Christian J. Bordé SYRTE & LPL.

Σχετικά έγγραφα
Solutions - Chapter 4

Derivation of Optical-Bloch Equations

Dark matter from Dark Energy-Baryonic Matter Couplings

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Broadband Spatiotemporal Differential-Operator Representations For Velocity-Dependent Scattering

1 (a) The kinetic energy of the rolling cylinder is. a(θ φ)

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

High order interpolation function for surface contact problem

1 String with massive end-points

Constitutive Relations in Chiral Media

Areas and Lengths in Polar Coordinates

d 2 y dt 2 xdy dt + d2 x

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Space-Time Symmetries

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

Areas and Lengths in Polar Coordinates

Higher Derivative Gravity Theories

Magnetic bubble refraction in inhomogeneous antiferromagnets

Cosmological Space-Times

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Higher spin gauge theories and their CFT duals

D Alembert s Solution to the Wave Equation

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Analytical Mechanics ( AM )

Geodesic Equations for the Wormhole Metric

Lecture 21: Scattering and FGR

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

The Spiral of Theodorus, Numerical Analysis, and Special Functions

6.4 Superposition of Linear Plane Progressive Waves

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

B.6 k = +1; q 0 = B.5 k = 0 ; q 0 = 1/

Lifting Entry (continued)

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

Oscillatory Gap Damping

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Homework 3 Solutions



Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Inflation and Reheating in Spontaneously Generated Gravity

Name: Math Homework Set # VI. April 2, 2010

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Fundamental Equations of Fluid Mechanics

Homework 8 Model Solution Section


A. Two Planes Waves, Same Frequency Visible light

Teor imov r. ta matem. statist. Vip. 94, 2016, stor


Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Lecture 27. Relativity of transverse waves and 4-vectors

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Modelling the Furuta Pendulum

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

MA4445: Quantum Field Theory 1

Second Order Partial Differential Equations

THE ENERGY-MOMENTUM TENSOR IN CLASSICAL FIELD THEORY

Bayesian modeling of inseparable space-time variation in disease risk

1 Lorentz transformation of the Maxwell equations

Spin Precession in Electromagnetic Field

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.


Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

Cosmology with non-minimal derivative coupling

Part 4 RAYLEIGH AND LAMB WAVES

Lorentz Transform of an Arbitrary Force Field on a Particle in its Rest Frame using the Hamilton-Lagrangian Formalism

Differential equations


CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Relativistic particle dynamics and deformed symmetry

γ c = rl = lt R ~ e (g l)t/t R Intensität 0 e γ c t Zeit, ns

Computing the Macdonald function for complex orders

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Local Approximation with Kernels

11.4 Graphing in Polar Coordinates Polar Symmetries

On the Galois Group of Linear Difference-Differential Equations

Symmetric Stress-Energy Tensor

Example Sheet 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Quantum Systems: Dynamics and Control 1

σ (t) = (sin t + t cos t) 2 + (cos t t sin t) = t )) 5 = log 1 + r (t) = 2 + e 2t + e 2t = e t + e t

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

THE UNIVERSITY OF MALTA MATSEC SUPPORT UNIT

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Optical Feedback Cooling in Optomechanical Systems

Note: Please use the actual date you accessed this material in your citation.

Transcript:

Relativisti atom optis and interferometry : a trip in the fifth dimension Christian J. Bordé SYRTE & LPL http://hristian..borde.free.fr/st1633.pdf

1 t Δ

ENERGY E( p) M + p 4 hν db E(p) Ω atom slopev M p p M ϕ+ ϕ rest mass hν M photon slope h / λ h / λdb MOMENTUM p K

KLEIN-GORDON EQUATION (Curved spae-time) ϕ M + 1/ 1/ ( ) ( ) ϕ g ν ϕ g g g ν ϕ ν ν g η + h with h << 1 ν ν ν ν 1 Δ h ν t ν

Elementary interval ν ds ν dx, (time),1,,3 (spae) Metri tensor 1 h 1 g ν + 1 sym 1 Analogy with: A ( V, A) Post-Newtonian parameters (PPN): g h i dx - gravitation field: h g. r / r. γ. r / - rotation field: h Ω r / U - gravitational wave: h h ν h h 1 11 h h h 1 + 1 γ β U h h h h U 3 13 3 33 δ i +..

LASER POINTER AND D OPTICS ϕ x ik x ϕ ϕ 1 ϕ ϕ ϕ + k ϕ x t y z ~ MASS TERM

FROM 3 TO 4 SPATIAL DIMENSIONS ϕ ϕ i 1 ( x, τ ) exp i ( τ τ ) ϕ ( x) ( x, τ ) ϕ τ M M ϕ d( M) M π ( x, τ ) t ϕ 1 ϕ 1 ϕ Δϕ t τ ( x τ ) exp i ( τ τ ) ϕ( x, M), M Δ ϕ+ ϕ < τ ϕ > d( M) < τ M > < Mϕ > M

1 ϕ 1 ϕ Δϕ t τ ˆ ϕ i 4 ϕ x p op x τ x ϕ 4 op op 4op p M p 4 Lagrange invariant p dx

E(p) b a M b M a p //

E M ˆ p pˆ p

t dσ dt dx ds s τ ˆ dx dx ˆ ds dt dx x

CHEMIN OPTIQUE & PRINCIPE DE FERMAT ν S p dx E dt p dx dl + g p p M ν ν,,1,,3 E ν E E dt h dx (3) λdb g g p Hamilton-Jaobi g φ φ M / équation d'ionale si M ν dl f i dx i dx f i g i g i g g λ ( 3) db E g h M

CHEMIN OPTIQUE & PRINCIPE DE FERMAT 1 ϕ ˆϕ ϕ τ équation d'ionale à 5D ( ˆ, νˆ,1,,3, 4): g ˆ ν ˆ φ ˆ ˆ ν φ dl (4) hφ p dx ˆ E dt + dx ˆ g g dl f i (4) i fidx dx + d τ ( 4 ) g i g i g g λ h E g g

BASICS OF ATOM /PHOTON OPTICS Paraboli approximation of slowly varying phase and amplitude E(p) 4 E M * 3.5 3 Massive partiles M E M + E M E(p) 4.5 1.5 4 p 1 3 4 p ω 3 Photons ω / 1 k 1 3 4 p

BASICS OF ATOM /PHOTON OPTICS Shroedinger-like equation for the atom /photon field: * ϕ M 1 4 1 ν i ϕ p p * + p p 4 ϕ+ p h p * νϕ t M M p i p i p M * ; 4 τ ; ( ω / for photons) - gravitation field: h g. q/ q. γ. q/ - rotation field: h α. q/ - gravitational wave: h β δ + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p

ABCDξφ LAW OF ATOM OPTICS + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p wavepaket ( q, t ) exp isl / exp ip ( t) q q ( t) / F q q ( t), X ( t), Y ( t) p ( p, p, p, M); q ( x, y, z, τ ) ( ) exp ip () t ( q q () t )/ F ( q q (), t X(), t Y() t ) x y z q t Aq t Bp t M t t * ( ) ( ) + ( )/ + ξ (, ) p t M Cq t Dp t M t t * * ()/ ( ) + ( )/ + φ(, ) X() t AX( t ) + BY( t ) Yt ( ) CXt ( ) + DYt ( ) Framework valid for Hamiltonians of degree in position and momentum

Hamilton s equations for the external motion + + * * * Hext p. α( t). q p. β( t). p/ M M q. γ( t). q/ M gq. f. p M q χ * dhext p/ M d dp χ α() t β() t f() t χ + Γ () t χ +Φ() t dt 1 dhext γ() t α() t g() t * M dq ( tt) ( ) ( ) ( ) ( ) ( ) ( ) A tt, Btt, ξ tt, χ() t χ( t ) + C t, t D t, t φ t, t ( ) ( ) t T ( ) ( ) t Att, Btt, α(') t β(') t, exp dt' C t, t D t, t γ(') t α(') t ( tt, ) ( tt, ) ξ t ( tt, ') ( t') dt' φ M Φ t

Laser beams Atoms Total phaseation integral+end splitting+beam splitters

GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM INTERFEROMETER k β1 k β k βn β 1 M β1 β M β β N M βn βd k α1 k α k αn α 1 M α1 α M α α N M αn α D t 1 t 1 N 1 t N ( ) ( ) + 1 α + 1 δϕ Sβ t, t S t, t / N + ( k ) ( ) ( ) β qβ kα qα ωβ ωα t ϕβ ϕα ( ) ( ) + p q q p q q βd βd αd αd t D

The four end-points theorem β1 M β β x M α α p ( p α1 x, py, pz) q y z t 1 T t - t 1 t qβ qα qβ1 qα1 ( τβ τα) p β + p α p β1+ p α1 + Mβ + Mα ( ) ( ) ( ) ( ) ( ) Lagrange Invariant ( ) ( τ τ ) ( ) τ τ τ + τ S S M M ( M M ) ( M M ) β α β α β α ( β τβ α τα) β + α β α ( ) ( q q ) ( ) ( q q ) + p β + p α p β1+ p α1 ( Mβ Mα) β α β1 α1 β α p dx

GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM/PHOTON INTERFEROMETER k β1 k β k βn β 1 M β1 β M β βn M βn βd k α1 k α k αn α 1 M α1 α M α α N M αn α D N 1 ( ) ( k ) ( q k q k k β β α α β α )( qβ qα ) δϕ + ( τβ + τα ) ( ) ω ω t ω + ϕ ϕ () β α βα β α ( ) ω () βα Mβ Mα / /

GENERAL FORMULA FOR THE PHASE SHIFT OF AN ATOM/PHOTON INTERFEROMETER N (5) (5) ( k. q ) 1 δϕ δ + δϕ () (5) (5) k ω ω ( kx, ky, kz, ), ; q ( x, y, z, ), t (5) (5) δ k k k ; q q + q / ( ) (5) (5) (5) (5) β α β α [ τ ]

Atomi Gravimeter Spae oordinat e z * v ' z 1 z 1 v 1 A( Tz)( 1 zat ( g)( / zγ ) + gb/ ( γ ) T+ ) Bp ( T/ )v M + g /γ τ * * * 1 armp / IM C( T)( z g/ γ ) + D( T) p / M + k/ M z v τ T Time oordinate t arm II z 1 ' v 1 ' τ 4 τ 3 T' z ' v ' z v * z ( ) ( ) z' M τ1+ τ3 τ τ4 + p + k+ p' 1 δϕ kz ( z z' + z) + kz ( z' )/ 1 1 p dx

Exat phase shift for the atom gravimeter δϕ kz ( z z' + z) + kz ( z' )/ 1 1 k sinh ( ( ')) sinh ( ) k γ T T γt + v + * γ M ( ( )) ( ) g γ + γ 1+ osh γ T + T' osh γt z whih an be written to first-order in γ, with TT : 7 k δϕ + + 1 M kgt kγt gt v T z * Referene: Ch. J. B., Theoretial tools for atom optis and interferometry, C.R. Aad. Si. Paris,, Série IV, p. 59-53, 1

ARBITRARY 3D TIME-DEPENDENT GRAVITO-INERTIAL FIELDS * * Hamiltonian: H p. α( t). q+ p. β( t). p/ M M q. γ( t). q/ Hamilton's equns: A B α β T exp dt C D γ α Example: Phase shift indued by a gravitational wave Einstein oord.: β 1+ hos ξt + φ, γ, with h h ( ) { i} ( ) h ( t ) Fermi oord.: β 1, γ ξ / os ξ + φ Einstein oord.: Fermi oord.: A 1 h B t + sin ( ξt φ) sinφ ξ + h hξ t A 1 os( ξt+ φ) osφ sinφ h ht B t+ sin ( ξt+ φ) sinφ os( ξt+ φ) + osφ ξ

Atomi phase shift indued by a gravitational wave δϕ khv ξ T sin ξt + φ sin ξt / khq ( ) ( ) / os T + os T + + os ( ) ( ) ξ φ ξ φ φ khv T os( T + ) os( T + ) + + ξ φ ξ φ ϕ ϕ ϕ 1 k V p + / M * Ch.J. Bordé, Gen. Rel. Grav. 36 (Marh 4) Ch.J. Bordé, J. Sharma, Ph. Tourren and Th. Damour, Theoretial approahes to laser spetrosopy in the presene of gravitational fields, J. Physique Lettres 44 (1983) L983-99

Bordé-Ramsey interferometers Laser beams Atom beam ( )T M M M a b b / ) ( * * * 1 + ω δϕ ( ) 1 1 * 1 k p M M b b + + ( ) 1 1 * k p M M b b + 1 * p M M a a +

BORDÉ-RAMSEY INTERFEROMETERS

Atom Bordé-Ramsey interferometers Laser beams beam * M k T hos T + sin T * M ( ) ( ) δϕ ξ φ ξ

SF 6 1981 [ ] [ ] + + + d dq p d X p d d x p τ τ ϕ MOLECULAR INTERFEROMETRY [ ] τ τ ϕ ˆ ˆ X d P d M X d P d d x p + +

What did you expet?