Control Theory & Applications. Lyapunov. : (intelligent transportation system, ITS),

Σχετικά έγγραφα
Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

Quick algorithm f or computing core attribute

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

ER-Tree (Extended R*-Tree)

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

High order interpolation function for surface contact problem

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

A summation formula ramified with hypergeometric function and involving recurrence relation

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

CorV CVAC. CorV TU317. 1

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Motion analysis and simulation of a stratospheric airship

Research on real-time inverse kinematics algorithms for 6R robots

A System Dynamics Model on Multiple2Echelon Control

Arbitrage Analysis of Futures Market with Frictions

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

:,,,, ,,, ;,,,,,, ,, (Barro,1990), (Barro and Sala2I2Martin,1992), (Arrow and Kurz,1970),, ( Glomm and Ravikumar,1994), (Solow,1957)

Identificatio n of No n2uniformly Perio dically Sa mpled Multirate Syste ms

Applying Markov Decision Processes to Role-playing Game

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

A research on the influence of dummy activity on float in an AOA network and its amendments

Ανάλυση Προτιμήσεων για τη Χρήση Συστήματος Κοινόχρηστων Ποδηλάτων στην Αθήνα

College of Life Science, Dalian Nationalities University, Dalian , PR China.

A new practical method for closed-loop identification with PI control

!! " # $%&'() * & +(&( 2010

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

A multipath QoS routing algorithm based on Ant Net

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Control Theory & Applications PID (, )

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

CAP A CAP

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Buried Markov Model Pairwise

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Homomorphism in Intuitionistic Fuzzy Automata

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

The straight-line navigation control of an agricultural tractor subject to input saturation

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

Approximation Expressions for the Temperature Integral

ΜΑΘΗΜΑΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΤΗΣ ΔΥΝΑΜΙΚΗΣ ΤΟΥ ΕΔΑΦΙΚΟΥ ΝΕΡΟΥ ΣΤΗΝ ΠΕΡΙΠΤΩΣΗ ΑΡΔΕΥΣΗΣ ΜΕ ΥΠΟΓΕΙΟΥΣ ΣΤΑΛΑΚΤΗΦΟΡΟΥΣ ΣΩΛΗΝΕΣ ΣΕ ΔΙΑΣΤΡΩΜΕΝΑ ΕΔΑΦΗ

Research Progress on Vibration Isolation of Floating Slab Track Structure of Subway

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Single-value extension property for anti-diagonal operator matrices and their square

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

þÿ»» ± - ±»» ± - ½É¼ ½ ±Ã»

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ ΚΑΙ ΔΙΑΤΡΟΦΗΣ ΤΟΥ ΑΝΘΡΩΠΟΥ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Adaptive grouping difference variation wolf pack algorithm

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

On the Galois Group of Linear Difference-Differential Equations

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

DOI /J. 1SSN

Probabilistic Approach to Robust Optimization

Eects of Gas-Surface Interaction Model in Hypersonic Rareed Gas Flow

Mitomycin C application for the prevention of postoperative synechiae formation at the anterior commissure.

ZnO-Bi 2 O 3 Bi 2 O 3

Models for Asset Liability Management and Its Application of the Pension Funds Problem in Liaoning Province

Study of urban housing development projects: The general planning of Alexandria City

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,


MTMD TMD TMD 1 MTMD TMD TMD TMD

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Envelope Periodic Solutions to Coupled Nonlinear Equations

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

MSM Men who have Sex with Men HIV -

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Eulerian Simulation of Large Deformations

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Oscillatory Gap Damping

Accounts receivable LTV ratio optimization based on supply chain credit

supporting phase aerial phase supporting phase z 2 z T z 1 p G quardic curve curve f 2, n 2 f 1, n 1 lift-off touch-down p Z

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Fragility analysis for control systems


Congruence Classes of Invertible Matrices of Order 3 over F 2

Transcript:

27 12 2010 12 : 1000 8152(2010)12 1669 05 Control Theory & Applications Vol. 27 No. 12 Dec. 2010 Lyapunov,, (, 400044) : (intelligent transportation system, ITS),.,, (full velocity difference, FVD), Lyapunov. FVD,. : ; ; Lyapunov; : TP391.9 : A Lyapunov stability analysis for the full velocity difference car-following model LI Yong-fu, SUN Di-hua, CUI Ming-yue (College of Automation, Chongqing University, Chongqing 400044, China) Abstract: Car-following model is an important part for microscopic traffic flow in the intelligent transportation system(its), and the stability analysis is one of the key issues in car-following theory. To make an effective stability analysis, the present paper, from the control theory viewpoint, conducts the stability analysis based on the Lyapunov function for the full velocity difference(fvd) model. In the final, the simulation is carried out, and results validate the effectiveness of this method. Key words: intelligent transportation system; car-following model; Lyapunov function; stability analysis 1 (Introduction),,,,.,., [1 12]. 1995, Bando [4] (optimal velocity, OV),, OV [4 12]. 1998, HelbingTilchOV, OV. OV,, HelbingTilch, GF(general force) [5]. GF OV,, Treiber,,, OVGF [6]., 2002,, FVD(full velocity difference) [7].,,, [8, 9].,,.,,, FVDLyapunov,. : 2009 11 16; : 2010 04 19. : (CDJXS10170002); (20090191110022); 863 (2006AA04A124).

1670 27 2 (Car-following model) 1995, Bando [4],. (optimal velocity),, OV(optimal velocity): k[v ( x i (t)) v i (t)], i1, 2,, N, (1) x i (t) > 0, v i (t) > 0 dv i(t) i, m, m/sm/s 2. t, s, N > 0N N, k > 0k R, s 1, x i (t) x i+1 (t) x i (t)t, i(i i + 1). V ( ), x i (t),. [4] V ( x i (t)) v max 2 [tanh( x i(t) x c ) + tanh(x c )], (2) : v max, x c, tanh( ). 1998, HelbingTich [5] OV, OV. OV,, (general force, GF) [5], k [V ( x i (t)) v i (t)] + λh( v i (t)) v i (t), (3) : H( )Heaviside, λ 0λ R, s 1, v i (t) v i+1 (t) v i (t)., OVGF, Treiber [6],,,,., 2002, [7], FVD(full velocity difference): k [V ( x i (t)) v i (t)] + λ v i (t), (4) k > 0k R, s 1, λ 0λ R, s 1, v i (t) v i+1 (t) v i (t). FVDOVGF [7]. FVD,, [10 12]. 3 (Stability analysis),,,,,. FVD,, Lyapunov : 1 : [ ] [ ] [ ] [ ] ẋ 1 a b x 1 m + u, (5) ẋ 2 c d x 2 n : a, b, c, d, m, n R, x 1, x 2. a 0, d 0, bc < 0, Lyapunov: E(x) px 2 1 + qx 2 2, p, q Rp > 0, q > 0., : E(x) ξ(x 1 + x 2 ) 2 + ψ(x 1 x 2 ) 2 + px 2 1 + qx 2 2, (6) ξ, ψ, p, q R, ξ 0, ψ 0, p > 0, q > 0. Ė(x) 2[(a + c)ξ + (a c)ψ + ap]x 2 1 + 2[(a + b + c + d)ξ + (b + c a d)ψ + bp + cq]x 1 x 2 + 2[(b + d)ξ + (d b)ψ + dq]x 2 2. (7) Ė(x) 0 (a + b + c + d)ξ + (b + c a d)ψ+ bp + cq 0, (a + c)ξ + (a c)ψ + ap 0, (b + d)ξ + (d b)ψ + dq 0, (8), ξ ψ 0, bp + cq 0, ap 0, (9) dq 0,, a 0, d 0, p > 0, q > 0, bc < 0, p c, q b, p c, q b. Lyapunov

12 : Lyapunov 1671 ( c)x 2 1 + bx 2 2, p c, q b, [ ] c < 0, b > 0, E(x) (10) cx 2 1 + ( b)x 2 2, p c, q b, P [δv i (t) δy i (t)] T k λ kλ, A, 1 0 c > 0, b < 0, [ ] [ ] T λ 1 b, c, p > 0, q > 0, B, C, 1 0 Lyapunov: E(x) px 2 1 + qx 2 2. (11) 1 FVD, k > 0, λ 0, FVDLyapunov., Konishi [13,14], FVD: d 2 x i (t) k[v (y 2 i (t)) dx i(t) ] + λ v i (t), y i (t) x i (t) x i+1 (t) x i (t), (12) v i (t) v i+1 (t) v i (t), i 1,, N, (12): k[v (y i (t)) v i (t)]+ λ(v i+1 (t) v i (t)), (13) dy i (t) v i+1 (t) v i (t). v 0, [14] [v i (t) y i (t)] T [v 0 V 1 (v 0 )] T, (14) (13)(14) : dδv i (t) k[λδy i (t) δv i (t)]+ λ(δv i+1 (t) δv i (t)), (15) dδy i (t) δv i+1 (t) δv i (t), δv i (t) v i (t) v 0, δy i (t) y i (t) V 1 (v 0 ). ΛOVy i (t) V 1 (v 0 ), : Λ dv (y i(t)) yi(t)v dy i (t) 1 (v 0). δv i (t)δy i (t), (15) : dδv i (t) [ ] [ ] k λ kλ δv i (t) dδy i (t) + 1 0 δy i (t) [ ] λ (16) δv i+1 (t), 1 δv i (t) [1 0] [ δv i (t) δy i (t) ]. (16) { P AP + Bδv i+1 (t), δv i (t) CP. 1, Lyapunov: (17) E(x) δv i (t) 2 + kλδy i (t) 2, (18) Ė(x) 2δv i (t)[( k λ)δv i (t) + kλδy i (t)] + 2kΛδy i (t)( δv i (t)) 2(k + λ)δv i (t) 2. (19) k > 0, λ 0, k + λ > 0, Ė(x) < 0. FVDLyapunov. 4 (Numerical simulation),,.,., i [15] []i []i. (20) (i + 1)i, 1. 1 Fig. 1 The relation between two successive vehicles 1,, : : V i (s) G(s)V i+1 (s), (21) V n (s) L(δv n (t)), V n+1 (s) L(δv n+1 (t)). L( )Laplace. [14], (17)G(s) G(s) C(sI A) 1 B

1672 27 [ ] 1 [ ] s + k + λ kλ λ [1 0] 1 s 1 λs + kλ d(s) λs + kλ s 2 + (k + λ)s + kλ. (22) Konishi[13,14], : 1 [13,14] (22)d(s), G(s)H 1, Ḡ(s) sup Ḡ(iω) > 1, (23) ω [0, ) FVD., k 1 s 1, λ 0.2 s 1 ; k 1 s 1, λ 1 s 1 ; k 2 s 1, λ 0.2 s 1. 2(a)G(s) G(jw), : k 1 s 1, λ 0.2 s 1,, 0; k 1 s 1, λ 1 s 1,,, k, λ ; k 2 s 1, λ 0.2 s 1,,, λ, k, k. 1,,. 2(b), 3, FVD,, k 2 s 1, λ0.2 s 1., 21: 3, FVD,, k 2 s 1, λ 0.2 s 1. (b) 2 G(s) Fig. 2 The characteristic of the transfer function G(s) 34t 100 s t 500 s, : k 2 s 1, λ 0.2 s 1, x c 2 m, v 0 0.964 m/s, v max 2 m/s, N 100. 3(a)4(a)t 100 s,, t 500 s, 2 m, 0.964 m/s,, 3(b)4(b).,. (a) t 100 s (a) (b) t 500 s 3 Fig. 3 The headway distribution of each vehicle

12 : Lyapunov 1673 (a) t 100 s (b) t 500 s 4 Fig. 4 The velocity distribution of each vehicle 5 (Conclusion). FVD,,,, Lyapunov,,. 3, k 2 s 1, λ 0.2 s 1. (References): [1] LIGHTHILL M H, WHITHAM G B. On kinematics wave II: a theory of traffic flow on long crowed roads[j]. Proceeding of the Royal Society, 1955, A229(1178): 281 345. [2] RICHARDS P I. Shock waves on the highway[j]. Operations Research, 1956, 4(1): 42 51. [3] PAYNE H J. Models of freeway traffic and control[j]. Mathematical Methods of Public Systems, 1971, 1(1): 51 61. [4] BANDO M, HASED K, NAKYAAMA A, et al. Dynamics model of traffic congestion and numerical simulation[j]. Physics Review E, 1995, 51(2): 1035 1042. [5] HELBING D, TILCH B. Generalized force model of traffic dynamics[j]. Physics Review E, 1998, 58(1): 133 138. [6] TREIBE M R, HENNECKE A, HELBING D. Derivation, properties and simulation of a gas-kinetic-based nonlocal traffic model[j]. Physics Review E, 1999, 59(1): 239 253. [7] JIANG R, WU Q S, ZHU Z J. A new continuum model for traffic flow and numerical tests[j]. Transportation Research, Part B, 2002, 36(5): 405 419. [8]. [J]., 2003, 52(11): 2750 2756. (XUE Yu. A car-following model with stochastically considering the relative velocity in traffic flow[j]. Acta Physica Sinica, 2003, 52(11): 2750 2756.) [9],,,. [J]., 2002, 51(3): 492 496. (XUE Yu, DONG Liyun, YUAN Yiwu, et al. Numerical simulation on traffic flow with the consideration of relative velocity[j]. Acta Physica Sinica, 2002, 51(3): 492 496.) [10] GE H X. Two velocity difference model for a car following theory[j]. Physica A, 2008, 387(21): 5239 5245. [11] ZHAO X M, GAO Z Y. A new car-following model: full velocity and acceleration difference model[j]. The European Physical Journal B, 2005, 47(1): 145 150. [12],,. [J]., 2010, 30(7): 1326 1332. (SUN Dihua, LI Yongfu, TIAN Chuan. Car-following model based on the information of multiple ahead & velocity difference[j]. System Engineering Theory & Practice, 2010, 30(7): 1326 1332.) [13] KONISHI K, KOKAME H, HIRATA K. Coupled map car-following model and its delayed-feedback control[j]. Physic Review E, 1999, 70(4): 4000 4007. [14] KONISHI K, KOKAME H, HIRATA K. Decentralized delayedfeedback control of an optimal velocity traffic model[j]. The European Physical Journal B, 2000, 15(4): 715 722. [15] WENG Y L, WU T J. Car-following model for vehicular traffic[j]. Journal of Zhejiang University-Science A, 2002, 3(4): 412 417. : (1983 ),,, E-mail: laf1212@163.com, ; (1962 ),,,,, E-mail: d3sun@163.com; (1974 ),,, E-mail: cuimingyue@sina.com.