Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification

Σχετικά έγγραφα
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT

( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Buried Markov Model Pairwise

GUI

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function

F0 Estimation of Melody and Bass Lines in Real-world Musical Audio Signals

Applying Markov Decision Processes to Role-playing Game

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Singing Information Processing: Music Information Processing for Singing Voices

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

VOCODER VOCODER Vocal

Stabilization of stock price prediction by cross entropy optimization

Detection and Recognition of Traffic Signal Using Machine Learning

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

[9, 10] [2] [4] [10] Kyoto University, Yoshida Honmachi, Sakyo, Kyoto, , Japan 2. Yamaha Corporation. Waseda University a)

EE101: Resonance in RLC circuits

SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]


Statistical Inference I Locally most powerful tests

Solution Series 9. i=1 x i and i=1 x i.

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Probabilistic Approach to Robust Optimization

Ψηφιακή Επεξεργασία Φωνής

Bayesian modeling of inseparable space-time variation in disease risk

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data


Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Numerical Analysis FMN011

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Probability and Random Processes (Part II)

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

High order interpolation function for surface contact problem

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Math 6 SL Probability Distributions Practice Test Mark Scheme

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Other Test Constructions: Likelihood Ratio & Bayes Tests

Medium Data on Big Data

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University


Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models

Approximation of distance between locations on earth given by latitude and longitude

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Ανάλυση, Περιγραφή και Ανάκτηση Μουσικών Δεδομένων: το έργο ΠΟΛΥΜΝΙΑ*

ER-Tree (Extended R*-Tree)

FORMULAS FOR STATISTICS 1

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Simplex Crossover for Real-coded Genetic Algolithms

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Gradient Descent for Optimization Problems With Sparse Solutions

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

Sampling Basics (1B) Young Won Lim 9/21/13

Α Ρ Ι Θ Μ Ο Σ : 6.913

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Design Method of Ball Mill by Discrete Element Method

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

Κάθε γνήσιο αντίγραφο φέρει υπογραφή του συγγραφέα. / Each genuine copy is signed by the author.

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Automatic extraction of bibliography with machine learning

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System


Transcript:

Vol.009-MUS-81 No.13 009/7/30 1 1 1 1 10 81.6% Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification KATSUTOSHI ITOYAMA, 1 MASATAKA GOTO, KAZUNORI KOMATANI, 1 TETSUYA OGATA 1 and HIROSHI G. OKUNO 1 This report presents parameter estimation of mixture model of multiple instruments based on the integrated harmonic and inharmonic model, and its application to musical instrument identification. Parameters of the integrated model, which fit an observed power spectrogram, are estimated by an bayesian inference method based on calculus of variations. Since parameter distributions of the integrated model depend on each instrument, the instrument name is identified by selecting an instrument which has maximum relative instrument weight. Experimental results showed 81.6% of accuracy for 10 instruments. 1 Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University National Institute of Advanced Industrial Science and Technology (AIST) 1. 1) 3) 4),5) 6),7) 8),9) 10),11) 7),1) 13). X(t, f) t f X(t, f) 1 c 009 Information Processing Society of Japan

Table 1 1 Constraints for the parameters of the integrated tone model and their acoustical meanings. α(l) α(l) =1 l l β(h),β(i) β(h) +β(i) =1 γ(m, n) γ(m, n) =1 m,n δ(m, n) δ(m, n) =1 m,n τ ρ H ρ H > 0 mρ H ρ I ρ I > 0 mρ I ω ω>0 σ σ>0 κ, λ κ>0, λ>1.1 J(t, f) H(t, f) I(t, f) J(t, f) =β(h)h(t, f)+β(i)i(t, f) M H 1 N H M I 1 N I H(t, f) = γ(m, n)h(t, f; m, n) I(t, f) = δ(m, n)i(t, f; m, n) H(t, f; m, n) =N (t; T H(m),ρ H)N (f; F H(n),σ H) I(t, f; m, n) =N (t; T I(m),ρ I )M(f; n) N (x; μ, σ )= 1 ( ) (x μ) exp πσ σ ( ) 1 (FI(f) μ) M(f; μ) = exp π(f + κ)logλ ( f ) T H(m) =τ + mρ H T I(m) =τ + mρ I F H(n) =nω F I(f) =log λ κ +1 1.1.1 EM { z = {z β (H),z β (I)}, {z γ(m, n)},...,m H 1, {z δ (m, n)},...,m I 1,...,N H,...,N I 1-of-K 1 1 0 K (t, f) p(t, f, z θ) =p(z β (H) =1 θ) p(t, f, {z γ(m, n)} z β (H) =1,θ) p(z β (H) =1 θ) =β(h) + p(z β (I) =1 θ) p(t, f, {z δ (m, n)} z β (I) =1,θ) p(t, f, {z γ(m, n)} z β (H) =1,θ)= M H 1 N H p(z β (I) =1 θ) =β(i) p(z γ(m, n) =1 z β (H) =1,θ) p(t, f z β (H) =1,z γ(m, n) =1,θ) p(t, f, {z δ (m, n)} z β (I) =1,θ)= M I 1 N I p(z δ (m, n) =1 z β (I) =1,θ) p(t, f z β (I) =1,z δ (m, n) =1,θ) p(z γ(m, n) =1 z β (H) =1,θ)=γ(m, n) p(z δ (m, n) =1 z β (I) =1,θ)=δ(m, n) p(t, f z β (H) =1,z γ(m, n) =1,θ)=H(t, f; m, n) p(t, f z β (I) =1,z δ (m, n) =1,θ)=I(t, f; m, n) θ. Vol.009-MUS-81 No.13 009/7/30 1 } c 009 Information Processing Society of Japan

τ ω p(β(h),β(i)) = D ( β(h),β(i); φ β (H), φ β (I) ) p({γ(m, n)}) =D ( {γ(m, n)}; { φ γ(m, n)} ) p({δ(m, n)}) =D ( {δ(m, n)}; { φ δ (m, n)} ) ( ( ξh p(τ) =N τ; ν τ, + ξ ) 1 ) ( ( ) 1) I ξω p(ω,σ) =N ω; ν ω, G ( σ ; η, ρ H ρ I σ ζ ) D( ) G( ) D(x 1,...,x N; φ 1,...,φ N) N x n φ n 1 G(x; η, ζ) x η 1 e ζx ρ H, ρ I, κ λ.3 X(t, f) X(t, f) X(t, f)p(t, f, z, θ) dt df p(θ X) = p(z,θ X) = z p(x, z, θ) dθ z z q(z, θ) q(z, θ) =q(z) q(θ) q(z) =q(z β (H),z β (I)) q({z γ(m, n)}) q({z δ (m, n)}) q(θ) =q(β(h),β(i)) q({γ(m, n)}) q({δ(m, n)}) q(τ) q(ω,σ) p(t, f, z, θ) F[q] = X(t, f) q(z, θ)log dt df dθ q(z, θ) z Vol.009-MUS-81 No.13 009/7/30 q q(θ) q(z) q({z γ(m, n)} z β (H) =1)=C γ exp log p(t, f, {z γ(m, n)} z β (H) =1,θ) X(t,f),q(θ) q({z δ (m, n)} z β (I) =1)=C δ exp log p(t, f, {z δ (m, n)} z β (I) =1,θ) X(t,f),q(θ) q(z β (H),z β (I)) = C β exp log p(t, f, z β (H),z β (I) θ) X(t,f),q(θ) C β, C γ, C δ q(z) =1 x z f(x) x f(x) q(β(h),β(i)) = C βp(β(h),β(i)) exp log p(t, f, z θ) X(t,f),q(z),q(θ/{β(H),β(I)}) = D ( β(h),β(i); ˆφ β (H), ˆφ β (I) ) q({γ(m, n)}) =C γp({γ(m, n)})exp log p(t, f, z θ) X(t,f),q(z),q(θ/{γ(m,n)}) = D ( {γ(m, n)}; { ˆφ γ(m, n)} ) q({δ(m, n)}) =C δp({δ(m, n)})exp log p(t, f, z θ) X(t,f),q(z),q(θ/{δ(m,n)}) = D ( {δ(m, n)}; { ˆφ δ (m, n)} ) ( ( ˆξH q(τ) =C τp(τ)exp log p(t, f, z θ) X(t,f),q(z),q(θ/{τ}) = N τ;ˆν τ, + ˆξ ) 1 ) I ρ H ρ I q(ω, σ) =C ω,σp(ω,σ)exp log p(t, f, z θ) X(t,f),q(z),q(θ/{ω,σ}) ( ( ) 1) ˆξω = N ω;ˆν ω, G ( σ ;ˆη, σ ˆζ ) C β, C γ, C δ, C τ, C ω,σ q(θ) dθ =1 3 c 009 Information Processing Society of Japan

3. L L J (t, f) l L J (t, f) = α(l) J(l, t, f) l=1 α(l) l {α(l)} p({α(l)}) p({α(l)}) =D ( {α(l)}; { φ α(l)} ) q(z, θ) =q(z) q(θ) L q(z) =q({z α(l)}) q(z β (l, H),z β )(l, I)) q({z γ(m, n)}) q({z δ (m, n)}) q(θ) =q({α(l)}) l=1 L q(β(l, H),β(l, I)) q({γ(l, m, n)}) q({δ(l, m, n)}) q(τ(l)) q(ω(l),σ(l)) l=1 F[q] q({z α(l)}) p({z α(l)} X) z α(l) argmax l q(z α(l) =1) l X(t, f) Table Instrument sounds in this experiment. Instrumet name (Abbreviation) Number of tones Piano (PF) 79 Acoustic Guitar (AG) 70 Electric Guitar (EG) 70 Violin (VN) 576 Cello (VC) 565 Trumpet, Cornet (TR) 30 Trombone (TB) 85 Alto Sax (AS) 97 Tenor Sax (TS) 94 Clarinet (CL) 360 4. Vol.009-MUS-81 No.13 009/7/30 3 Table 3 Constants of the integrated model. M H 30 N H 100 N H 30 N H 100 ρ H 0.05 sec. ρ I 0.05 sec. κ 440.0 Hz λ 1.134 RWC 14) 10 3 1 3 4.1 4 5 15) F0 PF, EG, VN, VC, CL AG, TR, TB, AS, TS 50 70% VN, VC, CL 1 4 c 009 Information Processing Society of Japan

4 Table 4 Accuracy for each instrument. Inst. Baseline 15) Proposed PF 74. % 86.7 % AG 81. % 66.1 % EG N/A 99.4 % VN 69.7 % 96.0 % VC 73.5 % 97.7 % TR 73.5 % 51.7 % TB 76.7 % 54.7 % AS 41.5 % 61.6 % TS 64.7 % 63.6 % CL 90.7 % 94.7 % Avg. 73.1 % 81.6 % 1 Fig. 1 5 Table 5 Confusion matrix. True Classified as inst. PF AG EG VN VC TR TB AS TS CL Total PF 687 4 0 81 0 0 0 0 0 0 79 AG 464 4 141 11 0 0 0 0 80 70 EG 0 0 698 0 3 0 0 0 0 1 70 VN 0 0 553 10 0 0 0 0 11 576 VC 3 0 0 10 55 0 0 0 0 0 565 TR 1 0 79 7 156 0 0 0 57 30 TB 3 1 1 64 53 0 156 0 0 7 85 AS 0 0 0 95 16 0 0 183 0 3 97 TS 4 1 0 69 13 0 0 0 187 0 94 CL 1 0 0 15 3 0 0 0 0 341 360 Total 703 470 705 1107 688 156 156 183 187 50 4875 Variance of relative weight parameters of inharmonic model along frequency axis. 5. CrestMuse COE Vol.009-MUS-81 No.13 009/7/30 1) (1994). ) Goto, M.: A Real-time Music-scene-analysis System: Predominant-F0 Estimation for Detecting Melody and Bass Lines in Real-world Audio Signals, Speech Communication, Vol.43, No.4, pp.311 39 (004). 3) Klapuri, A.: Multipitch Analysis of Polyphonic Music and Speech Signals Using an Auditory Model, IEEE Trans. Audio, Speech and Lang. Process., Vol. 16, No., pp. 55 66 (008). 4) Goto, M.: An Audio-based Real-time Beat Tracking System for Music with or without Drum-sounds, J. New Music Res., Vol.30, No., pp.159 171 (001). 5) Dixon, S.: Automatic Extraction of Tempo and Beat from Expressive Performances, J. New Music Res., Vol.30, No.1, pp.39 58 (001). 6) Kitahara, T.: Computational Musical Instrument Recognition and Its Application to Contentbased Music Information Retrieval, PhD Thesis, Kyoto University (007). 7) Yoshii, K., Goto, M. and Okuno, H.G.: Drum Sound Recognition for Polyphonic Audio Signals by Adaptation and Matching of Spectrogram Templates with Harmonic Structure Suppression, IEEE Trans. Audio, Speech and Lang. Process., Vol.15, No.1, pp.333 345 (007). 8) Kameoka, H., Nishimoto, T. and Sagayama, S.: A Multipitch Analyzer Based on Harmonic Temporal Structured Clustering, IEEE Trans. Audio, Speech and Lang. Process., Vol. 15, No.3, pp.98 994 (007). 9) Vol.007, No.71, pp.155 160 (007). 10) Woodruff, J., Pardo, B. and Dannenberg, R.: Remixing Stereo Music with Score-informed Source Separation, Proc. ISMIR, pp.314 319 (006). 11) Viste, H. and Evangelista, G.: A Method for Separation of Overlapping Partials Based on Similarity of Temporal Envelopes in Multichannel Mixtures, IEEE Trans. Audio, Speech and Lang. Process., Vol.14, No.3, pp.1051 1061 (006). 1) Casey, M. and Westner, A.: Separation of Mixed Audio Sources by Independent Subspace Analysis, Proc. ICMC, pp.154 161 (000). 13) Itoyama, K., Goto, M., Komatani, K., Ogata, T. and Okuno, H. G.: Parameter Estimation for Harmonic and Inharmonic Models by Using Timbre Feature Distributions, IPSJ Journal, 5 c 009 Information Processing Society of Japan

Vol.50, No.7 (009). 14) Goto, M., Hashiguchi, H., Nishimura, T. and Oka, R.: RWC Music Database: Music Genre Database and Musical Instrument Sound Database, Proc. ISMIR, pp.9 30 (003). 15) F0 Vol.44, No.10, pp. 448 458 (003). s(l, H, m, n, t, f) =Ψ ( ˆφα(l) ) +Ψ ( ˆφβ (l, H) ) +Ψ ( ˆφγ(l, m, n) ) Ψ ( ˆφβ (l, H)+ ˆφ β (l, I) ) Ψ ˆξ τ(l) 1 +(ˆν τ(l) t + mρ H) ρ H ( MH 1 N H ˆφ γ(l, m, n) log ˆζ(l) Ψ(ˆη(l)) s(l, I, m, n, t, f) =Ψ ( ˆφα(l) ) +Ψ ( ˆφβ (l, I) ) +Ψ (ˆφδ (l, m, n) ) Ψ ( ˆφβ (l, H)+ ˆφ β (l, I) ) Ψ ˆξ τ(l) 1 +(ˆν τ(l) t + mρ I) ρ I Ψ(x) = d log Γ(x) ˆξτ dx ( MI 1 N I (l) = ˆξ H(l) ρ H ) ) ˆφ δ (l, m, n) log(f + κ) log log λ + ˆξ I(l) ρ I n ˆξ (nˆνω(l) f) ˆη(l) ω(l) ˆζ(l) (FI(f) n) q(z α(l) =1,z β (l, H) =1,z γ(l, m, n) =1 t, f) = exp(s(l, H, m, n, t, f)) ( exp(s(l, H, m, n, t, f)) + exp(s(l, I, m, n, t, f))) l m,n m,n q(z α(l) =1,z β (l, I) =1,z δ (l, m, n) =1 t, f) = exp(s(l, I, m, n, t, f)) ( exp(s(l, H, m, n, t, f)) + exp(s(l, I, m, n, t, f))) l m,n m,n X(t, f) X(l, H, m, n, t, f) =X(t, f) q(z α(l) =1,z β (l, H) =1,z γ(l, m, n) =1 t, f) N H X(l, H, m) = X(l, H, m, n, t, f) dt df ˆφ α(l) = φ α(l)+ X(l) ˆφ β (l, H) = φ β (l, H)+ X(l, H) ˆφβ (l, I) = φ β (l, I)+ X(l, I) ˆφ γ(l, m, n) = φ γ(l, m, n)+ X(l, H, m, n) ˆφδ (l, m, n) = φ δ (l, m, n)+ X(l, I, m, n) ( ξh (l) + ξ I (l)) ντ + T H (l) + T I (l) ρ ρ H ρ I ρ H I ˆν τ (l) = ξ H (l) ρ H + ξ I (l) ρ I + X(l,H) ρ H + X(l,I) ρ I ˆξ H(l) = ξ H(l)+ X(l, H) ˆξI(l) = ξ I(l)+ X(l, I) ˆν ω(l) = ξ ω(l) ν ω(l)+ F 1(l) ξ ω(l)+ F 0(l) ˆη σ(l) = η X(l, H) σ(l)+ F (l) F 1 (l) F ˆζ σ(l) = ζ 0 (l) σ(l)+ M H 1 T H(l) = F (l) = F 0(l) = N H ˆξ ω(l) = ξ ω(l)+ F 0(l) + ξ ω(l) F 0(l) ( F1 (l) F 0 (l) νω(l)) ( ξ ω(l)+ F 0(l)) M I 1 X(l, H, m, t)(t mρ H) dt TH(l) = X(l, H, f) f df F1(l) = X(l, H, n) n N H X(l, H, n, f) nf df Vol.009-MUS-81 No.13 009/7/30 X(l, I, m, t)(t mρ I) dt 6 c 009 Information Processing Society of Japan