A High Precision Iris Feature Extraction and Its Application in Iris Recognition

Σχετικά έγγραφα
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

ER-Tree (Extended R*-Tree)

Area Location and Recognition of Video Text Based on Depth Learning Method

Detection and Recognition of Traffic Signal Using Machine Learning

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Buried Markov Model Pairwise

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Adaptive grouping difference variation wolf pack algorithm

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Method to Distinguish between Handwritten and Machine-printed Characters Inspired by Human Vision System

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Control Theory & Applications PID (, )

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

SVM. Research on ERPs feature extraction and classification

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection


Comparison of Discriminant Analysis in Ear Recognition

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

Quick algorithm f or computing core attribute

Kernel Methods and their Application for Image Understanding

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Research on Economics and Management

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Simplex Crossover for Real-coded Genetic Algolithms

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Zigbee. Zigbee. Zigbee Zigbee ZigBee. ZigBee. ZigBee

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Stabilization of stock price prediction by cross entropy optimization

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator


ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Ασφάλεια σε χώρους αναψυχής: Ένα σύστημα από έξυπνα αντικείμενα

Secure Cyberspace: New Defense Capabilities

Applying Markov Decision Processes to Role-playing Game

Σύστημα επεξεργασίας, ανάλυσης και ταξινόμησης εικόνων δισδιάστατης ηλεκτροφόρησης με τεχνικές αναγνώρισης προτύπων

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Homomorphism in Intuitionistic Fuzzy Automata

Automatic extraction of bibliography with machine learning

Application of a novel immune network learn ing algorithm to fault diagnosis

Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

MathCity.org Merging man and maths

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Newman Modularity Newman [4], [5] Newman Q Q Q greedy algorithm[6] Newman Newman Q 1 Tabu Search[7] Newman Newman Newman Q Newman 1 2 Newman 3

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Elements of Information Theory

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Congruence Classes of Invertible Matrices of Order 3 over F 2

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Bayesian Discriminant Feature Selection

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

CorV CVAC. CorV TU317. 1

Approximation of distance between locations on earth given by latitude and longitude

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

Motion analysis and simulation of a stratospheric airship

On a four-dimensional hyperbolic manifold with finite volume

BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ.

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα

Reading Order Detection for Text Layout Excluded by Image

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

A Study on Segmentation of Artificial Grayscale Image for Vector Conversion

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Ο νοσηλευτικός ρόλος στην πρόληψη του μελανώματος

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Παλεπηζηήκην Πεηξαηώο Τκήκα Πιεξνθνξηθήο Πξόγξακκα Μεηαπηπρηαθώλ Σπνπδώλ «Πξνεγκέλα Σπζηήκαηα Πιεξνθνξηθήο»

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Assalamu `alaikum wr. wb.

Homework 3 Solutions

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Transcript:

A High Precision Iris Feature Extraction and Its Application in Iris Recognition * ** 84 E-mail: *cld3@giga.net.tw, **pierre@isu.edu.tw ( ) ( ) CASIA ABSTRACT In this paper, a novel technique is proposed for high performance iris feature extraction. First, we elaborate a simple and fast iris location method and extract an iris image by the center coordinate of pupil. The iris image will be stretched into a rectangle block and the block is segmented many parts. We adopt Sobel transform to enhance iris texture, vertical projection to obtain one dimension energy signal, and one dimension wavelet transform to reduce the 4 feature vectors of the energy signal and restrain the 8 4 high frequency noise. Finally, probabilistic neural 7 8 network (PNN) is regarded as a classifier for iris recognition. A comparative experiment of existing methods for iris recognition is evaluated on CASIA iris image databases. The experimental results reveal the proposed algorithm provides superior performance in iris recognition, but it has still small 993 Daugman feature dimension and recognition efficiency. These [-3] prove the proposed method is suitable for embedded (-D Gabor wavelet transform) system or real-time system in resource-constrained. Keywords : iris recognition, wavelet transform, probabilistic neural network 48bits Daugman.

[4-5,4,6-7] (elaborate) (a) CASIA. (a) (pupil) (sclera) (b) (c). (a) (b) (c) [4]. LL /4. (b) T 3. T = w p () 3. (Circular iris block image) P w B A (a), if A( > T B( = (), if A( < T (b) E ( ( = B( i + i j + j E (3) ii = jj = B(, if E( > 4 B ( = (4), otherwise ( E >4 ( B 4 ( i B, (c) 3. (d) (c) (e). (a) (b) (c) (d) (e) (b) (a)

( (c)) ( (d)) (normalize)( (e)) (Multi-resolution analysis, MRA) 3 s H L cd (Detail Signal), ca (Approximate Signal) 3. (blur) cd [ n] = s[ k ] H[ n k ] D = s, H (9) k= 3 [3] ca[ n] = s[ k] L[ n k] A = s, L () k = (5) 4. (a) 3.3 (b) 3. (a) (b) 3.3 3 mxn 4. g xn L g (Neural-based Classifier for Iris xn G = M O M (6) Recognition) 4. g mx L g mxn D.F.specht 988 (Probabilistic Neural Network, PNN)[8] 5 input units pattern units (summation s units) output units s = m [-5] i g ij, < i < n, < j < m (7) j = S S = [ s L s n ] (8). m n n. (concentrate) 3. [4] σ 3.4 4 (Wavelet Transform, WT) [7,9] σ 4

N t ( xi y Ai) ( xi y Ai) () P f A( X) = ( ) p / p exp( ) (π ) σ N i = σ N PNN f A (X ) : X A N P p : σ : P N : A (6) X : y Ai : A i f A f A X P 4.4 (Matching) (verify) PNN PNN PNN P P P fa (Contingence Table) H H ( ) ( ) fb (False Rejection Rate, FRR) H (False Acceptance Rate, 5. FAR) CHEN CHU [4] (threshold) 4. FAR = / FAR = / FAR FRR 5 P FAR FRR (Equal Error 4.3 (Identification) Rate, ERR) (recognition rate) [-5] 5. (Particle Swarm Optimization, PSO)[8] X Y X PNN

PSO PSO. (%) 99.3 PSO (%) 85 PSO % 99.3% PSO 85 PSO (Social-Only model) 6. (Matching) (Cognition-Only model): (One-class ) Social-Only Model: recognition) 3 Vid = Vid + c rand( ) ( Pgd X id ) () ) Cognition-Only Model: FAR Vid = Vid + c rand( ) ( Pid X id ) (3) FRR. (FAR/FRR) 3) PSO Combine Model: (%) Vid = Vid + c rand( ) ( Pid X id ) FAR(%) FRR(%) 35.8. + c * rand( ) ( P gd X id ) 36.9..3 X id = Xid + V (4) id 37...69 d i 4..9 V i X i EER 4 P i P g 3. (EER) c c EER (%).54 EER (%). (ms) < 6. FAR FRR35.8%4%FAR.%.% FRR.%.9% Mayank Valsa CASIA [] 3 EER=.% Mayank Valsa 43 CASIA [] 8 8 ms 7 3 6.3 3x8 AMD.G Hz(.8G)5M ddram Windows Mayank Valsa[] XP Matlab 6.5 CASIA (iris coding) 6. (Identification) Mayank Valsa 3 4 4.

Multiple Features for High Performance Face FAR/FRR(%) (%) Recognition System ", 4 International Computer Symposium (ICS4), Taipe Dec Avila [7].3/.8 97.89 4. Li Ma [4]./.98 98 6 Christel-Loic Tisse, Lionel Torres,Michel Robert, Tissue [6].84/8.79 89.37 Person Identification Based on Iris Patterns, Daugman []./.9 99.9 Proceedings of the 5 th International Proposed./.69 99.3 Conference on Vision Interface,. 4 7 C. Sidney Burrus Ramesh A.Gopinath Hai ta Guo, Introduction to Wavelets and Wavelet Daugman Transforms: A Primer, 998. 8 D.F.Specht, Probabilistic Neural Network for Classification, Map, or Associative Memory, Daugman Proceeding of the IEEE International Conference on Neural Network, vol., pp55-53, 988. (iris coding) 9 Jaideva C.Goswami and Andrew K. Chan Fundamentals of Wavelets 999. J. Daugman, Biometric Personal Identification System Based on Iris Analysis, United States Patent, no. 5956, 994 J. Daugman, High Confidence Visual Recognition of Person by a Test of Statistical Independence, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 5, no., pp48-5, Nov. 993 J. Daugman, Demodulation by Complex-Valued Wavelets for Stochastic Pattern Recognition, Int l J, Wavelets, Multiresolution and Information Processing, vol., no., pp. -7, 3. CASIA 3 J. Daugman, Statistical Richness of Visual % Phase Information: Update on Recognition Persons by Iris Patterns, Int l J. Computer EER.% Vision, vol. 45, no., pp. 5-38.P.W. Hallinan Recognizing Human Eyes, Geometric ms Methods Comput. Vision. Vol. 57, pp. 4-6, 99. 4 L. Ma, Tan, Tieniu, Wang, Yunhong, Iris CASIA iris database. Institute of Automation, Chinese Academy of Sciences, [Online].http://www.sinobiometrics.com/casiairis.htm. Chia -Te CHU and Ching-Han CHEN, The Application of Face Authentication System for Internet Security Using Object-Oriented Technology, Journal of Internet Technology. (Accepted) 3 Ching-Han CHEN, Chia -Te CHU, " An High Efficiency Feature Extraction Based on Wavelet Transform for Speaker Recognition ", 4 International Computer Symposium (ICS4), Taipe Dec 4. 4 Ching-Han CHEN, Chia-Te CHU, " High Efficiency Iris Feature Extraction Based on -D Wavelet Transform ", 5 Design automation and test in Europe (DATE5), Munich,Germany, March, 5. 5 Ching-Han CHEN, Chia -Te CHU, " Combining Recognition Using Circular Symmetric Filters, Processing of THE 6 Th International Conference on Pattern Recognition, vol., pp. 44-47,. 5 Mayank Vatsa, Richa Singh, and P.Gupta, Comparison of Iris Recognition Algorithms, Proceedings of ICISIP'4, India, pp.354-358, 4. 6 R.Wildes, J.Asmuth, G. Green, S. Hsu, R. Kolczynsk J. Matey, and S. McBride, A Machine-Vision System for Iris Recognition, Machine Vision and Application, vol. 9, pp. -8, 996. 7 Sanchez-Avila C., Sanchez-Reillo R.; de Martin-Roche D., Iris Recognition for Biometric Identification Using Dyadic Wavelet Transform Zero-Crossing, Proceedings of the IEEE 35 th International Carnahan Conference on Security Technology, pp. 7-77,. 8 J.Kennedy et al.,"particle Swarm Optimization", Proc of IEEE Int. Conf. Neural Networks, vol. IV, pp.94-948, 995.