(1.1) Ακόμη επειδή ο αεριοκυκλώνας είναι τυπικών διαστάσεων, θα ισχύει: b= D/4 h= D/2 N e= 3D/h

Σχετικά έγγραφα
ΔΙΑΣΠΟΡΑ ΑΕΡΙΩΝ ΡΥΠΩΝ

Σχεδιασμός. Αεριοκυκλώνων

ΛΥΜΕΝΑ ΠΡΟΒΛΗΜΑΤΑ ΑΤΜΟΣΦΑΙΡΙΚΗΣ ΡΥΠΑΝΣΗΣ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΑΘΗΜΑ: Αντιρρυπαντική Τεχνολογία Αιωρούμενων Σωματιδίων

Για την επίλυση αυτής της άσκησης, αλλά και όλων των παρόμοιων χρησιμοποιούμε ιδιότητες των αναλογιών (χιαστί)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΑΣΦΑΛΕΙΑ ΒΙΟΜΗΧΑΝΙΚΩΝ ΕΓΚΑΤΑΣΤΑΣΕΩΝ ΠΑΡΑΔΕΙΓΜΑΤΑ ΛΥΜΕΝΩΝ ΑΣΚΗΣΕΩΝ

ΙΔΙΟΤΗΤΕΣ ΤΟΥ ΕΔΑΦΟΥΣ

ΑΝΤΙΡΡΥΠΑΝΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΑΙΩΡΟΥΜΕΝΩΝ ΣΩΜΑΤΙΔΙΩΝ Ενότητα 5: Πλυντρίδες

ΠΘ/ΤΜΜΒ/ΕΘΘΜ - ΜΜ802 Γραπτή Δοκιμασία ώρα 12:00-14:30

ΜΑΘΗΜΑ: Αντιρρυπαντική Τεχνολογία Αιωρούμενων Σωματιδίων

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

1. Κατανάλωση ενέργειας

Βασικό παράδειγµα εφαρµογής

Ενεργό Ύψος Εκποµπής. Επίδραση. Ανύψωση. του θυσάνου Θερµική. Ανύψωση. ανύψωση θυσάνου σε συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης.

ΜΑΘΗΜΑ: Αντιρρυπαντική Τεχνολογία Αιωρούμενων Σωματιδίων

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ. Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων. SI CGS American Engineering System - UK

Χημεία Α Λυκείου. Διαλύματα

ε = = 9,5 =, γ=1,4, R = 287 J/KgK, Q = Cv ΔT = P2 Εξισώσεις αδιαβατικών μεταβολών: T [Απ: (β) 1571,9 Κ, Pa, (γ) 59,36%, (δ) ,6 Pa] ΛΥΣΗ

ΕΦΑΡΜΟΓΕΣ ΑΠΟΡΡΟΦΗΣΗΣ ΑΕΡΙΩΝ Κ. Μάτης

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»

ΜΕΘΟ ΟΛΟΓΙΑ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΑΣΚΗΣΕΩΝ ΠΟΥ ΑΦΟΡΟΥΝ ΙΑΛΥΜΑΤΑ

ΜΑΘΗΜΑ: Αντιρρυπαντική Τεχνολογία Αέριων Χημικών Ρύπων

ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Β

ΜΕΘΟ ΟΛΟΓΙΑ: ΙΑΛΥΜΑΤΑ

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2014 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος

,3 385, q Q 0,447. ή kg kj 4,5 385,3 1733, 4 kw. Για την κατανάλωση καυσίμου θα ισχύουν τα ακόλουθα : 1733, 4

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ. α. Χρησιμοποιώντας τον πρώτο θερμοδυναμικό νόμο έχουμε : J J J

Θερμοδυναμική Ενότητα 4:

v = 1 ρ. (2) website:

Θερμοδυναμική Ενότητα 4:

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ

kg(χιλιόγραμμο) s(δευτερόλεπτο) Ένταση ηλεκτρικού πεδίου Α(Αμπέρ) Ένταση φωτεινής πηγής cd (καντέλα) Ποσότητα χημικής ουσίας mole(μόλ)

Δύναμη F F=m*a kgm/s 2. N = W / t 1 J / s = 1 Watt ( W ) 1 HP ~ 76 kp*m / s ~ 746 W. 1 PS ~ 75 kp*m / s ~ 736 W. 1 τεχνική ατμόσφαιρα 1 at

Κων/νος Θέος 1

Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία

ΔΙΕΘΝΕΣ ΣΥΣΤΗΜΑ ΜΟΝΑΔΩΝ (S.I.)

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q

Θέμα Δ. Λύση. εκτελεί Ε.Ο.Κ, δηλαδή α = 0 κι επομένως εκτελεί Ε.Ο. Επιβραδυνόμενη κίνηση κι επομένως

c m E F m F F F M C E C M E

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

ΠΡΩΤΟΓΕΝΗ & ΔΕΥΤΕΡΟΓΕΝΗ ΔΟΣΙΜΕΤΡΑ

ΠΑΡΑΔΕΙΓΜΑ Ποσότητα αερίου υδρογόνου βρίσκεται στην ίδια θερμοκρασία με ποσότητα αερίου οξυγόνου (και τα δύο αέρια θεωρούνται ιδανικά). Δ1.

ΣΤΑΘΜΟΙ ΠΑΡΑΓΩΓΗΣ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΑΣΚΗΣΗ 1 η. r 1. Σε κύκλο ισόογκης καύσης (OTTO) να αποδειχθούν ότι: Οθεωρητικόςβαθμόςαπόδοσηςείναι:. Η μέση θεωρητική πίεση κύκλου είναι:. th 1.

Τεχνική Υδρολογία (Ασκήσεις)

Α. Στοιχειοµετρικός προσδιορισµός του απαιτούµενου αέρα καύσης βαρέος κλάσµατος πετρελαίου. Συστατικό

ΔΙΑΣΤΑΣΕΙΣ ΚΑΙ ΜΟΝΑΔΕΣ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΧΗΜΙΚΗ ΜΗΧΑΝΙΚΗ

Προσομοίωση Πολυφασικών Ροών

Τεχνολογία Παραγωγής Τσιμέντου και Σκυροδέματος

Ι < Ι. Οπότε ο λαμπτήρας θα φωτοβολεί περισσότερο. Ο λαμπτήρα λειτουργεί κανονικά. συνεπώς το ρεύμα που τον διαρρέει είναι 1 Α.

Ζήτημα 1 0. Επώνυμο... Όνομα... Αγρίνιο 1/3/2015. Επιλέξτε τη σωστή απάντηση

Φυσική για Επιστήμονες και Μηχανικούς. Εισαγωγή Φυσική και μετρήσεις

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ο.Ε.Φ.Ε ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Β' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΘΕΡΜΙΚΗ ΑΓΩΓΙΜΟΤΗΤΑ ΘΕΩΡΙΑ & ΑΣΚΗΣΕΙΣ

6.1 Θερμόμετρα και μέτρηση θερμοκρασίας

) 500 ΑΣΚΗΣΕΙΣ ΑΙΟΛΙΚΗ ΕΝΕΡΓΕΙΑ

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03/05/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΠΑΝΤΗΣΕΙΣ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

Σφαιρικές συντεταγμένες (r, θ, φ).

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο

2.2 Θερμιδόμετρι α- Νό μόι Θερμόχήμει ας

τα βιβλία των επιτυχιών

ΜΟΝΑΔΕΣ ΚΑΙ ΟΡΟΙ ΤΗΣ ΔΟΣΙΜΕΤΡΙΑΣ

Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης»

m αντίστοιχα, εκτελούν Α.Α.Τ. και έχουν την

ΕΚΦΩΝΗΣΕΙΣ. o o o f f 3 o o o f 3 f o o o o o f 3 f 2 f 2 f H = H ( HCl ) H ( NH ) 2A + B Γ + 3

ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ ΦΥΣΙΚΟΧΗΜΕΙΑ ΦΥΕ22

* Επειδή μόνο η μεταφορά θερμότητας έχει νόημα, είτε συμβολίζεται με dq, είτε με Q, είναι το ίδιο.

ΑΤΜΟΣΦΑΙΡΙΚΗ ΘΕΡΜΟΔΥΝΑΜΙΚΗ. Η ατμόσφαιρα συμπεριφέρεται σαν ιδανικό αέριο (ειδικά για z>10 km)

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ

ΕΣΩΤΕΡΙΚΗ ΕΝΕΡΓΕΙΑ. κινητική + + δυναμική

2. Ρευστά σε κίνηση ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

Φύλλο Εργασίας 1: Μετρήσεις μήκους Η μέση τιμή

Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής

ΚΟΡΕΣΜΕΝΟ ΕΔΑΦΟΣ ΜΕΤΑΦΟΡΑ ΡΥΠΟΥ ΛΟΓΩ ΜΕΤΑΓΩΓΗΣ. Σχόλιο: ίδια έκφραση για ροή ρευστού σε αγωγό ή πορώδες μέσο V V

Διεργασίες Αερίων Αποβλήτων. Η ύλη περιλαμβάνει βασικές αρχές αντιρρυπαντικής τεχνολογίας ατμοσφαιρικών ρύπων

Ενδεικτικές Λύσεις. Θέµα Α. (α) υ 2 = 0

1. ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ. 19. Βλέπε θεωρία σελ. 9 και 10.

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

2 ΕΙΣΑΓΩΓΙΚΕΣ ΕΝΝΟΙΕΣ

1 Η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΤΜΗΜΑ ΔΙΑΤΡΟΦΗΣ ΚΑΙ ΔΙΑΙΤΟΛΟΓΙΑΣ ΚΑΡΔΙΤΣΑ ΔΙΑΛΥΜΑΤΑ

Ασκήσεις διαλυμάτων. Επαναληπτικές ασκήσεις Α' Λυκείου 1

ΠΑΡΑΡΤΗΜΑΤΑ. της πρότασης. για ΟΔΗΓΙΑ ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ

Θέμα 1 ο (30 μονάδες)

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 19 ΣΕΠΤΕΜΒΡΙΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ

ιαστασιολόγηση καπνοδόχων με βάση το πρότυπο ΕΝ

- 31 Ερωτήσεις Αξιολόγησης για ΤΕΣΤ Θεωρίας.

Τελική γραπτή εξέταση «Επιστήμη και Τεχνολογία Υλικών ΙΙ»-Ιούνιος 2016

ΧΗΜΕΙΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ 2002

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Transcript:

Άσκηση 1 Από την εκφώνηση της άσκησης μας δίνεται ότι: Παροχή απαερίων: Q g= 40 m 3 /s Θερμοκρασία: T g= 80 o C Πυκνότητα: ρ p= 2.6 g/cm 3 Συγκέντρωση: C P= 0.08 kg/m 3 Ακόμη, δίνεται ο παρακάτω πίνακας. d p w/w μm % 1 1.22 4 4.99 7 7.67 10 9.41 13 10.29 16 10.45 19 10.02 22 9.16 25 8.05 28 6.82 31 5.59 34 4.44 37 3.43 Παρατηρώντας τον πίνακα 1, προκύπτει ότι η μέγιστη ποσοστιαία περιεκτικότητα εμφανίζεται για d p= 16 μm. Συνεπώς: d 50,1= 16 μm, για τον πρώτο κυκλώνα. Ισχύει ακόμη η σχέση: (1.1) Ακόμη επειδή ο αεριοκυκλώνας είναι τυπικών διαστάσεων, θα ισχύει: b= D/4 h= D/2 N e= 3D/h

u i= Q g/(b h) (1.2) Με αντικατάσταση στη σχέση (1.1), τελικά προκύπτει ότι: D= 5.46 m Και συνεπώς: h 1= 2.73 m, b 1= 1.36 m, N e,1= 6 Επιπλέον, η ταχύτητα εισόδου των απαερίων στον 1 ο κυκλώνα είναι από την (1.2): u 1= 10.75 m/s Όμως u 1< 15 m/s (θέλουμε η ταχύτητα να είναι μεταξύ 15 m/s και 30 m/s), άρα δεν ικανοποιούνται οι προδιαγραφές για τη λειτουργία του κυκλώνα 1. Για τον 1 ο κυκλώνα προκύπτει ο παρακάτω πίνακας. d p (μm) d 50/d p n j= 1/ [1+(d 50/d p) 2 ] m j (%) n j m j (%) 1 16 0.003891051 1.22 0.004747 4 4 0.058823529 4.99 0.293529 7 2.285714286 0.160655738 7.67 1.23223 10 1.6 0.280898876 9.41 2.643258 13 1.230769231 0.397647059 10.29 4.091788 16 1 0.5 10.45 5.225 19 0.842105263 0.585089141 10.02 5.862593 22 0.727272727 0.654054054 9.16 5.991135 25 0.64 0.709421112 8.05 5.71084 28 0.571428571 0.753846154 6.82 5.141231 31 0.516129032 0.789646672 5.59 4.414125 34 0.470588235 0.818696884 4.44 3.635014 37 0.432432432 0.842461538 3.43 2.889643 Άρα, η συνολική απόδοση του 1 ου κυκλώνα είναι το άθροισμα των όρων της τελευταίας στήλης. Προκύπτει ότι: n 1= 47.14 % Ακόμη: - Μαζική ροή αρχικών αιωρούμενων στερεών= Q g C P= 3.2 kg/s αρχική ογκομετρική παροχή σωματιδίων= Μάζα αρχικών αιωρούμενων στερεών / ρ p= 0.00123 m 3 /s - Μαζική ροή σωμ. που συλλέγονται στον κυκλώνα= 1.508 κg/s ογκ. παρ. σωμ. που συλλέγονται στον κυκλώνα = Μάζα αρχικών αιωρ. στερεών/ρ p= 0.00058 m 3 /s - Μαζική ροή που παραμένει στο ρεύμα απαερίων μετά κυκλ. 1= 1.69 kg/s ογκ. παρ. σωμ. που παραμένουν στο ρεύμα απαερίων μετά κυκλ. 1= 0.00065 m 3 /s

Επομένως: Παροχή απαερίων προς 2 ο κυκλώνα= Q g - ογκ. παρ. σωμ. που συλλέγονται στον κυκλώνα= 39.999 m 3 /s Για τα σωματίδια που παρέμειναν μετά τον 1 ο κυκλώνα, προκύπτει ο παρακάτω πίνακας. d p (μm) 1 1.215252918 4 4.696470588 7 6.437770492 10 6.766741573 13 6.198211765 16 5.225 19 4.157406807 22 3.168864865 25 2.339160045 28 1.678769231 31 1.175875103 34 0.804985836 37 0.540356923 Η νέα ποσοστιαία κατανομή των σωματιδίων για τον 2 ο κυκλώνα θα προκύψει πολλαπλασιάζοντας τη 2 η στήλη του πίνακα με 100 και διαιρώντας με το άθροισμα των στοιχείων της. Προκύπτει ο εξής πίνακας για τον 2 ο κυκλώνα: d p (μm) w/w % 1 2.74 4 10.58 7 14.50 10 15.24 13 13.96 16 11.77 19 9.36 22 7.14 25 5.27 28 3.78 31 2.65 34 1.81 37 1.22 Η μέγιστη ποσοστιαία περιεκτικότητα εμφανίζεται για d p= 10 μm. Συνεπώς: d 50,2= 10 μm Θα χρησιμοποιηθεί, όπως και στην περίπτωση του κυκλώνα 1 η σχέση (1.1) από την οποία προκύπτει:

D 2= 3.99 m Και επιπλέον: h 2= 1.99 m, b 2=0.997 m, N e,2= 6 Η ταχύτητα εισόδου των απαερίων στον κυκλώνα 2, δίνεται από τη σχέση (1.2). Συνεπώς: u 2= Παροχή απαερίων προς 2 ο κυκλώνα / (h 2 b 2) u 2= 20.12 m/s Αφού 15 u 2< 30 m/s ικανοποιούνται οι προδιαγραφές για τη λειτουργία του κυκλώνα 2. Λαμβάνοντας υπόψιν τα παραπάνω, για τον 2 ο κυκλώνα προκύπτει τελικά ο πίνακας: d p (μm) d 50/d p n j= 1/ [1+(d 50/d p) 2 ] m j (%) n j m j (%) 1 10 0.009901 2.74 0.027097 4 2.5 0.137931 10.58 1.458824 7 1.428571429 0.328859 14.50 4.767764 10 1 0.5 15.24 7.619369 13 0.769230769 0.628253 13.96 8.769408 16 0.625 0.719101 11.77 8.461468 19 0.526315789 0.78308 9.36 7.331591 22 0.454545455 0.828767 7.14 5.914332 25 0.4 0.862069 5.27 4.541208 28 0.357142857 0.886878 3.78 3.352928 31 0.322580645 0.905749 2.65 2.398494 34 0.294117647 0.920382 1.81 1.668499 37 0.27027027 0.931926 1.22 1.134049 Η απόδοση του 2 ου κυκλώνα είναι το άθροισμα της τελευταίας στήλης του πίνακα. Συνεπώς: n 2= 57.445 % Επομένως, η απόδοση στη σειρά κυκλώνα είναι: n tot.= 1 (1 n 1) (1 n 2)= 0.775 Για τα σωματίδια που παρέμειναν μετά τον 1 ο κυκλώνα, προκύπτει ο παρακάτω πίνακας. d p (μm) 1 2.70966 4 9.117653 7 9.73013 10 7.619369 13 5.188999 16 3.305261 19 2.030912 22 1.221969 25 0.726593

28 0.427669 31 0.249583 34 0.144334 37 0.082838 Η νέα ποσοστιαία κατανομή των σωματιδίων για την έξοδο του 2 ο κυκλώνα θα προκύψει πολλαπλασιάζοντας τη 2 η στήλη του πίνακα με 100 και διαιρώντας με το άθροισμα των στοιχείων της. Προκύπτει ο εξής πίνακας για την έξοδο του 2 ου κυκλώνα: d p (μm) w/w % 1 6.37 4 21.43 7 22.86 10 17.90 13 12.19 16 7.77 19 4.77 22 2.87 25 1.71 28 1.00 31 0.59 34 0.34 37 0.19 Επιπλέον: - ποσό που συλλέγεται μετά από τον 2 ο κυκλώνα= n 2 Μαζική ροή που παραμένει στο ρεύμα απαερίων μετά κυκλ. 1= 0.972 kg/s - ποσό που παραμένει στο ρεύμα απαερίων= Μαζική ροή που παραμένει στο ρεύμα απαερίων μετά κυκλ. 1 ποσό που συλλέγεται μετά από τον 2 ο κυκλώνα= 0.72 kg/s Ακόμη, γίνεται η θεώρηση ότι η πυκνότητα των απαερίων είναι ρ g= 1 kg/m 3 Ισχύουν οι σχέσεις:

Επομένως ισχύει ότι: - για τον 1 ο κυκλώνα: H ν, 1= 8 Δp 1= 462.18 N/m 2 - για τον 2 ο κυκλώνα: H ν, 2= 8 Δp 2= 1618.56 N/m 2 Άσκηση 2 Από την εκφώνηση δίνεται ότι: Q fuel= 2.1 kg fuel/s Μέγιστη συγκέντρωση: C 612,0,0= 40 μg/m 3 v 1= 2.1 m/s, για z 1= 10 m D= 1.2 m Q wf= 25.2 kg/kg fuel Q wfv= 53.9 m 3 /kg fuel T κορ.= 430 o C C p= 0.006931 kcal/mol= 6.931 cal/mol Μαζική παροχή καυσαερίων Q wm= 52.92 kg/s Ρυθμός εκπομπής καυσαερίων εκφρασμένος σε mol/s Q mol= 1824.82759 mol/s Ογκομετρική παροχή καυσαερίων στην κορυφή της καμινάδας Q w= 113.19 m 3 /s Επομένως προκύπτει η ταχύτητα των καυσαερίων στην κορυφή της καμινάδας ως εξής: 2 v καυσ. = Q w/[π (D/2) ] v καυσ.= 100.08 m/s Επιπλέον, έστω ότι επικρατεί ηλιοφάνεια και ισχύει η προσέγγιση Α στον πίνακα 4.2.2. της σελίδας 165. Τότε για x= 612 m, βάσει του πίνακα, ισχύει ότι: σ z= 160.89 m

σ y= 136.94 m Για x= 612 m εμφανίζεται η μέγιστη συγκέντρωση, επομένως ισχύει ότι: σ z= 0.707 h e h e= 227.56 m Γνωρίζοντας την ταχύτητα του αέρα v 1 για z 1, όπως δίνονται στα δεδομένα, μπορεί να προκύψει η ταχύτητα του αέρα σε ύψος h e. Συγκεκριμένα: u he= v 1 (h e/z 1) 0.5 u he= 10.02 m/s Αν η θερμοκρασία του περιβάλλοντος στο οποίο καταλήγουν τα καυσαέρια μετά την έξοδο από την καμινάδα είναι 25 o C, τότε ο ρυθμός εκπομπής θερμότητας είναι: Qh =Qmol cp (Tκορ. 25) Qh = 5122391.4 cal/mol Επιπλέον, ισχύει ότι: Δh= 1.5 vκαυσ. D+4 10 5 Qhu/he Δh= 38.44 m Άρα, το φυσικό ύψος της καμινάδας είναι: h s= h e Δh= 189.13 m Ακόμη, ισχύει η εξίσωση: Από την οποία με επίλυση ως προς M προκύπτει, για το SO 2 ότι: M =75.41 g/s Επομένως, για να υπολογιστεί η παροχή εξόδου ως προς S, ισχύει: Ms= M (32/64) Ms= 37.71 g/s Άρα το ποσοστό (%) S στο καύσιμο είναι: %S= (100 M s)/(1000 Q fuel)= 1.8 %