ΓΠ. ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ Άσκηση ΓΠ Γραφικές Παραστάσεις (Αφορά το 5ο εργαστήριο. Η αντίστοιχη θεωρία των γραφικών παραστάσεων είναι στις σελίδες,23, 24, 25, 26, 27, 28 του βιβλίου. Εδώ βλέπεις το πειραματικό μέρος επειδή δεν υπάρχει στο βιβλίο.) 1) α) Βάλτε το ηλεκτρικό αμαξάκι στην αρχή του διαδρόμου και ανοίξτε το διακόπτη λειτουργίας (Εικόνα ΓΠ1). Ξεκινήστε το χρονόμετρο και σημειώστε τους χρόνους όταν το αμαξάκι φτάνει στις θέσεις Α= 400 mm, Β=600 mm, Γ= 800 mm, Δ=1000 mm. Συμπληρώστε τον πίνακα ΓΠ.1. Εικόνα ΓΠ.1 Φωτογραφία της διάταξης με ηλεκτρικό αμαξάκι. Βίντεο Πειραματική διάταξη και μετρήσεις με το ηλεκτρικό αμαξάκι Το βίντεο δείχνει τη διάταξη του πειράματος και πως παίρνονται οι μετρήσεις. https://youtu.be/r4ml3wknhre Βίντεο ΓΠ.1 Πείραμα με ηλεκτρικό αμαξάκι.. S (mm) 400 600 800 1000 Πίνακας ΓΠ.1 Πίνακας μετρήσεων με ηλεκτρικό αμαξάκι.. β) Με τη βοήθεια του πίνακα ΓΠ.1 κάντε τη γραφική παράσταση της ευθείας S=f(t) σε μιλλιμετρέ χαρτί. Βρείτε την κλίση της και τη διατομή. 2) α) Βάλτε το αμαξάκι που κινείται με ανεμιστήρα στην αρχή της διαδρομής και ανοίξτε το διακόπτη λειτουργίας (Εικόνα ΓΠ.2). Ξεκινήστε το χρονόμετρο και σημειώστε τους χρόνους όταν το αμαξάκι φτάνει στις θέσεις Α= 50 cm, Β=100 cm, Γ= 150 cm, Δ=200 cm, Ε= 250 cm, Ζ=300 cm, Η= 350 cm, Θ=400 cm, Ι= 450 cm, Κ=500 cm. Συμπληρώστε τον πίνακα ΓΠ.2. Συμ10
Εικόνα ΓΠ.2 Φωτογραφία της διάταξης με το αμαξάκι που κινείται με ανεμιστήρα. Πειραματική διάταξη και μετρήσεις με το αμαξάκι που Βίντεο κινείται με ανεμιστήρα Το βίντεο δείχνει τη διάταξη του πειράματος και πως παίρνονται οι μετρήσεις. https://youtu.be/yn9qn_0cgvu Βίντεο ΓΠ.2 Πείραμα με αμαξάκι που κινείται με ανεμιστήρα.. S (cm) 50 100 150 200 250 300 350 400 450 500 Πίνακας ΓΠ.2 Πίνακας μετρήσεων με το αμαξάκι που κινείται με ανεμιστήρα. β) Με τη βοήθεια του πίνακα ΓΠ.2 κάντε τη γραφική παράσταση της καμπύλης S=f(t) στο Excel. Επιλέξτε γραμμή τάσης πολυωνυμική και σειρά 2. Επιλέξτε επίσης προβολή εξίσωσης στο γράφημα ώστε στη γραφική παράσταση να φαίνεται η εξίσωση της καμπύλης. Με τη βοήθεια της εξίσωσης αυτής να βρείτε την κλίση λ εξ της καμπύλης στη θέση t= 5 s. 3) α) Εκτυπώστε μόνο τη γραφική παράσταση και φέρτε με το χάρακα την εφαπτομένη στη θέση t=5 s. Με τη βοήθεια της εφαπτομένης αυτής βρείτε την κλίση λ εφ στη θέση t=5 s. β) Βρείτε την εκατοστιαία διαφορά Χ της λ εφ ως προς την λ εξ. ΓΠ. ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Τίτλος άσκησης: Γραφικές παραστάσεις Όνομα: Ημερομηνία: Σκοπός: Παρατήρηση: Εκτός από το τελικό αποτέλεσμα, θα πρέπει να φαίνονται και οι αντικαταστάσεις με τις μονάδες τους. Μετρήσεις αποτελέσματα 1) α) Μετρώ με το χρονόμετρο τους χρόνους όταν το ηλεκτρικό αμαξάκι φτάνει στις θέσεις Α= 400 mm, Β=600 mm, Γ=800 mm, Δ=1000 mm. Συμπληρώνω τον πίνακα ΓΠ.3. Συμ11
S (mm) 400 600 800 1000 Πίνακας ΓΠ.3 Πίνακας αποτελεσμάτων με το ηλεκτρικό αμαξάκι. β) Με βάση τον πίνακα ΓΠ.3 κάνω τη γραφική παράσταση της ευθείας S=f(t) στο μιλλιμετρέ ( Εικόνα ΓΠ.3) και βρίσκω την κλίση και τη διατομή της. (Ο τύπος η αντικατάσταση με μονάδες και το αποτέλεσμα να φαίνονται στο μιλλιμετρέ.) Εικόνα ΓΠ.3 Βαθμονόμηση μιλιμετρέ. 2) α) Μετρώ με το χρονόμετρο τους χρόνους όταν το αμαξάκι που κινείται με ανεμιστήρα φτάνει στις θέσεις Α= 50 cm, Β=100 cm, Γ= 150 cm, Δ=200 cm, Ε= 250 cm, Ζ=300 cm, Η= 350 cm, Θ=400 cm, Ι= 450 cm, Κ=500 cm. Συμπληρώνω τον πίνακα ΓΠ.4. S (cm) 50 100 150 200 250 300 350 400 450 500 Πίνακας ΓΠ.4 Πίνακας αποτελεσμάτων με το αμαξάκι που κινείται με ανεμιστήρα. β) Με βάση τον πίνακα ΓΠ.4 κάνω τη γραφική παράσταση της καμπύλης S=f(t) στο Excel. Επιλέγω γραμμή τάσης πολυωνυμική, σειρα 2 και προβολή εξίσωσης στο γράφημα. Φαίνεται έτσι η εξίσωση της καμπύλης στη γραφική παράσταση η οποία είναι:. Συμ12
Με τη βοήθεια της εξίσωσης βρίσκω την κλίση για t=5 s. Παραγωγίζω την εξίσωση και έχω:... Αντικαθιστώ το χ με 5 και έχω...=... Άρα για t= 5 s η κλίση είναι λ εξ =.... 3) α) Αφού εκτυπώσω τη γραφική παράσταση φέρνω με το χάρακα την εφαπτομένη στη θέση t=5 s. Με τη βοήθεια της εφαπτομένης αυτής βρίσκω την κλίση λ εφ στη θέση t=5 s. Να φαίνεται ο τύπος, η αντικατάσταση με μονάδες και το αποτέλεσμα με μονάδα β) Βρίσκω την εκατοστιαία διαφορά Χ της λ εφ ως προς την λ εξ Κριτήριο αξιολόγησης - Γραφικές Παραστάσεις (αντίγραφο από τα κριτήρια εισαγωγής) 1. Στην 1 η γραφική παράσταση [Εικόνα Εισ.7(α)]φαίνεται το διάστημα που διανύει ένα σώμα σε σχέση με το χρόνο. a) Να βρεθεί η κλίση της ευθείας. b) Πόσο διάστημα έχει διανύσει το σώμα σε 20 s; c) Πόσο χρόνο χρειάζεται για να διανύσει 130 m; 2) Στη 2 η γραφική παράσταση [Εικόνα Εισ.7(β)]να βρεθεί η κλίση της καμπύλης στη θέση V=1V με τη βοήθεια της εφαπτομένης που έχει χαραχθεί στη θέση αυτή. 3) Στην 3 η γραφική παράσταση [Εικόνα Εισ.7(γ)]να βρεθεί η κλίση της καμπύλης στη θέση t=10 h με τη βοήθεια της εξίσωσής της. Εικόνα Εισ.7 Γραφικές παραστάσεις - Ερώτηση Κριτηρίου Αξιολόγησης 3 Εισαγωγής. Συμ13
Απαντήσεις 1. a) Παίρνω δύο σημεία πάνω στην ευθεία ΑΒ, όπως φαίνεται στην Εικόνα Εισ.8(α). Φτιάχνω το ορθογώνιο τρίγωνο ΑΒΓ και διαιρώ την κατακόρυφη πλευρά ΑΓ προς την οριζόντια ΒΓ. Έχω:. b) Όπως βλέπω στην Εικόνα Εισ.8(β), στα 20 s το σώμα έχει διανύσει 52 m. Εικόνα Εισ.8 Γραφικές παραστάσεις - Απάντηση Κριτηρίου Αξιολόγησης 3 Εισαγωγής. c) Το σώμα για να διανύσει 130 m χρειάζεται 50 s. 2. Παίρνω δύο σημεία πάνω στην εφαπτομένη ΑΒ. Φτιάχνω το ορθογώνιο τρίγωνο ΑΒΓ και διαιρώ την κατακόρυφη πλευρά ΑΓ προς την οριζόντια ΒΓ. Έχω:. 3. Παραγωγίζω την εξίσωση 26x 2 +13x+4 και έχω 52x+13. Αντικαθιστώ όπου x το 10, και έχω 533. Άρα, η κλίση είναι 533 m/h. Συμ14