α + β S + ε (6.7) β K, = β + Σw K γ (6.8) y = a + b + e (6.9) y = a + X b + e (6.10) y = c + Xd + e (6.11) rcac = 0.0003 (1.45) +0.1943 (14.71) rparbas +0.2135 (17.21) rsocgen +0.2995 (20.55) rdan (6.12) 0.85867 1 +0.047495 2 +0.091244 3 +0.35181 4 Sochasc Modelng, Theory and Realy from an Acuaral erspecve (I.B-1) ds = μsd + σsdz (I.B-2) ln S T N(ln S 0 +(r σ 2 /2)T,σ T ) (I.B-3) μ =lns 0 +(r σ 2 /2)T, σ = σ T (I.B-4) ĉ = 1 N c N (I.B-5) c = S 0 N(d 1 ) Ke rt N(d 2 ) (I.B-6) d 1 = ln(s 0/K)+(r + σ 2 /2)T σ, d 2 = d 1 σ T T (I.B-7) MC samplng error = 1 Sdev(c ) N (I.B-8) 1 f = 2 (f(u 1)+f(u 2 )) (I.B-9) 1 Sdev( f) N (I.B-10) (I.B-11) f (u) g (u)+g(u) 1 Sdev(f(u) g(u)) N 14

(I.B-12) h = 1 n N (I.B-13) (I.B-14) j=1 f(v (j) ) k ˆf = (x +1 x )h k (x +1 x ) Sdev(h(j) lm of he sum should be k) 1 N f(z ) (I.B-15) N g(z ) µ N f(z ) (I.B-16) Sdev g(z ) ) n (I.B-17) S 0 = e r [ps 0 u +(1 p)s 0 d] (I.B-18) (I.B-19) p = er d u d u = e σ and d = u 1 (here s an error n he book formula, he upper (I.B-20) C 0 = e r [pc u +(1 p)c d ] (I.B-21) S m = S 0 u n d m n, n =0, 1,...,m (here s an error n he book formula, s n ha goes from 0 o m) (I.B-22) S m = S 0 (1 η)u n d m n, n =0, 1,...,m (same error) r (I.B-23) p = µr 12 12σ 2 σ2 + 1 6, p 0 = 2 3, p + = p + 2 6, u = e σ 3, d = u 1 µ S (I.B-24) log N(μ( r),σ 2 ( r)) (I.B-25) log S r µ S+1 S ρ() N(μ ρ(),σ 2 ρ() ) (I.B-26) p j =r(ρ( +1)=j ρ() =), =1, 2,...,K, j =1, 2,...,K (here s an error n he book formula, y +1should be +1) (I.B-27) L(Θ) =f(y 1 Θ)f(y 2 Θ,y 1 )f(y 3 Θ,y 1,y 2 ) f(y n Θ,y 1,y 2,...,y n 1 ) (I.B-28) f(ρ(),ρ( 1),y Θ,y 1,y 2,...,y 1 ) for ρ() =1, 2 and ρ( 1) = 1, 2 (I.B-29) π 1 p(ρ( 1) = Θ,y 1,y 2,...,y 1 ) (I.B-30) p j = p(ρ() =j ρ( 1) =, Θ) µ y μ j (I.B-31) g j, = f(y ρ() =j, Θ) =φ = σ j " 1 exp 1 σ j 2π 2 µ # 2 y μ j σ j 15

(I.B-32) π = 2 π k, 1 p k g k=1 2 j=1 2 π 1 p j g j, p 21 p 12 (I.B-33) π 1,0 =, π 2,0 = p 12 + p 21 p 12 + p 21 (I.B-34) f(y 1 Θ) =f(ρ(0) = 1,y 1 Θ)+f(ρ(0) = 2,y 1 Θ) µ µ y1 μ 1 y1 μ 2 = π 1,0 φ + π 2,0 φ σ 1 (II.A-1) S(0, 1) = ln{1/[1 + C(0, 1)]} S(0, 2) = (1/2) ln{[1 C(0, 2) exp( S(0, 1))]/[1 + C(0, 2)]} S(0, 3) = (1/3) ln{[1 C(0, 3) exp( S(0, 1) C(0, 3) exp( 2S(0, 2))]/[1 + C(0, 3)]} (II.A-2) r = σ(r/ r) γ φ (II.A-3) F ( + T )=F 1 ( + T )+ Λ q,t+1 φ q, q (II.A-4) F ( + T )=F 1 ( + T )+ µ Λ g,t+1 φ q, + Λ q,t+1 Λ q,t+1 /2+ T +1 Λ q, q (II.A-5) E[exp( F 0 (0) F 1 (1) F 2 (2) F N (N))] =exp( F 0 (0) F 0 (1) F 0 (2) F 0 (N)) (II.A-6) V = E[exp( F 0 (0) F 1 (1) F 2 (2) F N (N))CF N ] (II.A-7) F ( + T )=F 1 ( + T )+[ Λ q,t+1 φ q, ] g +[δ arge (1/ arge )(F ( arge + T ) F 0 ( arge + T ))] +[(1 δ arge )(F ( arge + T ) F ( arge + T +1)] µ (II.A-8) F ( + T )=F 1 ( + T )+k T Λ q.t+1 φ q, + Λ q,t+1 Λ q,t+1 /2+ T +1 Λ q, (II.A-9) Λ 1,j = Λ 1,1 exp[ a(j 1)], Λ >1,j =0 (II.A-10) Facor1=Facor1 (0) + ρ 12 Facor2 (0) + ρ 13 Facor3 (0) Facor2=(1 ρ 2 12) 1/2 Facor2 (0) + ρ 13 Facor3 (0) q σ 2 Facor3=(1 ρ 2 13 ρ 2 13) 1/2 Facor3 (0) (II.A-11) S = S 1 exp[f 1 ( 1) + σ 1 φ (e) 1 σ 1/2] 2 (II.A-12) X( +1) =X() exp(rff RFD) (II.A-13) X( + ) =X() exp((rf F RF D vol 2 /2) + sqr( ) vol Z) (II.A-14) ds = μ S d + σ S dw (II.A-15) ds = S exp{(μ σ 2 /2)d + σ dw } (II.A-16) S = S 1 exp{(μ σ 2 /2)d + σ φ } 16

(II.A-17) S = S 1 exp{(f ( + d) σ 2 /2)d + σ φ } (II.A-18) S = S 1 exp{(f ( + d) q σ 3 /2)d + σ φ } (II.A-19) ds = μ S d + σ(s,)dw (II.A-20) ds = μ S d + σ()s α dw (II.A-21) ds = μ S d + V S dw, dv = κ(θ V )d + v V dz, d[s, V ]=ρd (II.A-22) μ = F ( + d)+rp (σ S (II.A-23) σ F = sqr ) 2 σ 1 S 1 1 (II.A-24) mn n (σ model w σ marke ) 2 σ model (II.A-25) E(Value of Equy) =A(Value of Asses) N(d 1 ) F (Face Value of Deb) e T N(d 2 ) d 1 = log(a/f )+(r + σ2 A/2) T σ A T d 2 = d 1 σ A T (II.A-26) (II.A-27) (II.A-28) (II.A-29) Spread = (II.A-30) σ E = σ A N(d 1 ) A E Rsk Neural robably of Defaul = N( d 2 ) Recovery Rae = A N( d 1) N( d 2 ) Threshold = Φ 1 (D) h q() =h() exp R h(τ)dτ 0 π() 1 R q(τ)dτ τ=0 R T =0 R T [1 R A() r]q()ν()d =0 q() {u()+e()]d + π(t ) u(t ) d ln(h )=α(β ln(h ))d + γdz 17