Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Σχετικά έγγραφα
Synchrotron Radiation. G. Wang

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Fundamental Equations of Fluid Mechanics

Accelerator Physics. G. A. Krafft, A. Bogacz, and H. Sayed Jefferson Lab Old Dominion University Lecture 9

Electromagnetic. G. A. Krafft Jefferson Lab Jefferson Lab Professor of Physics Old Dominion University Physics 804 Electromagnetic Theory II

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Curvilinear Systems of Coordinates

Example 1: THE ELECTRIC DIPOLE

Chapter 7a. Elements of Elasticity, Thermal Stresses

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

( ) ( ) ( )z. HMY Φωτονική. Διάλεξη 08 Οι εξισώσεις του Maxwell. r = A r. B r. ˆ det = Βαθμωτά και διανυσματικά μεγέθη

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

m i N 1 F i = j i F ij + F x

Inflation and Reheating in Spontaneously Generated Gravity

Part 3 REFLECTION AND TRANSMISSION

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2


General Relativity (225A) Fall 2013 Assignment 5 Solutions

ΦΥΕ34 Λύσεις 5 ης Εργασίας

ΕΞΙΣΩΣΕΙΣ MAXWELL ΣΕ ΜΕΣΟ

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Solutions - Chapter 4

ANTENNAS and WAVE PROPAGATION. Solution Manual

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

6.4 Superposition of Linear Plane Progressive Waves

Κλασική Ηλεκτροδυναμική

r = x 2 + y 2 and h = z y = r sin sin ϕ

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

1 3D Helmholtz Equation

Κεραίες. Ενότητα 2: Το πρόβλημα της ακτινοβολίας

ΗΜ & Διάδοση ΗΜ Κυμάτων

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΦΥΕ η ΕΡΓΑΣΙΑ. Προθεσµία παράδοσης 16/11/10

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34. Ιούλιος 2008 KYMATIKH. ιάρκεια: 210 λεπτά

Note: Please use the actual date you accessed this material in your citation.

3.7 Governing Equations and Boundary Conditions for P-Flow

Strain and stress tensors in spherical coordinates

Problems in curvilinear coordinates


Analytical Expression for Hessian

Tutorial Note - Week 09 - Solution

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Homework 8 Model Solution Section

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Graded Refractive-Index

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

4.4 Superposition of Linear Plane Progressive Waves

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

Reflection Models. Reflection Models

Time dependent Convection vs. frozen convection approximations. Plan

The Friction Stir Welding Process

Spin Precession in Electromagnetic Field

The Laplacian in Spherical Polar Coordinates

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Srednicki Chapter 55

ITU-R P (2012/02) khz 150

Oscillatory Gap Damping

Constitutive Relations in Chiral Media

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

ƒˆˆ-ˆœ œ Ÿ ˆ ˆ Š ˆˆ ƒ ˆ ˆˆ

Name: Math Homework Set # VI. April 2, 2010

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Course Reader for CHEN 7100/7106. Transport Phenomena I

Ε Θ Ν Ι Κ Ο Μ Ε Τ Σ Ο Β Ι Ο Π Ο Λ Υ Τ Ε Χ Ν Ε Ι Ο Τ Ο Μ Ε Α Σ Φ Υ Σ Ι Κ Η Σ


ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Εξέταση στη Μηχανική II 20 Σεπτεμβρίου 2010

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Magnetic bubble refraction in inhomogeneous antiferromagnets

Ελληνικό Ανοικτό Πανεπιστήµιο Ενδεικτικές Λύσεις Θεµάτων Τελικών εξετάσεων στη Θεµατική Ενότητα ΦΥΕ34 KYMATIKH. ιάρκεια: 210 λεπτά

Part 4 RAYLEIGH AND LAMB WAVES

Matrix Hartree-Fock Equations for a Closed Shell System

( ) Sine wave travelling to the right side

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Σήματα και Συστήματα

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Επίλυση Προβληµάτων Αρχικών / Συνοριακών Τιµών Μεταδόσεως Θερµότητας

Solutions Ph 236a Week 2

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

Eulerian Simulation of Large Deformations

A 1 A 2 A 3 B 1 B 2 B 3

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Κλασική Ηλεκτροδυναμική

Section 8.3 Trigonometric Equations

Spherical Coordinates


ME340B Elasticity of Microscopic Structures Wei Cai Stanford University Winter Midterm Exam. Chris Weinberger and Wei Cai

Christian J. Bordé SYRTE & LPL.

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

Lifting Entry (continued)

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών. Σήματα. και. Συστήματα

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΙΑΝΟΥΑΡΙΟΣ 2012 ΘΕΜΑΤΑ Α

Laplace s Equation in Spherical Polar Coördinates

SPECIAL FUNCTIONS and POLYNOMIALS

Transcript:

Maxwell' s Equations in vauum E ρ ε Physis 4 Final Exam Cheat Sheet, 7 Apil E B t B Loent Foe Law: F q E + v B B µ J + µ ε E t Consevation of hage: J + ρ t µ ε ε 8.85 µ 4π 7 3. 8 SI ms) units q eleton.6 9 m eleton 9. 3 SI ms) units Maxwell' s Equations in linea medium D ρ E B t B D εe ε E + P B µh µ H + M Geneal plane wave in linea medium: v [ ] ; B ˆ E P f v ˆ v t v P f v ˆ v t Hamoni plane wave in linea medium: [ ] ; B E P exp i ωt) H J + D t [ ] ; v εµ ; P v ; ˆ [ ] ; ω P exp i ωt ω v ; P Linea medium bounday onditions: D nomal, E paallel, B nomal, H paallal ae ontinuous v E ˆ B ˆ Kinemati bounday onditions: θ inident θ efleted ; v inident sinθ inident v tansmitted sinθ tansmitted Enegy: U field [ E D + B H ] Consevation of enegy: Poynting veto: S E B µ t U + U field patiles) + S E H Maxwell Stess Tenso: T ij ε E i E j δ ij E + µ H H i j δ ij H Momentum density: Consevation of momentum: p field volume εµs S εe B p field t volume + p patile volume T

Pefet onduto bounday onditions: E B inside E paallel B nomal E nomal σ ε B paallal µ I E nomal nomal B paallel nomal) θ inidene θ efletion v nomal hanges sign, P paallel hanges sign Retangula avity fields: E exp iωt), B exp iωt), ω π m a + n b + l d E x A EX os mπ x a sin nπ y b sin lπ d B A sin mπ x x BX a os nπ y b os lπ d E y A EY sin mπ x a os nπ y b sin lπ d B A os mπ x y BY a sin nπ y b os lπ d E A EZ sin mπ x a sin nπ y b os lπ d B A os mπ x BZ a os nπ y b sin lπ d A E A EX, A EY, A EZ ) A B A BX,A BY, A BZ ) M mπ a, nπ b, lπ d A E M A B M M A E iωa B M A B iω A E Retangula waveguide: same xy dependene, t dependene exp[ i ωt) ] TE E TM B ω + mπ + nπ v a b goup dω d TEM mode: E B, eletostati & magnetostati solutions in xy, v, B ˆ E Waves in ondutos: ondutivity σ J σe τ ε σ [ ] B B exp[ i ωt) ] B ω ˆ E E exp i ωt) E eal ω σ + ωε + imag ω σ + ωε good onduto: eal imag ωσµ d sin poo onduto: eal ω, imag σ ε

Kinemati bounday onditions: θ inident θ efleted ; v inident sinθ inident v tansmitted sinθ tansmitted Index of efation: n v εµ ε µ Total Intenal Refletion: sinθ I > v v n n Fesnel Equations: α osθ T osθ I β µ v µ v µ n µ n ε µ ε µ E in plane of inidene: E R E to plane of inidene: E R Model of medium: d y dt α β α +β αβ + αβ E T α + β E T + αβ + γ dy dt + ω y q m E exp iωt + γ j ω tanθ Bewste n n if µ µ ; ε ε + Nq fo low density, n + Nq f j ω j ω mε ω j ω ; α Nq ω mε Model of onduto: ω σ Nfq m γ iω Model of plasma: γ ω ω p q µεω + iσµω Nf ω ω p mε f j mε ω j ω ) iγ j ω ω j ω f j γ j + γ j ω Fields fom potentials: E V A B A t Potential Maxwell: V + A A ) ρ A A t ε t A + V µ t J Gauge Tansfomations: A A + V V t Coulomb Gauge: A V ρ A A ε t V µ t J Loent Gauge: A + V t V V ρ A A t ε t Loent in d' Alembetian fom: [ ] V ρ ε [ ] A µ J [ ] t µ J

Retaded Time: t t - Retaded Potentials: φ,t) ρ, t 4πε d v A µ ρ,t Fields: E ) ρ +,t ) 4πε ˆ J,t ) d v B µ 4π q Lienad - Wiehet Potentials: φ,t) 4πε u q Fields: E 4πε [ ] B u ) v )u + u a 3 Lamo Fomula: S da µ 6π qa) qa) 3 3 4πε Radiation at high veloity: dp ad dω q 6π ε Eleti Dipole Radiation: p p ˆ os ωt E µ p ω 4π sin θ os ωt )ˆ θ S µ p ω 4 sinθ os ωt 6π ) ˆ [ u a )] ˆ u B µ p ω 4π ˆ Powe µ p 6π 4π J, t d v J J A,t) v φ,t) u ˆ v ˆ E S µ 5 P µ q ρ,t )d v sinθ ω 4 os ωt )ˆ φ os ωt Magneti Dipole Radiation: m m ˆ os ωt) I t) Aea E µ m ω 4π sinθ os ωt )ˆ φ B µ m ω 4π sin θ os ωt )ˆ θ S µ m ω 4 sin θ os ωt 6π 3 ) ˆ Powe µ m ω 4 os ωt 6π 3 i e Multipole Radiation: A,t) ωt ) µ i) n n! J n γ 6 6π ˆ ) n d v ˆ [ E E ˆ E )] a v a d v Fields: B A E i B Radiation Reation: F µ q 6π da dt

Loent Tansfomation: β v x γ t γ β x βγ Coodinate 4 - veto: x µ t, x ) x µ t, x ) x µ x µ x µ x µ x ν x ν Relativisti veloity 3 ν βγ γ t x t) + x + y + η µ γ,β γ) Relativisti momentum: p ν E, p ) Newtonian mehanis: F dp elativisti dt obseve Minowsian mehanis: K µ dp µ dτ 4 veto deivative: µ t, 4 - veto uent density: J µ ρη µ ρ γ,β γ d'alembetian µ µ [ ] 4 - veto potential: A µ φ, A ) Maxwell Equations: ν ν A µ µ J µ Loent ondition: µ A µ Field - Stength Tensos: E x E y E E x B F µν E y B B x E B y B x Maxwell in Tenso Fom: B x B E B x E y G µν E B E y x E B y E x µ F µν µ J ν µ G µν Loent Tansfomation of Fields: E x E x B x B x E y γ E y vb ) E γ E + v ) γ + v E B γ B v E y pio 9 nano 6 mio µ) 3 milli +3 ilo +6 Mega +9 Giga + Tea

Catesian oodinates : f f x x ˆ + f y y ˆ + f ˆ V V y V y + V x V x + V y x V x y V V x x + V y y + V f f x + f y + f Cylindial oodinates : f f ˆ + f φ ˆ + f φ ˆ V f φ V ) V φ Spheial oodinates : f f ˆ + f θ V ˆ + f + f φ + f sinθ θ ˆ + f sinθ φ θ sinθv φ V ) V ) V φ ˆ + V φ + φ ˆ V V φ V θ ˆ + sin θ V + sinθ φ V ) V φ f f + f sinθ sinθ θ θ + f sin θ φ x ˆ y ˆ ˆ A B det A x A y A B x B A B C φ V φ V φ) + V ) ˆ θ sin θv θ) + θ ˆ + V θ A y B S ) x ˆ + A B x A x B ) y ˆ + A x A y B x ) ˆ B C A ) C A B ) B A C ) C A B ) A B ) C B C A ) A C B ) A B C f g + g f fg A B ) + B A ) + A )B + B f A ) + A f B A ) A B ) f A ) + A f ) B )A A )B + A B ) B A ) A B fa A B fa A B A sinθ φ V φ) θ V φ ˆ

+ if i j δ ij if i j x i ε ij if i j, j, o i + if ij 3, 3, 3 if ij 3, 3, 3 ε ij ε lm δ il δ jm δ im δ jl A B δ ij B j A B ε ij B j A B C [ A B C )] B C i C [ fg) ] fg [ A B )] fa f g + g f f ε ij B + f + f ε ij B + ε ij B ε ij f + ε ij f ε ij B j C A B [ fa ] ε ij f [ A B ] ε ij ε lmj A l B m ε ij ε lmj A l B m δ l δ im δ m δ il A l B m A B A + A B B