Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Σχετικά έγγραφα
auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 4: Διαίρει και Βασίλευε. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Αλγόριθµοι Divide-and- Conquer

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Διαίρει-και-Βασίλευε. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Διαίρει-και-Βασίλευε 2

Επιλογή. Επιμέλεια διαφανειών: Δ. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Ταξινόμηση. 1. Στατιστικά Διάταξης 2. Στατιστικά σε Μέσο Γραμμικό Χρόνο. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις-προσθήκες: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Πρόβληµα Επιλογής. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Επιλογή 1

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Σχεδίαση και Ανάλυση Αλγορίθμων

Επιλογή. Πρόβλημα Επιλογής. Μέγιστο / Ελάχιστο. Εφαρμογές

Δομές Δεδομένων & Αλγόριθμοι

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Αλγόριθμοι και Πολυπλοκότητα

Επιλογή. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αλγόριθμοι Ταξινόμησης Μέρος 2

Αναδρομή Ανάλυση Αλγορίθμων

auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Π(n) : 1 + a + + a n = an+1 1 a 1. a 1. + a k+1 = ak+2 1

Διαίρει-και-Βασίλευε. Διαίρει-και-Βασίλευε. MergeSort. MergeSort. Πρόβλημα Ταξινόμησης: Είσοδος : ακολουθία n αριθμών (α 1

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 2: Ανάλυση Αλγορίθμων. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

Αναδρομικές Σχέσεις «ιαίρει-και-βασίλευε»

ΔΥΑΔΙΚΗ ΑΝΑΖΗΤΗΣΗ & ΤΑΞΙΝΟΜΗΣΗ ΜΕ ΣΥΓΧΩΝΕΥΣΗ

Τεχνικές Σχεδιασμού Αλγορίθμων

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

επιστρέφει το αμέσως μεγαλύτερο από το x στοιχείο του S επιστρέφει το αμέσως μικρότερο από το x στοιχείο του S

Αλγόριθµοι και Πολυπλοκότητα

Αναδρομικοί Αλγόριθμοι

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort. Επιμέλεια διαφανειών: Δ. Φωτάκης Μικροαλλαγές: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Δυναμικός Προγραμματισμός

Π(n) : 1 + a + + a n = αν+1 1

Αλγόριθμοι και Πολυπλοκότητα

Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1

Quicksort. Πρόβλημα Ταξινόμησης. Μέθοδοι Ταξινόμησης. Συγκριτικοί Αλγόριθμοι

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Παύλος Εφραιμίδης V1.1,

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Παράλληλοι Αλγόριθμοι: Ανάλυση Εικόνας και Υπολογιστική Γεωμετρία. Πέτρος Ποτίκας CoReLab 4/5/2006

Γ7.5 Αλγόριθμοι Αναζήτησης. Γ Λυκείου Κατεύθυνσης

ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (ΠΑΤΡΑ) ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Δομές Δεδομένων & Αλγόριθμοι

Εισαγωγή στην επιστήμη των υπολογιστών. Λογισμικό Υπολογιστών Κεφάλαιο 8ο Αλγόριθμοι

Δομές Δεδομένων & Αλγόριθμοι

Διάλεξη 04: Παραδείγματα Ανάλυσης

1η Σειρά Γραπτών Ασκήσεων

Γεωµετρικοί Αλγόριθµοι (CLR, κεφάλαιο 35)

Κεφάλαιο 4. Διαίρει και Βασίλευε (Divide and Conquer) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Διάλεξη 04: Παραδείγματα Ανάλυσης Πολυπλοκότητας/Ανάλυση Αναδρομικών Αλγόριθμων

Διάλεξη 09: Αλγόριθμοι Ταξινόμησης I

Δυναμικός Προγραμματισμός

Fast Fourier Transform

ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 4. Παραδείγματα Ανάλυσης Πολυπλοκότητας Ανάλυση Αναδρομικών Αλγόριθμων

Insert(K,I,S) Delete(K,S)

Quicksort. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Δυναμικός Προγραμματισμός

Σχεδίαση και Ανάλυση Αλγορίθμων

Merge Sort (Ταξινόμηση με συγχώνευση) 6/14/2007 3:04 AM Merge Sort 1

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Προγραμματισμός Ι (ΗΥ120)

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Αλγόριθμοι ταξινόμησης

Επεξεργασία Ερωτήσεων

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

υναμικός Προγραμματισμός

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Εισαγωγή στους Αλγορίθμους

Επεξεργασία Ερωτήσεων

Γραφικά με Η/Υ Αλγόριθμοι σχεδίασης βασικών 22D D σχημάτων (ευθεία

Επεξεργασία Ερωτήσεων

υναμικός Προγραμματισμός

Quicksort. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ταξινόμηση με συγχώνευση Merge Sort

Πληροφορική 2. Αλγόριθμοι

Εισαγωγή στην Ανάλυση Αλγορίθμων

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

1o Φροντιστήριο ΗΥ240

Αλγόριθμοι Αναζήτησης

Διδάσκων: Κωνσταντίνος Κώστα

Αλγόριθμοι Ταξινόμησης Bubble Sort Quick Sort. Αντρέας Δημοσθένους Καθηγητής Πληροφορικής Ολυμπιάδα 2012

Αλγόριθµοι και Πολυπλοκότητα

ΚΕΦΑΛΑΙΟ 5: Αλγόριθµοι

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

Εισαγωγή. Γενική Εικόνα του Μαθήµατος. Το εσωτερικό ενός Σ Β. Εισαγωγή. Εισαγωγή Σ Β Σ Β. Αρχεία ευρετηρίου Κατάλογος συστήµατος Αρχεία δεδοµένων

Εισαγωγή στους Αλγόριθμους

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 9: ΒΑΣΙΚΕΣ ΤΕΧΝΙΚΕΣ ΣΧΕΔΙΑΣΜΟΥ ΚΑΙ ΑΝΑΛΥΣΗΣ ΑΛΓΟΡΙΘΜΩΝ ΕΞΙΣΟΡΡΟΠΗΣΗ, ΔΙΑΙΡΕΙ ΚΑΙ ΒΑΣΙΛΕΥΕ

Ουρά Προτεραιότητας (priority queue)

ΑΛΓΕΒΡΑ Α ΓΥΜΝΑΣΙΟΥ ΘΕΤΙΚΟΙ ΚΑΙ ΑΡΝΗΤΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΧΑΛΑΤΖΙΑΝ ΠΑΥΛΟΣ

ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ (συνέχεια)

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

Εργαστήριο Τεχνολογίας Πολυμέσων & Γραφικών, Τ.Ε.Π Π.Μ, Μάθημα: Γραφικά με Η/Υ

Το εσωτερικό ενός Σ Β

Διάλεξη 19: Αλγόριθμοι ΤαξινόμησηςII. Διδάσκων: Παναγιώτης Ανδρέου

Transcript:

Πολλαπλασιασμός μεγάλων ακεραίων (1) Για να πολλαπλασιάσουμε δύο ακεραίους με n 1 και n 2 ψηφία με το χέρι, θα εκτελέσουμε n 1 n 2 πράξεις πολλαπλασιασμού Πρόβλημα ρβημ όταν έχουμε πολλά ψηφία: A = 12345678901357986429 B = 87654321284820912836 Ας δούμε ένα απλούστερο παράδειγμα: 23*14, - Όμως 23 =2. 10 1 +3. 10 0, 14 =1. 10 1 +4. 10 0 - Άρα 23*14 = (2*1)10 2 +(2*4+3*1)10 1 + (3*4) 10 0 Αν A = 2135, B = 4014: Α*Β= (21 10 2 + 35) (40 10 2 + 14) = 21 40 10 4 + (21 14 + 35 40) 10 2 + 35 14 16

Πολλαπλασιασμός μεγάλων ακεραίων (2) Βασική παρατήρηση: α) 23*14 = (2*1)10 2 +(2*4+3*1)10 1 + (3*4) 10 0 = (2*1)10 2 +[(2+3)*(1+4)-2*1-3*4]10 1 + (3*4) 10 0 β) 2135 *4014 = 21 40 10 4 + (21 14 + 35 40) 10 2 + 35 14 = 21 40 10 4 + [(21+35) +35) (40+14) 21*40-35*14] 10 2 + 35 14 Γενικώς: : a=a 1 a 0, b=b 1 b 0 και ζητείται c=a*b c = a*b = c. +c. +c. 2. 10 n 1. 10 n/2 0. 10 0 όπου c 2 =a 1 *b 1, c 0 =a 0 *b 0, c 1 =(a 1 +a 0 )*(b 1 +b 0 )-(c 2 +c 0 ) Αναδρομική εξίσωση: M(n) = 3M(n/2), M(1) = 1 Αποδοτικότητα; M(n) = 3 log log 2 n = n log log 2 3 n 1.585 1.585 17

Πολλαπλασιασμός πινάκων αλά Strassen Ο Strassen παρατήρησε [1969] ότι το γινόμενο δύο πινάκων A και B (μεγέθους 2 n x2 n ) μπορεί να υπολογισθεί ως εξής: C 00 C 01 A 00 A 01 B 00 B 01 = * C 10 C 11 A 10 A 11 B 10 B 11 = M 1 +M 4 - M 5 +M 7 M 3 +M 5 M 2 + M 4 M 1 + M 3 -M 2 + M 6 18

Υποπίνακες του Strassen M 1 = (A 00 + A 11) ) * (B 00 + B 11 M 2 = (A 10 + A 11 ) * B 00 M 3 =A 00 *(B 01 - B 11 ) M 4 = A 11 * (B 10 - B 00 ) M 5 = (A 00 + A 01 ) * B 11 M 6 = (A 10 -A 00 ) * (B 00 + B 01 M 7 = (A 01 -A 11 ) * (B 10 + B 11 11) ) 01) ) 11 ) 19

Αποδοτικότητα του αλγορίθμου Strassen Αν το n δεν είναι δύναμη του 2, τότε οι πίνακες παραγεμίζονται με μηδενικά Πλήθος πολλαπλασιασμών: Πλήθος προσθέσεων: Αναδρομή: Άλλοι αλγόριθμοι λό έχουν βελτιώσει βλ αυτό το αποτέλεσμα αλλά είναι ακόμη περισσότεροι σύνθετοι 20

Το πρόβλημα του πλησιέστερου ζεύγους Πρόβλημα: βρες τα πλησιέστερα σημεία μεταξύ n σημείων σε ένα k-διάστατο χώρο Υποθέτουμε ότι τα σημεία ταξινομούνται με βάση τις τιμές των τετμημένων x Διαιρούμε τα σημεία σε δύο υποσύνολα S 1 και S 2 με n/2 σημεία με βάση μία κατακόρυφη γραμμή στο x=c Επιλέγουμε το πλησιέστερο ζεύγος μεταξύ των ζευγών του αριστερού υποσυνόλου (απόσταση d 1 ), μεταξύ των ζευγών του δεξιού υποσυνόλου (απόσταση d 2 ), και το πλησιέστερο ζεύγος με σημεία και από τις δύο πλευρές Πρέπει να εξετάσουμε μία λωρίδα πλάτους 2d, όπου d=min[d 1,d 2 ] 21

Το πρόβλημα του πλησιέστερου ζεύγους (2) Γεωμετρική εξήγηση Αναδρομή T(n) = 2T(n/2) + M(n) Αποδοτικότητα O(n logn) Βελτιστότητα 22

Αλγόριθμος QuickHull Υπολογίζει το Κυρτό Περίβλημα με έμπνευση από τη Γρήγορη Ταξινόμηση: Υποθέτουμε ότι τα σημεία είναι ταξινομημένα ως προς την συντεταγμένη x Προσδιορίζουμε δύο ακραία σημαία P 1 και P 2 (μέρη του περιβλήματος) Το σύνολο σημείων S διαιρείται σε δύο υποσύνολα S 1 και S 2 Υπολογίζουμε το κυρτό περίβλημα για το S 1 Ομοίως, υπολογίζουμε το κυρτό περίβλημα για το S 1 P max P 1 23 P 2

Αλγόριθμος QuickHull (2) Υπολογισμός του κυρτού (επάνω) περιβλήματος για το S 1 Βρίσκουμε το πιο απομακρυσμένο σημείο P max από τη γραμμή P 1 P 2 Υπολογίζουμε το περίβλημα για τα σημεία αριστερά της γραμμής P 1 P max Υπολογίζουμε το περίβλημα για τα σημεία αριστερά της γραμμής P max P 2 Εύρεση του σημείου P max Το P max μεγιστοποιεί μγ την επιφάνεια του τριγώνου ργ P maxp 1P 2 Σε περίπτωση ισοπαλίας, επιλέγεται το P max που μεγιστοποιεί τη γωνία P max P 1 P 2 Τα σημεία μέσα στο τρίγωνο P max P 1 P 2 αγνοούνται εφεξής Πως θα βρεθεί γεωμετρικά το σημείο P max και τα σημεία στα αριστερά της γραμμής P 1 P max ; 24

Αλγόριθμος QuickHull (3) Πως θα βρεθεί γεωμετρικά το σημείο P max και τα σημεία στα αριστερά της γραμμής P 1 P max Δίνονται τα σημεία P 1 (x 1,y 1 ), P 2 (x 2,y 2 ), P max (x max,y max ) Το εμβαδόν του τριγώνου είναι μισό του μεγέθους της ορίζουσας x 1 y 1 1 x 2 y 2 1 =x 1 y 2 +x max y 1 +x 2 y max max x max max y 2 x 2 y 1 -x 1 y max x max y max 1 Το πρόσημο της έκφρασης είναι θετικό αν και μόνο αν το σημείο P max είναι στα αριστερά της γραμμής P 1 P 2 25

Αποδοτικότητα Αλγορίθμου QuickHull (4) Η εύρεση του πλέον απομακρυσμένου σημείου από την ευθεία P 1 P 2 μπορεί να βρεθεί σε γραμμικό χρόνο Έτσι προκύπτει η ίδια πολυπλοκότητα με τη γρήγορη ταξινόμηση: Χειρότερη περίπτωση: Θ(n 2 ) Μέση περίπτωση: Θ(n log n) Αν τα σημεία δεν είναι αρχικά ταξινομημένα στον άξονα x, αυτό επιτυγχάνεται με κόστος Θ(n log n) ) Άλλοι αλγόριθμοι για το κυρτό περίβλημα: Σάρωση του Graham, DCHull Επίσης σε Θ(n log n) 26

Δυαδική Αναζήτηση Πολύ αποδοτικός αλγόριθμος για αναζήτηση σε ταξινομημένο πίνακα: K vs A[0]... A[m]... A[n-1] Αν K = A[m], σταμάτησε (επιτυχημένη αναζήτηση. Διαφορετικά, συνέχισε την αναζήτηση με όμοιο τρόπο στον πίνακα A[0..m-1] αν K < A[m] ή στον A[m+1.. +1..n-1] 1] αν K > A[m] l 0; r n-11 while l r do m (l+r)/2 if K = A[m] return m else if K < A[m] r m-1 else l m+1 return -1 27

Ανάλυση Δυαδικής Αναζήτησης Χρονική αποδοτικότητα Χειρότερη περίπτωση: C w (n) = 1+C C w ( n/2 /2 ), C w (1) = 1 Λύση: C w (n) = log 2 (n+1) +1) Αυτό είναι πολύ γρήγορο: π.χ. π.χ., C w (10 (10 6 ) = 20 Βέλτιστη μέθοδος για αναζήτηση σε ταξινομημένο πίνακα. Περιορισμοί: η είσοδος πρέπει να είναι ταξινομημένη και στη μορφή πίνακα, όχι, πχ, συνδεδεμένη λίστα. ΟΧΙ καλό παράδειγμα α τεχνικής «διαίρει δαίρε και βασίλευε». Υπάρχει ανάλογη τεχνική για τη συνεχή περίπτωση. 28

Αλγόριθμοι Δυαδικών Δένδρων Τα δυαδικά δένδρα έχουν έτοιμη τη δομή για αλγορίθμους διαίρει και βασίλευε. Π.χ., κλασικές διασχίσεις (προ/ προ/μετα/ενδο-διατεταγμένη) Algorithm Inorder(T) if T a a Inorder(T left ) b c b c print(root of T) d e d e Inorder(T right ) Αποδοτικότητα: Θ(n) 29

Αλγόριθμοι Δυαδικών Δένδρων (2) Άλλο παράδειγμα: υπολογισμός ύψους T L T R h(t) ) = max{h(t L ), h(t R )} + 1 if T and h( ) ) = -1 Αποδοτικότητα: Θ(n) 30