[9, 10] [2] [4] [10] Kyoto University, Yoshida Honmachi, Sakyo, Kyoto, , Japan 2. Yamaha Corporation. Waseda University a)
|
|
- Ὡρος Παπαδάκης
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ,2,a) 3. [ 3 [4 [5 8 Kyoto Univerity, Yohida Honachi, Sakyo, Kyoto, 66 85, Japan 2 Yaaha Corporation 3 Waeda Univerity a) akira.aezawa@gail.co [9, [2 [ c 24 Inforation Proceing Society of Japan
2 Generative Model of Muic Copoition Perforance Perforance Perforance 2 Perforance 3 Tie Generative Model of Muic Copoition Generative Model of Shared Teporal Interpretation Perf. iilar! Perf. 3 Perf. 2 Tie iilar! Perf. Perf. 2 Perf. 3 ) 2) 3) [ N S Z {z n } N n z n S z n θ θ z z z π τ 2 π τ S pl n,d) z z n- ϕ d, z n z N ϕ d,t- ϕ d,t ϕ d,td x d, x d,t- x d,t x d,td pl n, d) d n l ergodic : pz π, τ ) π z, n2 θ S D τ z n, zn, ) τ Dirichlet τ Dirτ, ) π π Dirπ ) τ, π τ π 2.2 θ n d T d N Left-to-right Φ d {ϕ d,t } T d t ϕ d, ϕ d,td N Z T d > N ϕ dt [... N [... L n, l) n l d n l pl n, d) c 24 Inforation Proceing Society of Japan 2
3 3 υ ξ M Λ u a μ u n- u n a n- a n μ n- μ n To pl n,d) u N μ N a N µ 2 pl n, d) : pϕ d,t{ Td }) L pl n, d)δn, ) ϕ d,,n, δn, S) ϕ d,t d,n, l T d [ L pl n, d) ϕ d,t,n,ϕ d,t,n,l t n2 l L l2 ϕ d,t,n,lϕ d,t,n,l 2) pl n, d) d t ϕ dt n z n z n θ zn : px dt z, ϕ, θ) n px dt θ ) znϕ dtn 3) px θ ) x θ pθ ; θ ) px dt θ ) dix dt ) θ Noral-Gaa θ { µ, λ } θ {, ν, u, k } x dt µ, λ N µ, λ ) µ i, λ i N G,i, ν,i, u,i, k,i ) d n l nd n d n a n a n µ n [µ n, µ n,d * a n µ l n : pl n a n, µ n, λ ) N l n a n µ n, λ ) 4) : pa n κ, ι) N a n κ, ι ) 5) κ ι µ µ µ * µ c 24 Inforation Proceing Society of Japan 3
4 µ a aµ µ.6.4 µ aµ aµ2 zt µ µ µ2 µ µ a aµ µ Mean-reverting AR) µ n µ n : µ n µ n α µ n ) + ϵ n 6) ϵ n Λ n Λ n µ n + α) 2 ) < α < µ n α µ Λ n 4 µ a a µ µ Λ n Λ n M u M u u ξ υ µ µ µ µ 2 µ 2 µ 3 pu ξ, υ) υ u, n ξ un,u n,, 7) u n d 3 u n n µ Switching-tate Kalan filter : pµ n µ n, Λ, u n )N µ n µ ) un n +α + α, Λ 8) u ξ υ Dirichlet Λ Wihart Wn, W ) 5 2 pl n, d) : pl) [ [ n N l n,d a n µ n,d, λ d N µ n µ n, Λ Dirυ; υ ) 3.3 ) un, υ u, ) N Gan, λ a n,, a n,l ) ξ un,u n,, [ Dirξ ; ξ )WΛ ; n, W ) 9) 2 c 24 Inforation Proceing Society of Japan 4
5 q KL : N µ Σ : N d,n,t z n, ϕ d,t,n 7) qϕ, z, θ, π, τ, µ, a, u, υ, ξ, Λ) qϕ d, )qz)qπ) qθ )qτ )) d qµ)qu)qυ) qa n )qξ n )) qλ) ) n µ Σ N z n, ϕ d,t,n x d,t 8) d,n,t N z n, ϕ d,t,n x d,t µ ) 2 9) d,n,t KL qϕ) qz) HMM x t n O t,n n n T n,n p tn x t ) n O t,nt n,np t,n x t ) px t+ T tn ) n px t T t,n )O t+,n T n,n p tn ) px t+ T tn )p tn x t ) qz) n g n v : log g n, d,t ϕ d,t,n log px d,t θ ) ) log v, log τ, 2) fx) q fx) π qπ) Dirπ + z ) τ qτ ) Dirτ, + N n> z n,z n ) qϕ d,t ) qz) h d,n n, l ) n, l) w d,n,l),n,l ) : log h d,t,n z n, log px d,t θ ) 3) l >, n n log w d,n,l ),n,l) E l,n l, n n + 4) otherwie E l,n : E l,n 2 λ l nd a n µ nd ) 2 + D 2 log λ 5) a n µ n l n n θ : q µ, λ ) N G ν + N, ν + N µ ν + N, u + N 2, k + N Σ + ν N ) )) 2 µ 2 ν + N 6) Switching-tate Kalan filter [ Switching-tate Kalan filter µ Kalan oother u HMM : T d X ndl ϕ d,t,n, t )ϕ d,t,n,l t) 2) C nd t L X ndl 2) l M nd C nd L lx ndl 22) l u HMM O n T, : log O n 2 trγ nλ ) + 2 log det Λ 23) log T, log ξ, 24) υ qυ) Dirυ + u ) ξ qξ,: ) Dirξ + N n> u n,z n,: ) µ pµ n X n, ) N µ n g n, V n ) Kalan oother g V : γ α + α 25) β + α 26) Γ n µ n βµ n γ)µ n βµ n γ) T 27) M S n u n Λ 28) A n diag a n 29) : c 24 Inforation Proceing Society of Japan 5
6 P n V n + β 2 S n 3) V n S n + A n Λ n A n β 2 S n P n S n 3) g n Vn βs n P n V n g n βs n γ) ) + S n γ + A n Λ n M n 32) px n+n µ n, ) N µ n h n, W n ) h W : Error DTW HMM Independent Coupled Coupled+Dynaic Q n W n + S n + A n Λ n A n 33) W n β 2 S n I Q n S n ) 34) h n βwn S n Q n W n h n +S n γ+a n Λ n M n ) γ) 35) µ n : qµ n ) N U n V n g n +W n h n ), U n ) 36) U n V n +W n ) Γ n µ n µ n µ n µ n : µ n µ n U n 37) µ n µ n βpn S n Q n + β 2 Sn T Pn S n ) 38) a : D ικ+λ d a n N C nd µ nd M nd D ι+λ d C nd µ 2 nd, D ι + λ C nd µ 2 nd ) ) d Λ : ) N N ) Λ W n + u n, W + u n Γ n n n 39) 4) HMM Kalan oother Chopin Mazurka9 2 5 [ Chroa 6 % 3% 5% 7% 9% Percentile * Krukal-Walli DTW p.5) vector [2 -chroa kHz DTW DTW [3 ) HSMM HMM HMM 2) HSMM Independent 3) Coupled 4) Coupled+Dynaic α. W I d n D λ 3 ι. κ ξ. υ. 6 DTW Independent Coupled 4.2 J.S.Bach 5 c 24 Inforation Proceing Society of Japan 6
7 7 Phraing d{5,6,7,8}+8 d{,2,3,4}+8 d{3,4,7,8}+8 d{,2,5,6}+8 d{2,4,6,8}+8 d{,3,5,7}+8 : low : ediu 2 : fat 8 u Λ gn Λ ) ) log ab Λ ) d 7 8 d... 4 d , 2 5. [2 - [ Sapp, C. S.: Coparative Analyi of Multiple Muical Perforance, ISMIR, pp ). [2 Stowell, D. and Chew, E.: Maxiu a Poteriori Etiation of Piecewie Arc in Tepo Tie-Serie, Fro Sound to Muic and Eotion, LNCS79), Springer, pp ). [3 Konz, V.: Autoated Method for Audio-Baed Muic Analyi with Application to Muicology, PhD Thei, Saarland Univerity 22). [4 Miki, S., Baba, T. and Katayoe, H.: PEVI: Interface for retrieving and analyzing expreive uical perforance with cape plot, SMC, pp ). [5 Raphael, C.: A Hybrid Graphical Model for Aligning Polyphonic Audio with Muical Score, ISMIR, pp ). [6 Cont, A.: A Coupled Duration-Focued Architecture for Real-Tie Muic-to-Score Alignent, PAMI, Vol. 32, No. 6, pp ). [7 Otuka, T., Nakadai, K., Ogata, T. and Okuno, H. G.: Increental Bayeian Audio-to-Score Alignent with Flexible Haronic Structure Model, ISMIR, pp ). [8 Sako, S., Yaaoto, R. and Kitaura, T.: Ryry: A Real-Tie Score-Following Autoatic Accopanient Playback Syte Capable of Real Perforance with Error, Repeat and Jup, AMT, pp ). [9 Miotto, R., Montecchio, N. and Orio, N.: Statitical Muic Modeling Aied at Identification and Alignent, Ad- MIRe, pp ). [, 24-MUS-3 24). [ Ghahraani, Z. and Hinton, G. E.: Variational learning for witching tate-pace odel, Neural Coputation, Vol. 2, pp ). [2 Fujihia, T.: Realtie Chord Recognition of Muical Sound: A Syte Uing Coon Lip Muic, ICMC, pp ). [3 Hu, N., Dannenberg, R. B. and Tzanetaki, G.: Polyphonic Audio Matching and Alignent for Muic Retrieval, WASPAA, pp ). c 24 Inforation Proceing Society of Japan 7
A Robust Bootstrapping Algorithm of Speaker Models for On-Line Unsupervised Speaker Indexing
ISSN 000-9825, CODEN RUXUEW E-ail: jo@icaaccn Journal of Software, Vol8, No3, March 2007, pp608 66 http://wwwjoorgcn DOI: 0360/jo80608 Tel/Fax: +86-0-62562563 2007 by Journal of Software All right reerved
Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification
Vol.009-MUS-81 No.13 009/7/30 1 1 1 1 10 81.6% Parameter Estimation of Mixture Model of Multiple Instruments and Application to Musical Instrument Identification KATSUTOSHI ITOYAMA, 1 MASATAKA GOTO, KAZUNORI
MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)
1,a) 1,b) 1,c) 1. MIDI [1], [2] U/D/S 3 [3], [4] 1 [5] Song [6] 1 Sony, Minato, Tokyo 108 0075, Japan a) Emiru.Tsunoo@jp.sony.com b) AkiraB.Inoue@jp.sony.com c) Masayuki.Nishiguchi@jp.sony.com MIDI [7]
3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o
Sound Source Identification based on Deep Learning with Partially-Shared Architecture 1 2 1 1,3 Takayuki MORITO 1, Osamu SUGIYAMA 2, Ryosuke KOJIMA 1, Kazuhiro NAKADAI 1,3 1 2 ( ) 3 Tokyo Institute of
Stabilization of stock price prediction by cross entropy optimization
,,,,,,,, Stabilization of stock prediction by cross entropy optimization Kazuki Miura, Hideitsu Hino and Noboru Murata Prediction of series data is a long standing important problem Especially, prediction
MÉTHODES ET EXERCICES
J.-M. MONIER I G. HABERER I C. LARDON MATHS PCSI PTSI MÉTHODES ET EXERCICES 4 e édition Création graphique de la couverture : Hokus Pokus Créations Dunod, 2018 11 rue Paul Bert, 92240 Malakoff www.dunod.com
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.
Baum-Welch Step by Step the Baum-Welch Algorithm and its Application Jin ichi MURAKAMI EM EM EM Baum-Welch Baum-Welch Baum-Welch Baum-Welch, EM 1. EM 2. HMM EM (Expectationmaximization algorithm) 1 3.
( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]
1 1 1 1, Product of ExpertsPoE) 1. ) Harmonic-Temporal Clustering; HTC) [1], [] ) ) HTC Non-negative Matrix Factorization; NMF) [3] 1 Graduate School of Information Science and Technology, The University
Mellin transforms and asymptotics: Harmonic sums
Mellin tranform and aymptotic: Harmonic um Phillipe Flajolet, Xavier Gourdon, Philippe Duma Die Theorie der reziproen Funtionen und Integrale it ein centrale Gebiet, welche manche anderen Gebiete der Analyi
Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]
Query by Phrase: a 2 2 Query by Phrase QBP QBP GaP-NMF GaP-NMF GaP-NMF QBP. Music Information Retrieval MIR [ 2] [3 4]Query-by-Humming QBH MIDI [5 6] [7] Waseda University 2 National Institute of Advanced
[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect
NMF 1 1,a) 1 AED NMF DNN IEEE D-CASE 2012 20% DNN NMF 1. Computational Auditory Scene Analysis: CASA [1] [2] [3] [4] [5] Non-negative Matrxi Factorization (NMF) NMF 2. CASA IEEE 1 Dept. Computer Science
DEIM Forum 2018 F3-5 657 8501 1-1 657 8501 1-1 E-mail: yuta@cs25.scitec.kobe-u.ac.jp, eguchi@port.kobe-u.ac.jp, ( ) ( )..,,,.,.,.,,..,.,,, 2..., 1.,., (Autoencoder: AE) [1] (Generative Stochastic Networks:
Στοχαστικά Σήµατα και Εφαρµογές. ιδάσκων: Ν. Παπανδρέου (Π.. 407/80) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής
Στοχαστικά Σήµατα & Εφαρµογές Βέλτιστα Φίλτρα Wiener ιδάσκων: Ν. Παπανδρέου (Π.. 7/8) Πανεπιστήµιο Πατρών ΤµήµαΜηχανικώνΗ/Υ και Πληροφορικής CEID 7-8 Εισαγωγή ιατύπωση του προβλήµατος: οθέντος των από
Singing Information Processing: Music Information Processing for Singing Voices
: 1 1 1 1 Singing Information Processing: Music Information Processing for Singing Voices Masataka Goto, 1 Takeshi Saitou, 1 Tomoyasu Nakano 1 and Hiromasa Fujihara 1 This paper introduces our research
DISPLAY SUPPLY: FILTER STANDBY
ircuit iagrams and PW Layouts. ircuit iagrams and PW Layouts J.0 P. 0 isplay Supply P: ilter Standby MNS NPUT -Vac 00 P-V- V_OT 0 0 0 0 0 0 0 0 SPLY SUPPLY: LT STNY 0 M0 V 0 T,/0V MSU -VOLTS NOML... STNY
(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X
X, Y f X,Y x, y X x, Y y f X Y x y X x Y y X x, Y y Y y f X,Y x, y f Y y f X Y x y x y X Y f X,Y x, y f X Y x y f X,Y x, y f Y y x y X : Ω R Y : Ω E X < y Y Y y 0 X Y y x R x f X Y x y gy X Y gy gy : Ω
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT
1,a) 1,2,b) Continuous wavelet transform, CWT CWT CWT CWT CWT 100 1. Continuous wavelet transform, CWT [1] CWT CWT CWT [2 5] CWT CWT CWT CWT CWT Irino [6] CWT CWT CWT CWT CWT 1, 7-3-1, 113-0033 2 NTT,
Ψηφιακή Επεξεργασία Φωνής
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Ενότητα 4η: Γραμμική Πρόβλεψη: Ανάλυση και Σύνθεση Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών CS578- Speech Signal Processing Lecture
Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT
1,a) 1,2,b) 1. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1 7-3-1 113-0033 2 NTT 3-1 243-0198 a) Tomohio Naamura@ipc.i.u-toyo.ac.jp b) ameoa@hil.t.u-toyo.ac.jp/ameoa.hiroazu@lab.ntt.co.jp
. i-vector, Total Variability Subspace Adaptation Based Speaker Recognition. Brief Paper ACTA AUTOMATICA SINICA Vol. 40, No. 8 August, 2014.
40 8 2014 8 Brief Paper ACTA AUTOMATICA SINICA Vol. 40, No. 8 Augut, 2014 i-vector 1 1 1 1, (identity vector, i-vector), T i-vector T, (American National Intitute of Standard and Technology, NIST) 2008,,,,,,,,,,
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ
Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α g r i l l b a r t a s o s Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 1 : 0 π μ Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ T ortiyas Σ ο υ
Α Ρ Ι Θ Μ Ο Σ : 6.913
Α Ρ Ι Θ Μ Ο Σ : 6.913 ΠΡΑΞΗ ΚΑΤΑΘΕΣΗΣ ΟΡΩΝ ΔΙΑΓΩΝΙΣΜΟΥ Σ τ η ν Π ά τ ρ α σ ή μ ε ρ α σ τ ι ς δ ε κ α τ έ σ σ ε ρ ι ς ( 1 4 ) τ ο υ μ ή ν α Ο κ τ ω β ρ ί ο υ, η μ έ ρ α Τ ε τ ά ρ τ η, τ ο υ έ τ ο υ ς δ
l 0 l 2 l 1 l 1 l 1 l 2 l 2 l 1 l p λ λ µ R N l 2 R N l 2 2 = N x i l p p R N l p N p = ( x i p ) 1 p i=1 l 2 l p p = 2 l p l 1 R N l 1 i=1 x 2 i 1 = N x i i=1 l p p p R N l 0 0 = {i x i 0} R
γ 1 6 M = 0.05 F M = 0.05 F M = 0.2 F M = 0.2 F M = 0.05 F M = 0.05 F M = 0.05 F M = 0.2 F M = 0.05 F 2 2 λ τ M = 6000 M = 10000 M = 15000 M = 6000 M = 10000 M = 15000 1 6 τ = 36 1 6 τ = 102 1 6 M = 5000
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά.
Μάθηση Λανθανόντων Μοντέλων με Μερικώς Επισημειωμένα Δεδομένα (Learning Aspect Models with Partially Labeled Data) Αναστασία Κριθαρά Xerox Research Centre Europe LIP6 - Université Pierre et Marie Curie
GAUGE BLOCKS. Grade 0 Tolerance for the variation in length. Limit deviation of length. ± 0.25μm. 0.14μm ±0.80μm. ± 1.90μm. ± 0.40μm. ± 1.
GAUGE BLOCKS Accuracy according to ISO650 Nominal length (mm) Limit deviation of length Grade 0 Tolerance for the variation in length Grade Grade Grade Grade 2 Limit deviations of Tolerance for the Limit
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών. Διάλεξη 5
Πανεπιστήμιο Πατρών Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Τομέας Συστημάτων και Αυτομάτου Ελέγχου ΠΡΟΣΑΡΜΟΣΤΙΚΟΣ ΕΛΕΓΧΟΣ Διάλεξη 5 Πάτρα 2008 Χρονικά μεταβαλλόμενες παράμετροι Στο πρόβλημα
Exact linearization control scheme of DFIG
3 29 EL ECR ICMACH IN ESANDCON ROL Vol3 No Jan. 29, 2,, (., 224; 2., 232) :,,,,,,,, :; ; ; ; : M35 : A : 7-449X (29) - 57-6 Exact linearization control cheme of DFIG GUO J ia2hu, 2, ZHANG Lu2hua, CA I
1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)
1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e) 1. [11], [15] 1 Nara Institute of Science and Technology a) akabe.koichi.zx8@is.naist.jp b) neubig@is.naist.jp c) ssakti@is.naist.jp d) tomoki@is.naist.jp
A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis
1 1 n n n n n n A Vocabulary-Free Infinity-Gram Model for Chord Progression Analysis Kazuyoshi Yoshii 1 and Masataka Goto 1 This paper presents a novel nonparametric Bayesian n-gram model as a statistical
1181 (real-timespeechdriven) 1 1 ( ) D FAP FAP (voiceactivationdetectionvad) D FaceGen 3- D XfaceEd MPEG-4 1 FAP 66 FAP ( ) FAP 84
ISSN1000-0054 CN11-2223/N ( ) 2011 51 9 JTsinghuaUniv(Sci& Tech) 2011Vol.51 No.9 5/33 1180-1186 ( 710129) [1-2] 2 [1] MPEG-4 3-D MOS MOS 3.42 3.50 TP391 1000-0054(2011)09-1180-07 A Real-timespeechdriventalkingavatar
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)
(Υπογραϕή) (Υπογραϕή) (Υπογραϕή) (Υπογραϕή) F 1 F 1 RGB ECR RGB ECR δ w a d λ σ δ δ λ w λ w λ λ λ σ σ + F 1 ( ) V 1 V 2 V 3 V 4 V 5 V 6 V 7 V 8 V 9 V 10 M 1 M 2 M 3 F 1 F 1 F 1 10 M 1
STABILITY OF ABERRATION RETRIEVAL METHOD USING SPOT IMAGES
Vol. 2 (202 2 ), No. 4-222 JASCOME STABILITY OF ABERRATION RETRIEVAL METHOD USING SPOT IMAGES ) 2) 3) azuyohi OADA, enji AMAYA and Yuki ONISHI ) ( 52-8552 2-2--W8-36, E-mail: kokada@a.mei.titech.ac.jp)
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Buried Markov Model Pairwise
Buried Markov Model 1 2 2 HMM Buried Markov Model J. Bilmes Buried Markov Model Pairwise 0.6 0.6 1.3 Structuring Model for Speech Recognition using Buried Markov Model Takayuki Yamamoto, 1 Tetsuya Takiguchi
HMY 795: Αναγνώριση Προτύπων
HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Διαχωριστικές συναρτήσεις Ταξινόμηση κανονικών
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
DOCUMENTS DE TRAVAIL / WORKING PAPERS
DOCUMENTS DE TRAVAIL / WORKING PAPERS 2017-66 How shifting investment towards low-carbon sectors impacts employment: three determinants under scrutiny Quentin Perrier 1, *, Philippe Quirion 1,2 September
([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-
5,..,. [8]..,,.,.., Bao-Feng Feng UTP-TX,, UTP-TX,,. [0], [6], [4].. ps ps, t. t ps, 0 = ps. s 970 [0] []. [3], [7] p t = κ T + κ s N -59- , κs, t κ t + 3 κ κ s + κ sss = 0. T s, t, Ns, t., - mkdv. mkdv.
Applying Markov Decision Processes to Role-playing Game
1,a) 1 1 1 1 2011 8 25, 2012 3 2 MDPRPG RPG MDP RPG MDP RPG MDP RPG MDP RPG Applying Markov Decision Processes to Role-playing Game Yasunari Maeda 1,a) Fumitaro Goto 1 Hiroshi Masui 1 Fumito Masui 1 Masakiyo
2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.
Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α 1. Ε ι σ α γ ω γ ή 2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν 5. Π ρ ό τ α σ η 6. Τ ο γ ρ α φ ε ί ο 1. Ε ι σ α γ ω
ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations
ECE 308 SIGNALS AND SYSTEMS FALL 07 Answers to selected problems on prior years examinations Answers to problems on Midterm Examination #, Spring 009. x(t) = r(t + ) r(t ) u(t ) r(t ) + r(t 3) + u(t +
HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:
HOMEWORK# 52258 李亞晟 Eercise 2. The lifetime of light bulbs follows an eponential distribution with a hazard rate of. failures per hour of use (a) Find the mean lifetime of a randomly selected light bulb.
SocialDict. A reading support tool with prediction capability and its extension to readability measurement
SocialDict 1 2 2 2 Web SocialDict A reading support tool with prediction capability and its extension to readability measurement Yo Ehara, 1 Takashi Ninomiya, 2 Nobuyuki Shimizu 2 and Hiroshi Nakagawa
2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <
K+P K+P PK+ K+P - _+ l Š N K - - a\ Q4 Q + hz - I 4 - _+.P k - G H... /.4 h i j j - 4 _Q &\\ \\ ` J K aa\ `- c -+ _Q K J K -. P.. F H H - H - _+ 4 K4 \\ F &&. P H.4 Q+ 4 G H J + I K/4 &&& && F : ( -+..
FORMULAS FOR STATISTICS 1
FORMULAS FOR STATISTICS 1 X = 1 n Sample statistics X i or x = 1 n x i (sample mean) S 2 = 1 n 1 s 2 = 1 n 1 (X i X) 2 = 1 n 1 (x i x) 2 = 1 n 1 Xi 2 n n 1 X 2 x 2 i n n 1 x 2 or (sample variance) E(X)
F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2
F (x) = kx x k F = F (x) U(0) U(x) = x F = kx 0 F (x )dx U(x) = U(0) + 1 2 kx2 x U(0) = 0 U(x) = 1 2 kx2 U(x) x 0 = 0 x 1 U(x) U(0) + U (0) x + 1 2 U (0) x 2 U (0) = 0 U(x) U(0) + 1 2 U (0) x 2 U(0) =
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI
E-mail: {kameoka,sagayama}@hil.t.u-tokyo.ac.jp, m.goto@aist.go.jp GUI Selective Amplifier of Periodic and Non-periodic Components in Concurrent Audio Signals with Spectral Control Envelopes Hirokazu Kameoka
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET
Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical
ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:
Αριθµητικές Μέθοδοι Collocation. Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές
Αριθµητικές Μέθοδοι Collocation Απεικόνιση σε Σύγχρονες Υπολογιστικές Αρχιτεκτονικές Hermite Collocation Method BVP L B uxy (, ) = f(, xy), (, xy) Ω uxy (, ) = gxy (, ), (, xy) Ω Red Black Collocation
Coupling strategies for compressible - low Mach number flows
Coupling strategies for compressible - low Mach number flows Yohan Penel, Stéphane Dellacherie, Bruno Després To cite this version: Yohan Penel, Stéphane Dellacherie, Bruno Després. Coupling strategies
Solar Neutrinos: Fluxes
Solar Neutrinos: Fluxes pp chain Sun shines by : 4 p 4 He + e + + ν e + γ Solar Standard Model Fluxes CNO cycle e + N 13 =0.707MeV He 4 C 1 C 13 p p p p N 15 N 14 He 4 O 15 O 16 e + =0.997MeV O17
γ n ϑ n n ψ T 8 Q 6 j, k, m, n, p, r, r t, x, y f m (x) (f(x)) m / a/b (f g)(x) = f(g(x)) n f f n I J α β I = α + βj N, Z, Q ϕ Εὐκλείδης ὁ Ἀλεξανδρεύς Στοιχεῖα ἄκρος καὶ μέσος λόγος ὕδωρ αἰθήρ ϕ φ Φ τ
Στοχαστικά Σήματα και Τηλεπικοινωνιές
Στοχαστικά Σήματα και Τηλεπικοινωνιές Ενότητα 4: Βέλτιστα Φίλτρα Wiener Καθηγητής Κώστας Μπερμπερίδης Πολυτεχνική Σχολή Τμήμα Μηχανικών Η/Υ και Πληροφορικής Σκοποί ενότητας Παρουσίαση βασικών εννοιών των
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
J J l 2 J T l 1 J T J T l 2 l 1 J J l 1 c 0 J J J J J l 2 l 2 J J J T J T l 1 J J T J T J T J {e n } n N {e n } n N x X {λ n } n N R x = λ n e n {e n } n N {e n : n N} e n 0 n N k 1, k 2,..., k n N λ
η η η η GAR = 1 F RR η F RR F AR F AR F RR η F RR F AR µ µ µ µ µ µ Γ R N=mxn W T X x mean X W T x g W P x = W T (x g x mean ) X = X x mean P x = W T X d P x P i, i = 1, 2..., G M s t t
38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4
Fig. A-1-1. Te(OH) NH H PO (NH ) HPO (TAAP). Projection of the crystal structure along the b direction [Ave]. 9 1. 7.5 ( a a )/ a [1 ] ( b b )/ b [1 ] 5..5 1.5 1 1.5 ( c c )/ c [1 ].5 1. 1.5. Angle β 1.
Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation
3 2 3 2 3 undle Adjustment or 3-D Reconstruction: Implementation and Evaluation Yuuki Iwamoto, Yasuyuki Sugaya 2 and Kenichi Kanatani We describe in detail the algorithm o bundle adjustment or 3-D reconstruction
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :
Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4//,a) Vocoder (F) F F. PSOLA [] sinusoidal model [] phase vocoder Vocoder [3] (F) F 3 [4], [5], [6], [7], [8], [9] [], [], [], [3], [4] [5], [6] [7], [8], University
Αναγνώριση Προτύπων. Μη παραμετρικές τεχνικές Αριθμητικά. (Non Parametric Techniques)
Αναγνώριση Προτύπων Μη παραμετρικές τεχνικές Αριθμητικά Παραδείγματα (Non Parametric Techniques) Καθηγητής Χριστόδουλος Χαμζάς Τα περιεχόμενο της παρουσίασης βασίζεται στο βιβλίο: Introduction to Pattern
{takasu, Conditional Random Field
DEIM Forum 2016 C8-6 CRF 700 8530 3 1 1 700 8530 3 1 1 101 8430 2-1-2 E-mail: pobp52cw@s.okayama-u.ac.jp, ohta@de.cs.okayama-u.ac.jp, {takasu, adachi}@nii.ac.jp Conditional Random Field 1. Conditional
Feasible Regions Defined by Stability Constraints Based on the Argument Principle
Feasible Regions Defined by Stability Constraints Based on the Argument Principle Ken KOUNO Masahide ABE Masayuki KAWAMATA Department of Electronic Engineering, Graduate School of Engineering, Tohoku University
clearing a space (focusing) clearing a space, CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc-
clearing a space (focusing) clearing a space, CS CS CS CS CS experiencing I 1. E. T. Gendlin (1978) experiencing (Gendlin 1962) experienc- 133 ing experiencing 2009 experiencing Gendlin (1978) CS 2. CS
Ax = b. 7x = 21. x = 21 7 = 3.
3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3
2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.
DEIM Forum 216 A1-1 N-gram IDF 565 871 1-5 E-mail: {hirakawa.maumi,hara}@it.oaka-u.ac.jp N-gram IDF IDF N-gram N-gram N-gram N-gram IDF N-gram N-gram IDF N-gram N-gram IDF Web Wikipedia 1 N-gram IDF [3]
Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ
. Μέθοδος Frobenius Τυπολογίο Μαθηµατικών Μεθόδων Φυσικής ΙΙ d w Γενική µορφή της γραµµικής.ε. ης τάξης: dz + P (z)dw + Q(z)w = dz Μορφή της.ε. όταν το σηµείο z = z είναι κανονικό ανώµαλο σηµείο d w dz
Hartree-Fock Theory. Solving electronic structure problem on computers
Hartree-Foc Theory Solving electronic structure problem on computers Hartree product of non-interacting electrons mean field molecular orbitals expectations values one and two electron operators Pauli
1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models
HMM 1,a 1,b 3 Sakriani Sakti 1 Graham Neubig 1 1 Hidden Markov Model HMM HMM HMM HMM HMM A Study on HMM-Based Speech Synthesis Using Rich Context Models Shinnosuke Takamichi 1,a Toda Tomoki 1,b Shiga Yoshinori
An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio
C IEEJ Transactions on Electronics, Information and Systems Vol.133 No.5 pp.910 915 DOI: 10.1541/ieejeiss.133.910 a) An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software
k k ΚΕΦΑΛΑΙΟ 1 G = (V, E) V E V V V G E G e = {v, u} E v u e v u G G V (G) E(G) n(g) = V (G) m(g) = E(G) G S V (G) S G N G (S) = {u V (G)\S v S : {v, u} E(G)} G v S v V (G) N G (v) = N G ({v}) x V (G)
Additional Results for the Pareto/NBD Model
Additional Results for the Pareto/NBD Model Peter S. Fader www.petefader.com Bruce G. S. Hardie www.brucehardie.com January 24 Abstract This note derives expressions for i) the raw moments of the posterior
An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System
6 (5..9) 6 An Advanced Manipulation for Space Redundant Macro-Micro Manipulator System Kazuya Yoshida, Hiromitsu Watanabe * *Tohoku University : (Macro-micro manipulator system) (Flexible base), (Vibration
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Echo path identification for stereophonic acoustic echo cancellation without pre-processing
Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών. Εισαγωγή στην Οικονομική Ανάλυση. Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014
Εθνικό & Καποδιστριακό Πανεπιστήμιο Αθηνών Εισαγωγή στην Οικονομική Ανάλυση Νίκος Θεοχαράκης Διάλεξη 5 Ιανουάριος 2014 Ελαστικότητα Ελαστικότητα Γενικά η ελαστικότητα μας δείχνει πως αντιδρά μια εξαρτημένη
1 B0 C00. nly Difo. r II. on III t o. ly II II. Di XR. Di un 5.8. Di Dinly. Di F/ / Dint. mou. on.3 3 D. 3.5 ird Thi. oun F/2. s m F/3 /3.
. F/ /3 3. I F/ 7 7 0 0 Mo ode del 0 00 0 00 A 6 A C00 00 0 S 0 C 0 008 06 007 07 09 A 0 00 0 00 0 009 09 A 7 I 7 7 0 0 F/.. 6 6 8 8 0 00 0 F/3 /3. fo I t o nt un D ou s ds 3. ird F/ /3 Thi ur T ou 0 Fo
Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας
Κεφάλαιο 6 Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας Σε αυτό το κεφάλαιο θεωρούμε την εξίσωση της θερμότητας στη μια διάσταση ως προς τον χώρο και θα κατασκευάσουμε μεθόδους πεπερασμένων
Fundamentals of Signal Processing for Communications Systems
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE 606-8501 E-mail: kazunori@ikyoto-uacjp ZFMMSE Abstract Fundamentals of Signal Processing for Communications
11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))
Drinfeld Drinfeld 29 8 8 11 Drinfeld [Hat3] 1 p q > 1 p A = F q [t] A \ F q d > 0 K A ( ) k( ) = A/( ) A K Laurent F q ((1/t)) 1/t C Drinfeld Drinfeld p p p [Hat1, Hat2] 1.1 p 1.1.1 k M > 0 { Γ 1 (M) =
Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.
Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ. 2.1 Σηµειακή Εκτίµηση. = E(ˆθ) και διασπορά σ 2ˆθ = Var(ˆθ).
Κεφάλαιο 2 ΕΚΤΙΜΗΣΗ ΠΑΡΑΜΕΤΡΩΝ Οι στατιστικές δείγµατος που υπολογίζονται από τα δεδοµένα που έχουν συλλεχθεί, όπως η δειγµατική µέση τιµή x και η δειγµατική διασπορά s 2, χρησιµοποιούνται για την εκτίµηση
The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining
1,a) 1,b) J-POP 100 The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining Shinohara Toru 1,a) Numao Masayuki 1,b) Abstract: Chord is an important element of music
CDMA. Performance Analysis of Chaotic Spread Spectrum CDMA Systems. LI Xiao - chao, GUO Dong - hui, ZENG Quan, WU Bo - xi RESEARCH & DEVELOPMENT
2003 6 RESEARCH & DEVELOPME 00-893X(2003) 06-003 - 06 3 CDMA Ξ,, (, 36005), roecker Delta, CDMA, DS - CDMA, CDMA, CDMA CDMA, CDMA, Gold asami DS - CDMA CDMA ; ; ; 929. 5 ;O45. 5 A Performace Aalysis of
Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης
.. Μελέτη και Υλοποίηση Ελεγκτών Ρομποτικών Συστημάτων με χρήση Αλγορίθμων Ενισχυτικής Μάθησης Πολυτεχνείο Κρήτης 22 Ιουλίου, 2009 Διάρθρωση Εισαγωγή Μαρκοβιανές Διεργασίες Απόφασης (ΜΔΑ) Ενισχυτική Μάθηση
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface Hiroya SAITO Kenji NAKAYAMA Akihiro HIRANO Graduate School of Natural Science and Technology,Kanazawa Univ. E-mail:
Voice Conversion based on Non-negative Matrix Factorization with Segment Features in Noisy Environments
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. NMF 657 8501 1 1 657 8501 1 1 E-ail: {fujii,aihara}@e.cs.scitec.kobe-u.ac.jp, {takigu,ariki}@kobe-u.ac.jp
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
#%" )*& ##+," $ -,!./" %#/%0! %,!
-!"#$% -&!'"$ & #("$$, #%" )*& ##+," $ -,!./" %#/%0! %,! %!$"#" %!#0&!/" /+#0& 0.00.04. - 3 3,43 5 -, 4 $ $.. 04 ... 3. 6... 6.. #3 7 8... 6.. %9: 3 3 7....3. % 44 8... 6.4. 37; 3,, 443 8... 8.5. $; 3
= df. f (n) (x) = dn f dx n
Παράγωγος Συνάρτησης Ορισμός Παραγώγου σε ένα σημείο ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) Ορισμός Cauchy: f (ξ) = lim x ξ g(x, ξ), g(x, ξ) = f(x) f(ξ) x ξ ɛ > 0 δ(ɛ, ξ) > 0
= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f
2 n dx (x)+g(x)u () x n u (x), g(x) x n () +2 -a -b -b -a 3 () x,u dx x () dx () + x x + g()u + O 2 (x, u) x x x + g()u + O 2 (x, u) (2) x O 2 (x, u) x u 2 x(x,x 2,,x n ) T, (x) ( (x), 2 (x),, n (x)) T
"!$#&%('*),+.- /,0 +/.1),032 #4)5/ /.0 )80/ 9,: A B C <ED<8;=F >.<,G H I JD<8KA C B <=L&F8>.< >.: M <8G H I
"!$#&%('*),+.- /,0 +/.1),032 #4)5/.-076 4/.0 )80/ 9,: ;=@?4: A B C
Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)
Τύπος TAYLOR f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) f(x) = ξ μεταξύ x και x 0 n 1 (x x 0 ) k f (k) (x 0 ) + R n (x) R n (x) = (x ξ)n p (x x 0 ) p p(n 1)! f (n) (ξ) υπόλοιπο Sclömlich-Roche
y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max
2006 2006 Workshop on Information-Based Induction Sciences (IBIS2006) Osaka, Japan, October 31- November 2, 2006. [ ] Introduction to statistical models for populational optimization Λ Shotaro Akaho Abstract:
Topic Structure Mining based on Wikipedia and Web Search
DEWS2008 A7-5 Wikipedia Web AdamJatowt 606-8501 606-8501 E-mail: {nakatani,tezuka,adam,tanaka}@dl.kuis.kyoto-u.ac.jp Wikipedia Web Web Wikipedia Wikipedia Abstract Topic Structure Mining based on Wikipedia