Discretization of the Convection Term

Σχετικά έγγραφα
Computing the Gradient

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Eulerian Simulation of Large Deformations

Smaller. 6.3 to 100 After 1 minute's application of rated voltage at 20 C, leakage current is. not more than 0.03CV or 4 (µa), whichever is greater.

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

Treatment of Boundary Conditions. Advanced CFD 03

Finite difference method for 2-D heat equation

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

High order interpolation function for surface contact problem

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

D Alembert s Solution to the Wave Equation

EE512: Error Control Coding

Assalamu `alaikum wr. wb.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

High Voltage Ceramic Capacitor (Radial Disc Type)

THICK FILM LEAD FREE CHIP RESISTORS

( y) Partial Differential Equations

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Discretization of Generalized Convection-Diffusion

Second Order RLC Filters

Metal Oxide Varistors (MOV) Data Sheet

Second Order Partial Differential Equations

Forced Pendulum Numerical approach

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Finite Field Problems: Solutions

SHUILI XUEBAO. KFVS( Kinetic Flux Vector Splitting) Boltzmann, KFVS( Kinetic Flux Vector Splitting) BGK(Bhatnagar2Gross2Krook) (Well2balanced),

Approximation of distance between locations on earth given by latitude and longitude

CRASH COURSE IN PRECALCULUS

Homework 8 Model Solution Section

the total number of electrons passing through the lamp.

The Simply Typed Lambda Calculus

Partial Trace and Partial Transpose

Three coupled amplitudes for the πη, K K and πη channels without data

SMD Power Inductor-VLH

Homework 3 Solutions

Srednicki Chapter 55

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Solutions to Exercise Sheet 5

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

Every set of first-order formulas is equivalent to an independent set

± 20% ± 5% ± 10% RENCO ELECTRONICS, INC.

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Multilayer Chip Inductor

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

SMD Power Inductor-VLH

On a four-dimensional hyperbolic manifold with finite volume

Error Evaluation and Monotonic Convergence in Numerical Simulation of Flow

Spherical Coordinates

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Section 8.3 Trigonometric Equations

derivation of the Laplacian from rectangular to spherical coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Εκπαιδευτική Ρομποτική

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Notes on the Open Economy

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Product Description. Softone Globe. Οφέλη. Χαρακτηριστικά. Εφαρμογή. Decorative covered energy-saving lamps for consumer applications

Congruence Classes of Invertible Matrices of Order 3 over F 2

6.003: Signals and Systems. Modulation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) Sine wave travelling to the right side

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Thin Film Chip Resistors

TERMINATIONS FOR SPACE / THERMAL VACUUM APPLICATIONS

ΔΙΠΛΩΜΑΣΙΚΗ ΕΡΓΑΙΑ. του φοιτητή του Σμήματοσ Ηλεκτρολόγων Μηχανικών και. Σεχνολογίασ Τπολογιςτών τησ Πολυτεχνικήσ χολήσ του. Πανεπιςτημίου Πατρών

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

ΠΑΡΑΜΕΤΡΟΙ ΕΠΗΡΕΑΣΜΟΥ ΤΗΣ ΑΝΑΓΝΩΣΗΣ- ΑΠΟΚΩΔΙΚΟΠΟΙΗΣΗΣ ΤΗΣ BRAILLE ΑΠΟ ΑΤΟΜΑ ΜΕ ΤΥΦΛΩΣΗ

1000 VDC 1250 VDC 125 VAC 250 VAC J K 125 VAC, 250 VAC

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

TAMIL NADU PUBLIC SERVICE COMMISSION REVISED SCHEMES

Strain gauge and rosettes

Pseudo-compressibility 방법에서이상유동해석을위한 Level Set 방법의적용 Level Set Method Applied on Pseudo-compressibility Method for the Analysis of Two-phase Flow

PRESENTATION TITLE PRESENTATION SUBTITLE

Operating Temperature Range ( C) ±1% (F) ± ~ 1M E-24 NRC /20 (0.05) W 25V 50V ±5% (J) Resistance Tolerance (Code)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Applications. 100GΩ or 1000MΩ μf whichever is less. Rated Voltage Rated Voltage Rated Voltage

ADVANCED STRUCTURAL MECHANICS

Concrete Mathematics Exercises from 30 September 2016

Biodiesel quality and EN 14214:2012

Metal thin film chip resistor networks

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

1) Formulation of the Problem as a Linear Programming Model

Transcript:

FMIA F. Moukalled L. Mangani M. Darwish An Advanced Introduction with OpenFOAM and Matlab This textbook explores both the theoretical oundation o the Finite Volume Method (FVM) and its applications in omputational Fluid Dynamics (FD). Readers will discover a thorough explanation o the FVM numerics and algorithms used in the simulation o incompressible and compressible luid lows, along with a detailed examination o the components needed or the development o a collocated unstructured pressure-based FD solver. Two particular FD codes are explored. The irst is ufvm, a three-dimensional unstructured pressure-based inite volume academic FD code, implemented within Matlab. The second is OpenFOAM, an open source ramework used in the development o a range o FD programs or the simulation o industrial scale low problems. Moukalled Mangani Darwish Fluid Mechanics and Its Applications 3 Series Editor: A. Thess The Finite Volume Method in omputational Fluid Dynamics With over 22 igures, numerous examples and more than one hundred exercises on FVM numerics, programming, and applications, this textbook is suitable or use in an introductory course on the FVM, in an advanced course on FD algorithms, and as a reerence or FD programmers and researchers. Fluid Mechanics and Its Applications F. Moukalled L. Mangani M. Darwish The Finite Volume Method in omputational Fluid Dynamics The Finite Volume Method in omputational Fluid Dynamics An Advanced Introduction with OpenFOAM and Matlab Engineering ISBN 978-3-39-6873-9 9 78339 68739 Discretization o the onvection Term hapter 2

( ρv) + ( ρvv) = τ + B t ( ) t ρe ( ρα ) + ( ρvα ) = t onvection Term + ( ρve) = ( vp) + ( v τ ) + Q ( ρα) + ( ρvα) = t Transient-like Term Pressure orrection Equation ( ρφ) + ( ρvφ) = ( Γ φ) + Q t Fluid 4 Fluid 2 Fluid Fluid 3 Ω ρ Δt ( ) + ρ U * P P ( P ) ρ * D P ( ( ) S ) Advection-like Term account or compressibility eects = Ω ρ * o P ρ P Δt ( ) + ρ * * ( U ) ( ρ v S ) ρ * H v ( [ ] S ) The simplicity o the convection term does not extend to its discretization (3 decades o research and continuing)

High Order Schemes

Notation WW W P E EE e WW W P E EE e WW W P E EE e v UU U D DD v DD D U UU

onvection Schemes ϕ ϕ DOWNWIND ϕ ϕ D ϕ U UU U D DD UU U D DD v v ENTRAL ϕ ϕ ϕ D QUIK ϕ U ϕ ϕ ϕ D UU U D DD UU U D DD v v SOU ϕ ϕ ϕ U UU U D DD v

onvection Schemes onvection Scheme ENTRAL SOU (Second Order Upwind) QUIK (Quadratic Upwind Interpolation or onvective Kinematics) DOWNWIND Formula = = + 2 = 3 2 2 φ U = 3 4 + 3 8 φ U 8 =

onvection Discretization m (δx) w (δx) e NW N NE Φ= (δy) n S n m v(2,) S w S e W P E ( y) P Φ= (δy) s S s Φ= SW S SE ( ) = ρvφ ρvφ ( ) S = = nb(p ) ( x) P ( ρ e v e S e )φ e + ( ρ w v w S w )φ w + ( ρ n v n S n )φ n + ( ρ s v s S s )φ s =

Second -Order Upwind,SOU = 3 2 φ 2 φ U ( ρ e v e S e )φ e = ρ e v e S e ( ρ w v w S w )φ w = ρ w v w S w ( ρ e v e S e ) 3 2 φ P 2 φ W + ( ρ n v n S n ) 3 2 φ P 2 φ S + a P φ P + a P = ( ) 3 2 φ P 2 φ W ( ) 3 2 φ W 2 φ WW a N φ N = N = E,W,N,S,WW,SS,NN,SS a N N = E,W,N,S,EE,WW,NN,SS ( ρ w v w S w ) 3 2 φ W 2 φ WW + ( ρ s v s S s ) 3 2 φ S 2 φ SS = y ( δ y) n ( δ y) s NW W SW a W = 3 ( 2 ρ wv w S w ) ( 2 ρ ev e S e ) a S = 3 ( 2 ρ v S s s s ) ( 2 ρ v S n n n ) a E = a N = a EE = a NN = ( δ x) w ( δ x) e S w w x N S n S n s S s ( Δx) e S e NE E SE a WW = ( 2 ρ wv w S w ) a SS = ( 2 ρ sv s S s ) ( Δy)

Deerred orrection ( ρvφ SOU ) S = NW ( δ x) w ( δ x) e N NE ( ρ v S )(,SOU +,, ) = = nb(p ) ( ρ v S ), = ρ v S = nb(p ) a P φ P + N = NB(P ) a N φ N = nb(p ) ( )(,SOU, ) = b P dc y ( δ y) n ( δ y) s W SW S w w S n S n s S s ( Δx) e S e E SE ( Δy) x

Unstructured Grids D V U d PN P N3 P N 3 φ U = 2r D N N2 N N 2 S N2 U V D

Unstructured Grid onvection Scheme ENTRAL SOU (Second Order Upwind) QUIK (Quadratic Upwind Interpolation or onvective Kinematics) DOWNWIND Formula no change = + r = + ( 2 ) r = + ( 2 + ) r no change

DOWNWIND Numerical Dispersion Numerical Diusion Numerical Dispersion SOU SMART 3/4 ENTRAL /4 FROMM SUDS NVF-SUDS STOI

omputing the Gradient φ dv = φ ds V V N 2 2 φ V = V φ dv P S N N 3 3 φ P = V P V P S N 4 4 φ P = V P = nb(p ) S

Gradient at the ell Face F 2 P F F 3 F 4 F 2 F 3 P F = ( e dc )e dc + φ d D e dc F 4

Gradient Formulation o HO schemes QUIK SOU ENTRAL = + 2 = + 2 = + 2 = + 4 2 + φ U 8 + φ U 8 + φ U + 8 φ U 8 = + ( 2 + ) r = 3 2 2 φ U = + φ U 2 = + φ U 2 2 = + ( 2 ) r = + 2 = + 2 = + r

Gradient Form o Schemes onvection Scheme ENTRAL SOU (Second Order Upwind) QUIK (Quadratic Upwind Interpolation or onvective Kinematics) DOWNWIND Formula no change = + r = + ( 2 φ ) r = + ( 2 + φ ) r no change

High Resolution Schemes

-Normalization Procedure!φ = φ φ U φ U φ U φ U φ U φ U v UU U D DD v DD D U UU φ U φ U φ U φ U φ U = < = φ U = > = φ U = = = φ U = = =

Normalized HO Schemes! = φ U φ U DW SOU FROMM QUIK! = D 3/4 3/8 /4 Scheme Formula Normalized!φ U = ENTRAL SOU (Second Order Upwind) = = + 2 = = + 2 2 = 3 2 φ 2 φ U = 3 2! = φ U φ U QUIK (Quadratic Upwind Interpolation or DOWNWIND = 3 4 + 8 3 8 = 3 + 4 8 = =

2-B riteria DW 3/4! = φ u φ n ( φ! ) continuous ( φ! )= i φ! =! < ( φ! )< < φ! < ( φ! )= i φ! = v ( φ! )= φ! i φ! < or φ! > min( φ NB, ) max( φ NB, ) φ n+ n i = H φ i k H φ j n,φ n n ( i k+,,φ i+k ) j [ i k,i + k ] Boundedness riteria Flux Limiter (TVD) Positiveness

The Normalized Variable Diagram! = DOWNWIND!! = 3 2 SOU! =! + 3 SMART! = 3 4! + 3 8! = 2! + 2 BOUNDED MINMOD SMART OSHER STOI MUSLD 3/4! =! 3/4 ENTRAL /4 /4 FROMM

Bounded HR Schemes MINMOD BOUNDED D OSHER 3/4 3/4 3/4 /4 /4 /4 SMART STOI MUSL 3/4 3/4 3/4 /4 /4 /4

Implementation φ P,φ N,φ N2,φ N3 SMART 4 ( )! =! 3/4 d PN N P N3 N2 P N 3 N N 2 S N2 /4 3 2 φ P φ N φ U φ P 2r PN! = φ U φ U 5 (! )( φ U ) +φ U

Deerred orrection ( ρ v ) S =!m = ( ) =nb P ( ) =nb P ρ v φ SMART SMART S = ( ρ v S ) SMART!m φ =!m φ +!m " $ # %$ φ SMART " $$$ # $$$ % =nb( P) a P φ P + ( ) =nb P implicit ( ) =nb P ( ) deerred a F φ F = b P!m φ SMART " $$$ # $$$ % ( ) F=NB P =!m SMART =!m φ " $ # %$ +!m φ SMART " $$$ # $$$ % treat implicitly ( ) ( ) =nb P treat explicitly ( ) deerred a P φ P + ( ) F=NB P a F φ F = b P + b P dc SMART

DOWNWIND Numerical Dispersion Numerical Diusion Numerical Dispersion SOU SMART 3/4 ENTRAL /4 FROMM SUDS φ.5 EXAT MINMOD OSHER TVD-MUSL SUPERBEE BJ-MUSL.5 X NVF-SUDS STOI

HR Schemes