The q-commutators of braided groups

Σχετικά έγγραφα
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Single-value extension property for anti-diagonal operator matrices and their square

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

High order interpolation function for surface contact problem

Discriminantal arrangement

Trace evaluation of matrix determinants and inversion of 4 4 matrices in terms of Dirac covariants

Homomorphism in Intuitionistic Fuzzy Automata

Congruence Classes of Invertible Matrices of Order 3 over F 2

A summation formula ramified with hypergeometric function and involving recurrence relation

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Lecture 10 - Representation Theory III: Theory of Weights

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SPECIAL FUNCTIONS and POLYNOMIALS

Επιτραπέζια μίξερ C LINE 10 C LINE 20

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Space-Time Symmetries

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Srednicki Chapter 55

A research on the influence of dummy activity on float in an AOA network and its amendments

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Ó³ Ÿ , º 3(180).. 313Ä320

Ax = b. 7x = 21. x = 21 7 = 3.

Cyclic or elementary abelian Covers of K 4

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΟΙ Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΣΤΗΝ ΛΕΚΑΝΗ ΠΟΤΑΜΙΑΣ ΚΑΙ Η ΑΛΛΗΛΟΕΠΙ ΡΑΣΗ ΤΟΥ Υ ΑΤΙΚΟΥ ΚΑΘΕΣΤΩΤΟΣ ΜΕ ΤΗ ΜΕΛΛΟΝΤΙΚΗ ΛΙΓΝΙΤΙΚΗ ΕΚΜΕΤΑΛΛΕΥΣΗ ΣΤΗΝ ΕΛΑΣΣΟΝΑ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

/&25*+* 24.&6,2(2**02)' 24

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).


Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Arbitrage Analysis of Futures Market with Frictions

21 a 22 a 2n. a m1 a m2 a mn

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

On the Galois Group of Linear Difference-Differential Equations

Commutators of cycles in permutation groups

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

ER-Tree (Extended R*-Tree)

Wishart α-determinant, α-hafnian

Θεοδώρα Θεοχάρη Αποστολίδη

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Ó³ Ÿ , º 4(181).. 501Ä510

Two generalisations of the binomial theorem

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Matrices and Determinants

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3


3+1 Splitting of the Generalized Harmonic Equations

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

w o = R 1 p. (1) R = p =. = 1

ΜΕΤΑΠΤΥΧΙΑΚΗ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Ελευθερίου Β. Χρυσούλα. Επιβλέπων: Νικόλαος Καραμπετάκης Καθηγητής Α.Π.Θ.

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Prey-Taxis Holling-Tanner

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math 6 SL Probability Distributions Practice Test Mark Scheme

Sheet H d-2 3D Pythagoras - Answers

Hartree-Fock Theory. Solving electronic structure problem on computers

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Fractional Colorings and Zykov Products of graphs

!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667

Αναπαραστάσεις και χαρακτήρες πεπερασµένων οµάδων

SOLUTIONS TO PROBLEMS IN LIE ALGEBRAS IN PARTICLE PHYSICS BY HOWARD GEORGI STEPHEN HANCOCK


Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Tridiagonal matrices. Gérard MEURANT. October, 2008

FORMULAS FOR STATISTICS 1

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

2x 1 + x 2 x 3 + x 4 = 1. 3x 1 x 2 x 3 +2x 4 = 3 x 1 +2x 2 +6x 3 x 4 = 4

Υ ΡΟΓΕΩΛΟΓΙΚΕΣ ΣΥΝΘΗΚΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΥΠΟΒΑΘΜΙΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΥΠΟΓΕΙΩΝ ΝΕΡΩΝ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΣΣΗΝΗΣ, Ν.ΜΕΣΣΗΝΙΑΣ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Transcript:

206 ( ) Journal of East China Normal University (Natural Science) No. Jan. 206 : 000-564(206)0-0009-0 q- (, 20024) : R-, [] ABCD U q(g).,, q-. : R- ; ; q- ; ; FRT- : O52.2 : A DOI: 0.3969/j.issn.000-564.206.0.002 The q-commutators of braided groups HU Hong-mei (Department of Mathematics, East China Normal University, Shanghai 20024, China) Abstract: With the standard R-matrices and suitably chosen a pair of dual braided groups, the authors gave the rank-inductive constructions of U q(g) for the ABCD series via the double-bosonization theory in []. This paper described explicitly the expressions for the generators of braided groups in the new higher rank-one quantum groups in these constructions, which are the q-commutators with the simple root vectors. These q-commutators are very important to the structure of new quantum groups. Key words: R-matrix; rank-inductive construction; q-commutator; braided group; FRT-generator 0 Majid Radford, [2-5]., Majid [6], FRT- [7], Drinfeld [8]. (H, R) M H ( H M)., C H M B M H, C H B U = U( C, H, B), H B C, H B C H : 205-04 : (273) :,,,. E-mail: hmhu024@26.com.

0 ( ) 206., g Q Q, Majid (H = kq = k[k ± i ], A = kq ), U q (n ± ) Cartan H, [9] U q (g)., H U q (g), (Uq ext (g), O q (G)), O q (G) ( ) V (R, R) V (R, R2 ) U q(g) M Uq(g) ( Uq(g)M), U(V (R, R2 ), U q(g), V (R, R)), []. V(R, R) V (R, R2 ), q-. ABCD [] ABCD. U ext q (g) [0], K m i, m Z,. O q (G), FRT- A(R) [7]. [6] Uq ext (g), O q (G), (m + ) i j, tk l = λrik jl, (m ) i j, tk l = (λr) ki lj, R R-,. λ, (m ± ) i j Uq ext (g) FRT-. Majid [] A(R) V(R, R) V (R, R. [] 2 ). R R-, R, : R 2 R 3 R 23 = R 23 R 3R 2, R 23 R 3 R 2 = R 2 R 3R 23 ; (PR+I)(PR I) = 0, R 2 R 2 = R 2 R 2. P. V (R, R) e i i =,, n}, e i e j = R ji ab ea e b. a,b e i t i a e a A(R) M,, (e i ) = e i + e i, ǫ(e i ) = 0, S(e i ) = e i, Ψ(e i e j ) = a,b R ji ab ea e b. f j, e i = δj i, V (R, R2 ) f j j =,, n}, f i f j = f b f a R ij ab. f i f a t a i MA(R), a,b, (f i ) = f i + f i, ǫ(f i ) = 0, S(f i ) = f i, Ψ(f i f j ) = a,b f b f a R ab ij. V (R, R) V (R, R2 ) Õq(G) = O q (G) k[g, g ], U ext (g) = U ext (g) k[c, c ]. q q, []..2 [] R ABCD R-. R A-, R = q 2 R; R BCD-, R = RPR (ǫq ǫ N+ + q 2 )R + (ǫq ǫ N+3 + )P (BD- ǫ =, C- ǫ = ). N, N = 2n; N, N = 2n +.

: q- U = (V (R, R2 ), Uext q (g), V (R, R)) e i (m + ) j k = λrji ab (m+ ) a ke b, (m ) i je k = λr ki abe a (m ) b j, (m + ) i jf k = λf b (m + ) i ar ab jk, () f i (m ) j k = λ(m ) j b f ar ab ik, [e i, f j ] = (m+ ) i j c c(m ) i j q q δ ij, (2) e i = e a (m + ) i a c + e i, f i = f i + c(m ) a i f a, (c) = c c. (3) () A- λ = q n+2, e, f, (m + ) c E, F K, U(V (R, R2 ), Uext q (sl ), V (R, R)) K ± i, i n, U q (sl n+2 ). B, C, D λ = q. (2) B- e 2, f 2, m + (m + ) 2 2 c E, F K, U(V (R, R2 ), Uext q (so 2 ), V (R, R)) U q (so 2n+3 ). (3) C- e 2n, f 2n, (m + ) 2n 2n c E, F K, U(V (R, R2 ), Uext q (sp 2n ), V (R, R)) K ± 2 U q (sp 2n+2 ). (4) D- e 2n, f 2n, (m + ) 2n 2n c E, F K, U(V (R, R2 ), Uext q (so 2n ), V (R, R)) K ± 2 K ± 2 2 K ± 2 K 2 2 U q (so 2n+2 ). V (R, R), V (R, R2 ).. V (R, R), V (R, R2 ) (R, R ). R, R. 2 q-.2 () (2). A. R- ( [9], [0]) R- P P. [x, y] q := xy qyx. 2. A- V (R, R 2 ) V (R, R) q- A- R- R ij kl = qqδij δ ik δ jl + (q 2 )δ il δ jk θ(j i), θ(k) =, k > 0, 0, k 0. (4) 2..2 () e, f E, F, V (R, R2 ) V (R, R)

2 ( ) 206 q-. e i = e i+ E i q E i e i+ = [e i+, E i ] q, (5) f i = qf i+ F i F i f i+ = q[f i+, F i ] q, i n. (6), U ext q (sl ) FRT- []. (m + ) i i+ = (q q )E i K (m ) i+ i = (q q )K (m + ) i i = K K 2 K 2 K 2 2 K i 2 K i 2 K i i K i i i K i i i K i i K (i+) (i+) K (n) i+ Kn, i n, i+ K (n) n F i, i n, (n) Kn, (m ) i i(m + ) i i =, i n +. (m + ) i i+ = (q q )E i (m + ) i+ i+, (m ) i+ i = (q q )(m ) i+ i+ F i. (7) V (R, R 2 ) V (R, R). e U q (sl n+2 ) E,.2 e i+ (m + ) i i+ = λr i a i+ b (m + ) a i+e b, f i+ (m ) i+ R- (4), i = λ(m ) i+ e i+ (m + ) i i+ = λq(m + ) i i+e i+ + λ(q 2 )(m + ) i+ i+ ei, b f a R ab i+ i, f i+ (m ) i+ i = (m ) i+ i+ f iλ(q 2 ) + (m ) i+ i f i+ λq, i n. (7), (q q )e i+ E i (m + ) i+ i+ = λq(q q )E i (m + ) i+ i+ ei+ + λ(q 2 )(m + ) i+ i+ ei, (8) (q q )f i+ (m ) i+ i+ F i = (m ) i+ i+ f iλ(q 2 ) + (q q )(m ) i+ i+ F if i+ λq. (9) e i+ (m + ) i+ i+ = λq2 (m + ) i+ i+ ei+, e i (m + ) i+ i+ = λq(m+ ) i+ i+ ei ; f i+ (m ) i+ i+ = (m ) i+ i+ f i+λq 2. (8), (9), (q q )e i+ E i (m + ) i+ i+ = λq(q q ) λq 2 E ie i+ (m + ) i+ i+ + λ(q2 ) λq ei (m + ) i+ i+, (0) (q q )λq 2 (m ) i+ i+ f i+f i = (m ) i+ i+ f iλ(q 2 ) + (q q )(m ) i+ i+ F if i+ λq. () (0), () q q (m ) i+ i+, λq(q q ) (m+ ) i+ i+, e i = e i+ E i q E i e i+ = [e i+, E i ] q, f i = qf i+ F i F i f i+ = q[f i+, F i ] q, i n.

: q- 3 (5) (6),. BCD. BCD R- kl = qqδji δ ji δ ik δ jl + (q 2 )θ(j l)(δ il δ jk K ij lk ). (2) R ij K ij lk = ǫci j Cl k, Cm t = ǫ m δ mt q ρm. g = so N, ǫ = ǫ = = ǫ N =, i < i, ρ i = N 2 i; i i, ρ i = ρ i. g = sp N, ǫ = = ǫ n =, ǫ = ǫ = = ǫ N =, i < i, ρ i = N 2 + i, ρ i = ρ i. i = N + i. B, C, D g Dynkin. < 2 > 2 3 2 n n n n n n B n (n 2) C n (n 3) D n (n 4) 2.2 B- V (R, R 2 ) V (R, R) q- B-, ǫ = ǫ = = ǫ 2 =. i < n +, ρ i = 2 2 i; i = n +, ρ = 0; i > n +, ρ i = (i 2 2 ). (2) B- R-. K ij lk = Ci j Cl k = δ ij δ lk q ρi q ρ l, i + j 2n + 2, l + k 2n + 2, K ij lk = 0. i, j, R i,i+ i+,i = q2, R ii ii = qq δ ii = qq δi,2n+2 i = q 2, i n +, q, i = n +. R ij ij = qqδji δ ji = qq δj,2n+2 i = q, i + j 2n + 2, i j, i + j = 2n + 2, i j. q 2, i + j 2n + 2, i = j, 0, i + j 2n + 2, i j, R i,j i+,j = (q2 )(δ i,j δ j,i+ K i,j j,i+ ) = q 2 (q 2 ), i = n, j = n + 2, q 2 (q 2 ), i = j = n +, (q q ), i + j = 2n + 2, i j. 2.2.2 (2) e 2, f 2 U q (so 2n+3 ) E, F, V (R, R2 ) V (R, R)

4 ( ) 206 q-. e j = q E i e j e j E i = q [E i, e j ] q, i + j = 2n + 2, i n, (3) e = q 2 (q 2 + q 2 (q E e n+2 e n+2 E ) = q 2 (q 2 + q 2 [E, e n+2 ] q, (4) e n = (q 2 + q 2 (e E E e ), (5) e i = e i+ E i q E i e i+ = [e i+, E i ] q, i n ; (6) f j = F i f j qf j F i = [F i, f j ] q, i + j = 2n + 2, i n, (7) f = q 2 (q 2 + q 2 (F f n+2 qf n+2 F ) = q 2 (q 2 + q 2 [F, f n+2 ] q, (8) f n = (q 2 + q 2 (f F F f ), (9) f i = qf i+ F i F i f i+ = q[f i+, F i ] q, i n. (20) 2., V (R, R 2 ) V (R, R). (3) (6), (7) (20). U q (so 2 ), U ext q (so 2 ) FRT- []. (m + ) i i+ = (q q )E i K K 2 K n i, i n, (m + ) n = (q 2 + q 2 (q 2 q E, (m + ) i i = K K 2 K n i K i, (m + ) i i (m ) i i =, (m+ ) =, i n. (m + ) i i+ = (q q )E i (m + ) i+ i+, i n. i n, i + j = 2n + 2, n + 3 j 2n + n + 2 j 2n. R- e j (m + ) i i+ = λri,j a,b (m+ ) a i+ eb = λr i,j i,j (m+ ) i i+ ej + λr i,j i+,j (m+ ) i+ i+ ej = q (m + ) i i+ ej q (q q )(m + ) i+ i+ ej. (m + ) i i+ = (q q )E i (m + ) i+ i+ (q q )e j E i (m + ) i+ i+ = q (q q )E i (m + ) i+ i+ ej q (q q )(m + ) i+ i+ ej. (2) (2) e j (m + ) i+ i+ = λri+,j (m+ ) i+ i+ ej = (m + ) i+ i+ ej, e j (m + ) i+ i+ = λri+,j (m+ ) i+ i+ ej = q (m + ) i+ i+ ej, (q q )e j E i (m + ) i+ i+ = q (q q )E i e j (m + ) i+ i+ (q q )e j (m + ) i+ i+. (22) (22) q q (m ) i+ i+, ej = q E i e j e j E i, (3). e q-. e n+2 (m + ) n = λrn,n+2 (m+ ) n en+2 + λr n,n+2, (m+ ) e = q (m + ) n en+2 + q 2 (q q )e. (23)

: q- 5 (m + ) =, (m+ ) n = (q 2 + q 2 (q 2 q E (23), e = q 2 (q 2 + q 2 (q E e n+2 e n+2 E ), (4). e n, (24). e (m + ) n = λr n, n, (m+ ) n e + λr n,,n (m+ ) en = (m + ) n e + (q q )e. (24) (m + ) n = (q 2 + q 2) 2(q 2 q 2)E (24), e n = (q 2 + q 2) 2(e E E e ), (5)., i n, R-,. e i+ (m + ) i i+ = λri a i+ b (m + ) a i+ eb = λr i, i+ i, i+ (m+ ) i i+ ei+ + λr i,i+ i+,i (m+ ) i+ = (m + ) i i+ ei+ + (q q )(m + ) i+ i+ ei. (m + ) i i+ = (q q )E i (m + ) i+ i+, i+ ei (q q )e i+ E i (m + ) i+ i+ = (q q )E i (m + ) i+ i+ ei+ + (q q )(m + ) i+ i+ ei. (25) e i+ (m + ) i+ i+ = λri+,i+ i+,i+ (m+ ) i+ i+ ei+ = q(m + ) i+ i+ ej, (25) e i (m + ) i+ i+ = λri+,i (m+ ) i+ i+ ej = (m + ) i+ i+ ej, (q q )e i+ E i (m + ) i+ i+ = q (q q )E i e i+ (m + ) i+ i+ + (q q )e i (m + ) i+ i+. (26) (26) q q (m ) i+ i+, ei = e i+ E i q E i e i+. (6). V (R, R) U q (so 2n+3 ). 2.3 C- V (R, R 2 ) V (R, R) q- C- R-. g = sp 2n, ǫ = = ǫ n =, ǫ = ǫ = = ǫ 2n =. i n, ρ i = n + i; n + i 2n, ρ i = (i n). K ij lk. K ij lk = Cj icl k = ǫ iǫ l δ ij δ lk q ρi q ρ l = ǫ i ǫ l δ i,2 j δ l,2 k q ρi q ρ l ǫi ǫ l q ρi q ρ l, i + j = 2n +, l + k = 2n +, = 0,. i, Rii ii = qq δ ii = qq δi,2 i = q 2, R i,i+ i+,i = q 2 q 2, i = n, q 2, i n. q, i + j 2n +, i j, R ij ij = qqδji δ ji = qq δj,2 i =, i + j = 2n +. i + j = 2n +, j i +, R i, j i+, j : R i,j i+,j = (q2 )K i, j j, i+ = (q2 )ǫ i ǫ j q ρi q ρj = (q q ).

6 ( ) 206 2.3.2 (3) e 2n, f 2n U q (sp 2n+2 ) E, F, V (R, R 2 ) V (R, R) q-. e j = q E i e j e j E i = q [E i, e j ] q, i + j = 2n +, i n, (27) e n = e E q 2 E e = [e, E ] q 2, (28) e i = e i+ E i q E i e i+ = [e i+, E i ] q, i n ; (29) f j = F i f j qf j F i = [F i, f j ] q, i + j = 2n +, i n, (30) f n = q 2 f F F f = q 2 [f, F ] q 2, (3) f i = qf i+ F i F i f i+ = q[f i+, F i ] q, i n. (32) U q (sp 2n ), Uq ext (sp 2n ) FRT- [],. (m + ) i i+ = (q q )E i (m + ) i+ i+, i n, (m + ) n = (q 2 q 2 )E K 2, (m + ) = K 2, (m + ) i i (m ) i i = (m ) i i (m+ ) i i =, (m+ ) i i (m+ ) i i =, (m ) i+ i = (q q )(m ) i+ i+ F i, i n, (m ) n = (q 2 q 2 )K 2 F. i + j = 2n +, i n, n + 2 j 2n n + j 2n. R-,.. R-, : e j (m + ) i i+ = q (m + ) i i+e j q (q q )(m + ) i+ i+ ej, e j (m + ) i+ i+ = (m+ ) i+ i+ ej, (33) (m + ) i i+ = (q q )E i (m + ) i+ i+, ej (m + ) i+ i+ = q (m + ) i+ i+ ej. (34), (27). (28), : e (m + ) n = q (m + ) n e + q (q 2 q 2 )(m + ) i+ i+ ej, (35) (m + ) n = (q 2 q 2 )E (m + ), e (m + ) = q(m+ ) e, (36) e n (m + ) = q (m + ) en. (37), R-,, : e i+ (m + ) i i+ = (m + ) i i+e i+ + (q q )(m + ) i+ i+ ei, e i (m + ) i+ i+ = (m+ ) i+ i+ ei, (38) (m + ) i i+ = (q q )E i (m + ) i+ i+, ei+ (m + ) i+ i+ = q(m+ ) i+ i+ ei+, (39) (29). (30) (32). 2.4 D- V (R, R 2 ) V (R, R) q-

: q- 7 g = so 2n, ǫ = ǫ = = ǫ 2n =. i n, ρ i = n i; ρ n+i = (i ). K ij lk = Ci j Cl k =δ i,2 jδ l,2 k q ρi q ρ l q ρi q ρ l, i + j=2n +, l + k=2n +, = 0,. 0, i = n, i, Rii ii = qq δ ii = qq δi,2 i = q 2. R i,i+ i+,i = q 2, i n. q, i + j 2n +, i j, R ij ij = qqδji δ ji = qq δj,2 i =, i + j = 2n +. i + j = 2n +, j i +, R i,j i+,j : R i,j i+,j = (q2 )K i,j j,i+ = (q2 )q ρi q ρj = (q q ). 2.4.2 (4) e 2n, f 2n U q (so 2n+2 ) E, F, V (R, R 2 ) V (R, R) q-. e j = q E i e j e j E i = q [E i, e j ] q, i + j = 2n +, i n, (40) e n = q E e n+2 e n+2 E = q [E, e n+2 ] q, (4) e i = e i+ E i q E i e i+ = [e i+, E i ] q, i n ; (42) f j = F i f j qf j F i = [F i, f j ] q, i + j = 2n +, i n, (43) f n = F f n+2 qf n+2 F = [F, f n+2 ] q, (44) f i = qf i+ F i F i f i+ = q[f i+, F i ] q, i n. (45) U q (so 2n ), Uq ext (so 2n ) FRT- [], : (m + ) i i+ = (q q )E i (m + ) i+ i+, i n, (m + ) n n+2 = (q q )E (m + ) n+2 n+2, (m ) n+2 n = (q q )(m ) n+2 n+2 F, (m + ) i i(m ) i i = (m ) i i(m + ) i i =, (m + ) i i(m + ) i i =, (m ) i+ i = (q q )(m ) i+ i+ F i, i n. i + j = 2n +, i n, n + 2 j 2n n + j 2n. R-, : e j (m + ) i i+ = q (m + ) i i+e j q (q q )(m + ) i+ i+ ej, (46) (m + ) i i+ = (q q )E i (m + ) i+ i+, (47) e j (m + ) i+ i+ = (m+ ) i+ i+ ej, e j (m + ) i+ i+ = q (m + ) i+ i+ ej. (48), (40). e n,, R n,n+2, = 0. e n+2 (m + ) n n+2 = λr n,n+2 n,n+2 (m+ ) n n+2e n+2 + λr n,n+2, (m+ ) n+2 e λr n,n+2 n+2,n (m+ ) n+2 n+2 en = (m + ) n n+2e n+2 + (q q )(m + ) n+2 n+2 en.

8 ( ) 206 : (m + ) n = (q 2 q 2 )E (m + ), en+2 (m + ) n+2 n+2 = q(m+ ) n+2 n+2 en+2, (49) e n+2 (m + ) n n+2 = (m + ) n n+2e n+2 + (q q )(m + ) n+2 n+2 en, (50) e n (m + ) n+2 n+2 = (m+ ) n+2 n+2 en. (5), (4)., R-, : e i+ (m + ) i i+ = (m+ ) i i+ ei+ + (q q )(m + ) i+ i+ ei, (52) (m + ) i i+ = (q q )E i (m + ) i+ i+, (53) e i+ (m + ) i+ i+ = q(m+ ) i+ i+ ei+, e i (m + ) i+ i+ = (m+ ) i+ i+ ei. (54) (42). (43) (45). [ ] [ ] HU H M, HU N H. Double-bosonization and Majid s conjecture, (I): rank-induction of ABCD [J/OL]. Journal of Mathematics and Physics, 205, 56(702); http://dx.doi.org/0.063/.4935205. [ 2 ] RADFORD D. Hopf algebras with projection[j]. Journal of Algebra, 985, 92(2): 322-347. [ 3 ] RADFORD D, TOWBER J. Yetter-Drinfeld categories associated to an arbitrary bialgebra [J]. Journal of Pure and Appl Algebra, 993, 87(3): 259-279. [ 4 ] MAJID S. Cross products by braided groups and bosonization [J]. Journal of Algebra, 994, 63(): 65-90. [ 5 ] MAJID S. Some comments on bosonization and biproducts [J]. Czech Journal of Physics, 997, 47(2): 5-7. [ 6 ] MAJID S. Double-bosonization of braided groups and the construction of U q(g) [J]. Math Proceedings Cambridge Philos Society, 999, 25(): 5-92. [ 7 ] FADDEEV L D, RESHETIKHIN N Y, TAKHTAJAN L A. Quantization of Lie groups and Lie algebras [J]. Leningrad Mathematics J, 990, (): 93 225. [ 8 ] DRINFELD V G. Quantum groups [C]//Proceedings of the International Congress of Mathematicians. American Mathematics Society, 987, (2): 798-820. [ 9 ] LUSZTIG G. Introduction to Quantum Groups [M]. Cambridge, MA: Birkhäuser, 993. [0] KLIMYK A, SCHMÜDGEN K. Quantum groups and their representations [M]. Berlin: Springer-Verlag, 997. [] MAJID S. Braided momentum in the q-poincare group. Journal of Mathematics Physics [J]. 993, 34(5): 2045-2058. ( )