1. Κατανάλωση ενέργειας

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Κατανάλωση ενέργειας"

Transcript

1 ΑΠΘ ΕΓΑΧΤ 1. Κατανάλωση ενέργειας 1α. Σ ένα αναδευόμενο δοχείο (Τ m, D 0.67 m, C 0.67 m, H m, N 90 RPM, με τέσσερις ανακλαστήρες), εφοδιασμένο με αναδευτήρα τύπου στροβίλου Rushton, αναδεύεται διάλυμα 50% (κ.β.) NaOH σε θερμοκρασία Θ 65 C. Ποιά είναι η απαιτούμενη ισχύς του κινητήρα? Στις συνθήκες του προβλήματος: ρ 1500 kg m-3 μ 1 cp 0.01 Pa.s Ν 90/ s-1 Yπολογίζουμε τον αριθμό Reynolds: ρ N D (0.67 ) Re 8000 µ 0.01 Συνεπώς, η ροή είναι τυρβώδης. Από ένα διάγραμμα αριθμού ισχύος ως προς τον αριθμό Reynolds, όπως για παράδειγμα το παρακάτω: βρίσκουμε ότι για Re 8000, ο αριθμός ισχύος είναι (Po NP) 5, οπότε P (Po ) ρ N 3 D (1.5) (0.67 ) 318 W 3. kw._ 3 Π. Μαύρος

2 1β. Το ίδιο δοχείο όπως στο παράδειγμα 1α θα χρησιμοποιηθεί για την ανάδευση latex (μ 10 Pa.s, ρ 110 kg m -3 ). Ποια θα είναι τώρα η απαιτούμενη ισχύς? Υπολογίζουμε πάλι τον αριθμό Reynolds: ρ N D Re µ ( 0.67) 6.3 που δείχνει ότι αυτή τη φορά η ροή στο αναδευόμενο δοχείο είναι στρωτή (ή γραμμική). Από το ίδιο διάγραμμα προκύπτει ότι Po 8, και ( Po) N ( 1.5) ( 0.67) 08 W P ρ D ή περίπου.1 kw._ 1γ. Θεωρούμε έναν αναδευόμενο αντιδραστήρα εφοδιασμένο με στρόβιλο Rushton (D T/3, Po 5). Το αναδευόμενο υγρό έχει χαρακτηριστικά νερού (ρ 1000 kg m -3 και μ 1 mpa.s). Ζητείται να γίνει μεγέθυνση αυτού του αντιδραστήρα από 5 L σε 50 L, σε 5 m 3 ή σε 50 m 3. Να εξεταστεί το πώς επηρεάζει ο τρόπος μεγέθυνσης την απαιτούμενη ισχύ. α) έστω ότι κρατάμε σταθερή την ταχύτητα περιστροφής: Ν 00 rpm. Από τον όγκο του δοχείου υπολογίζουμε τη διάμετρο του αναδευτήρα και με την ταχύτητα περιστροφής (Ν) την απαιτούμενη ισχύ (Ρ): T 1 V 3 3 π 1/ 3 P Po ρ N 3 D D, ( ) 5 και συμπληρώνουμε τον παρακάτω πίνακα Πίνακας 1. Κλιμάκωση μεγέθους με σταθερή την ταχύτητα περιστροφής V V T D Re P P [L] [m 3 ] [m] [m] [-] [W] [kw] που δείχνει ότι κρατώντας την ταχύτητα περιστροφής σταθερή η απαιτούμενη ισχύς για μεγάλη κλίμακα γίνεται απαγορευτική... Π. Μαύρος σελίδα /11

3 β) έστω ότι κρατάμε σταθερή την περιφερειακή ταχύτητα στην άκρη των πτερυγίων του αναδευτήρα (Vtip ) 3 m s -1. V tip πnd συνεπώς Vtip N πd και συμπληρώνουμε τον παρακάτω πίνακα (για Vtip 3 m s -1 ). Πίνακας. Κλιμάκωση μεγέθους με σταθερή την περιφερειακή ταχύτητα (V tip) V V T D N Re P P P/V [L] [m3] [m] [m] [Hz] [W] [kw] [W/m 3 ] που θεωρούνται πιο λογικές τιμές. Χρησιμοποιούμε αυτό το κριτήριο μεγέθυνσης για περιπτώσεις όπου είναι επιθυμητό να διατηρηθεί ο ίδιος περίπου ρυθμός διάτμησης, ειδικά όταν απαιτούνται μεγάλες τιμές του, όπως π.χ. στην παρασκευή γαλακτωμάτων. γ) έστω ότι κρατάμε σταθερό τον αριθμό Re. Έστω Re 10 5, οπότε: ND 5 μ ρ Υπολογίζουμε και πάλι την ταχύτητα περιστροφής: Πίνακας 3. Κλιμάκωση μεγέθους με σταθερό τον αριθμό Reynolds. V V T D N Re P P [L] [m 3 ] [m] [m] [Hz] [W] [kw] Παρατηρούμε ότι, με αυτό το κριτήριο κλιμάκωσης, όταν αυξάνει ο όγκος του αντιδραστήρα, και διατηρείται σταθερός ο αριθμός Re, μειώνεται η απαιτούμενη ισχύς. Με αυτό το κριτήριο διατηρούμε τον τύπο ροής (στρωτή ή τυρβώδη) σταθερό. Π. Μαύρος σελίδα 3/11

4 1δ. Ένα αναδευόμενο δοχείο (Τ 1.83 m, D 0.61 m, H 1.83 m), εφοδιασμένο με στρόβιλο τύπου Rushton (Po 5), αναδεύεται στις Ν 80 rpm. Ποιός είναι ο χρόνος κυκλοφορίας και ο χρόνος ομογενοποίησής του, αν το περιεχόμενο είναι ένα αραιό υδατικό διάλυμα? Από τον αδιάστατο αριθμό ισχύος (Ρο) υπολογίζουμε τον χρόνο ομογενοποίησης (tmix): N t mix οπότε: 1/ 3 T 5.3 ( Po) D 5.3 T t mix 1/3 1/ 3 1 s N ( Po) D () Ο χρόνος ομογενοποίησης σχετίζεται με τον χρόνο κυκλοφορίας μέσα στον αναδευόμενο αντιδραστήρα: tmix t C οπότε t 1 t mix C 5.5 s._ Π. Μαύρος σελίδα /11

5 . Διασπορά στερεών σωματιδίων σε αναδευόμενο δοχείο α. Σε ένα αναδευόμενο δοχείο (T 1.8 m, H. m), εφοδιασμένο με αναδευτήρα τύπου -5-PBT (D 0.61 m, C 0.6 m), διασπείρεται φθορίτης (dp 10 μm, xs 5% (κ.β.), ρs 3180 kg/m 3 ) σε νερό. Να υπολογιστεί η ελάχιστη ταχύτητα περιστροφής του αναδευτήρα για αιώρηση των στερεών σωματιδίων. Για τον δεδομένο αναδευτήρα: S 8 Po 1.3 Από την κατά βάρος περιεκτικότητα xs 5% προκύπτει ότι Β 33.3%. Για το νερό, μl 1 cp Pa.s και ρl 1000 kg m -3. Οπότε ( ) 9.81 ( 33.3) N 3.1 Hz ( 190 rpm)._ JS ( 0.61) Π. Μαύρος σελίδα 5/11

6 3. Διασπορά υγρού σε υγρό (μή αναμίξιμα) σε αναδευόμενο δοχείο 3α. Σε αναδευόμενο δοχείο (Τ 30 cm, H 35 cm) εφοδιασμένο με στρόβιλο Rushton (D 10 cm, N 6 Hz, C H/3) διασπείρεται κυκλοεξάνιο (φδιασπ 8% [κ.ό.], ρκυκλ 760 kg m -3, σ 6 mn/m). Να υπολογιστεί το μέγεθος των παραγόμενων σταγονιδίων και η κατανάλωση ενέργειας ανά μονάδα όγκου της διασποράς. (α) Για τον υπολογισμό του μεγέθους των σταγονιδίων, υπολογίζουμε πρώτα τον αριθμό We (θεωρώντας ότι ρσυν 1000 kg m -3 ): ( 6) ( 0.1) 3 3 ρ 1000 συν N D We σ 6 10 Mε βάση αυτόν, υπολογίζεται τώρα ο λόγος των διαμέτρων: µ 0,1 d 0.6 µ s διεσπ 0.058( φ ) We ( ) ( ) ( ) D oπότε προκύπτει η μέση διάμετρος των σταγονιδίων: d m 0.15 mm. συν (β) Για τον υπολογισμό της κατανάλωσης ενέργειας, υπολογίζουμε πρώτα τον αριθμό Reynolds για να ελέγξουμε σε μια περιοχή ροών βρίσκεται το σύστημα: πυκνότητα διασποράς: ρμιγμ 0, , kg m 3 ιξώδες διασποράς ιξώδες νερού: μl Pa.s αριθμός Reynolds: ( 0.1) ρμιγμ N D Re µ μιγμ συνεπώς οι συνθήκες ροής στον αναδευόμενο αντιδραστήρα είναι τυρβώδεις, οπότε για τον τρόβιλο Rushton (Po 5 βλ. βιβλιογραφία): ( 6) 3 ( 0. ) 5 P Po ρ N 3 D W και για έναν όγκο ρευστού ( 0.30) ( 0.35) V π m 3 προκύπτει η παρακάτω κατανάλωση ενέργειας ανά μονάδα όγκου της διασποράς: Π. Μαύρος σελίδα 6/11

7 P V L W m -3. 3β. Aντί του αναδευόμενου δοχείου του προηγούμενου παραδείγματος, προτείνεται να χρησιμοποιηθεί σωλήνας (με εσωτερική διάμετρο cm) και συστοιχία με 0 στατικούς αναμίκτες τύπου Kenics (ελικοειδή στοιχεία, μήκους το καθένα 3 cm), μέσα στον οποίο η ταχύτητα του ρευστού είναι 1. m s -1. Να υπολογιστούν πάλι το μέγεθος των παραγόμενων σταγονιδίων και η κατανάλωση ενέργειας ανά μονάδα όγκου της διασποράς. Τα ρευστά και οι ιδιότητές τους είναι τα ίδια όπως και στο προηγούμενο παράδειγμα. O συντελεστής τριβής είναι f 0.. Από τα δεδομένα υπολογίζεται πάλι ο αριθμός We: ( v ) D 1000 ( 1.) ρ σωλ 0.0 We συν 66 3 σ 6 10 οπότε ο λόγος των διαμέτρων υπολογίζεται: d D σωλ ( We) ( ) 0.35( 66) ( 0.) C f και προκύπτει το μέγεθος των σταγονιδίων: d D m 0.1 mm. σωλ H ισχύς ανά μονάδα όγκου διασποράς για την περίπτωση του στατικού αναμίκτη αντιστοιχεί στην ενέργεια, που χρειάζεται για να υπερνικηθεί η πτώση πίεσης στον σωλήνα: P Q Δp όπου Q η ογκομετρική παροχή του ρευστού: ( 0.) π Dσωλ π 1. Q v m 3 s -1 Το συνολικό μήκος του αναμίκτη είναι: L m και η πτώση πίεσης υπολογίζεται από την εξίσωση του συντελεστή τριβής: ρ p D ( v ) L 0. ( 1.) συν σωλ f Pa Π. Μαύρος σελίδα 7/11

8 οπότε P Q p W και για έναν όγκο υγρού στον στατικό αναμίκτη: V π ( 0.) ( ) m προκύπτει μια κατανάλωση ενέργειας ανά μονάδα όγκου: P V W/m 71. kw m Π. Μαύρος σελίδα 8/11

9 . Διασπορά αερίου σε υγρό σε αναδευόμενο δοχείο α. Σε αντιδραστήρα με τέσσερις ανακλαστήρες (Τ m, Η m), εφοδιασμένο με στρόβιλο Rushton (D 0.67 m, N 180 rpm) αναδεύεται νερό (θ 0 C). Στο νερό διασπείρεται αέριο, με παροχή Q 100 m 3 h -1 (σε ατμοσφ. συνθήκες), μέσα από διάτρητο δακτυλιοειδή σωλήνα. Να υπολογιστούν: (α) η απαιτούμενη ισχύς, (β) η αέρια κατακράτηση, (γ) η μέση διάμετρος των φυσαλίδων, και (δ) το εμβαδόν της διεπιφάνειας αερίου-υγρού. Δίνoνται: σl 7 mn/m, μ Pa.s. (α) Με βάση το εμβαδόν της διατομής του αναδευόμενου δοχείου υπολογίζεται η γραμμική ταχύτητα του αερίου: ( ) π π A δοχ T 3.1 m Q 100 u m s mm s -1 A δοχ Για το νερό στους 0 C, ρ 1000 kg m -3 και μ Pa.s. Ο αριθμός Reynolds υπολογίζεται ως: ρ N D Re µ ( 0.67) συνεπώς η ροή στο δοχείο είναι τυρβώδης. Για στρόβιλο Rushton η απαιτούμενη ισχύς (σε νερό χωρίς αέριο) θα είναι: ( Po) N ( 3) 3 ( ) 5 P ρ D 18, kw Από το παρακάτω Σχήμα Π. Μαύρος σελίδα 9/11

10 για u 8.9 mm s -1 προκύπτει ότι P / P 0.55, οπότε η απαιτούμενη ισχύς για το διφασικό σύστημα θα είναι: P kw ή P V L kw m -3. (β) Για την αέρια κατακράτηση, θεωρώντας ότι το δεδομένο σύστημα νερού-αερίου υπόκειται σε συσσωματώσεις, χρησιμοποιείται η εξίσ. (10.3) ελέγχοντας ότι ισχύουν οι δυο περιορισμοί: u : m s -1 P P/VL : kw m -3 P οπότε 0.75 P ϕ ( ) ( ) ( ) u ή 5.% (κ.ό.). VL (γ) Για τον προσδιορισμό της μέσης διαμέτρου των φυσαλίδων, υπολογίζουμε τον όγκο της διασποράς: VL 3.1 V 8. m 3 διασπ ( ϕ ) Η διάμετρος των φυσαλίδων υπολογίζεται: σ µ d b L P µ ρ L V διασπ 0.6 ( 0.07) ( 1000) ( ϕ ) ( 0.5) m 3. mm. (δ) Για το εμβαδόν της διεπιφανείας αερίου-υγρού, χρησιμοποιείται η εξίσ. (10.): a 6ϕ d b m Π. Μαύρος σελίδα 10/11

11 β. Στον ίδιο αντιδραστήρα όπως στο προηγούμενο παράδειγμα, ποια είναι η μέγιστη παροχή αερίου, που μπορεί να διασκορπισθεί ικανοποιητικά? Σε αυτή την περίπτωση, ποια θα είναι η απαίτηση σε ισχύ? Από την εξίσωση: N CD β ( Q ) 0.5 T D 0.5 επιλύοντας ως προς Q, για Ν 3 Hz και β 3: Q 1 β N D T ()( ) 0.5 ( ) 0.1 m 3 s m 3 h -1. Π. Μαύρος σελίδα 11/11

Ανάδευση και ανάμιξη Ασκήσεις

Ανάδευση και ανάμιξη Ασκήσεις 1. Σε μια δεξαμενή, με διάμετρο Τ = 1.2 m και συνολικό ύψος 1.8 m και ύψος πλήρωσης υγρού Η = 1.2 m, αναδεύεται υγρό latex (ρ = 800 kg/m 3, μ = 10 ) με ναυτική προπέλα (τετρ. βήμα, 3 πτερύγια, D = 0.36

Διαβάστε περισσότερα

Κεφάλαιο 10 Ανάδευση και Ανάμιξη

Κεφάλαιο 10 Ανάδευση και Ανάμιξη Κεφάλαιο 10 Ανάδευση και Ανάμιξη 10.1 Eισαγωγή Πριν από οτιδήποτε άλλο, ας διευκρινισθούν οι δύο όροι: η ανάμιξη είναι η διεργασία, με την οποία διασπείρεται ένα υλικό μέσα σ ένα άλλο, της ίδια ή και διαφορετικής

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Moody κλπ.)

Παραδείγµατα ροής ρευστών (Moody κλπ.) Παραδείγµατα ροής ρευστών (Mooy κλπ.) 005-006 Παράδειγµα 1. Να υπολογισθεί η πτώση πίεσης σε ένα σωλήνα από χάλυβα του εµπορίου µήκους 30.8 m, µε εσωτερική διάµετρο 0.056 m και τραχύτητα του σωλήνα ε 0.00005

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Στρωτή ή γραμμική

Διαβάστε περισσότερα

v = 1 ρ. (2) website:

v = 1 ρ. (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Βασικές έννοιες στη μηχανική των ρευστών Μαάιτα Τζαμάλ-Οδυσσέας 17 Φεβρουαρίου 2019 1 Ιδιότητες των ρευστών 1.1 Πυκνότητα Πυκνότητα

Διαβάστε περισσότερα

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση

υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Απαραίτητες σε κάθε μελέτη Είδη ροών Τυρβώδης ροή αριθμός

Διαβάστε περισσότερα

ΑΕΡΙΣΜΟΣ, ph, ΘΕΡΜΟΚΡΑΣΙΑ ΚΑΙ ΑΝΑΔΕΥΣΗ

ΑΕΡΙΣΜΟΣ, ph, ΘΕΡΜΟΚΡΑΣΙΑ ΚΑΙ ΑΝΑΔΕΥΣΗ ΑΕΡΙΣΜΟΣ, ph, ΘΕΡΜΟΚΡΑΣΙΑ ΚΑΙ ΑΝΑΔΕΥΣΗ Mεταφορά Μάζας-Μεταφορά Ο2 Μεταφορά μάζας σε μία φάση α Κατεύθυνση μεταφοράς μάζας C Α1 C Α2 Απόσταση, y Νόμος του Fck N dc a AB dy A - A Συντελεστής διάχυσης Μεταφορά

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi.

ΑΓΩΓΟΣ VENTURI. Σχήμα 1. Διάταξη πειραματικής συσκευής σωλήνα Venturi. Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 7 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΑΓΩΓΟΣ VENTURI ΣΚΟΠΟΣ ΤΗΣ ΑΣΚΗΣΗΣ Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

Παραδείγµατα ροής ρευστών (Bernoulli)

Παραδείγµατα ροής ρευστών (Bernoulli) Παραδείγµατα ροής ρευστών (Bernolli) 005-006 Παράδειγµα. Γάλα ρέει µέσα από σωλήνα διαµέτρου.5 c, µε παροχή 0 L.in - σε θερµοκρασία C. Η ροή είναι νµατώδς, τυρβώδς ή µεταβατική? µ.0 Pa s, ρ 09 kg -3..

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς image url Ludwig Prandtl (1875 1953) 3. ΦΑΙΝΟΜΕΝΑ ΤΗΣ ΡΟΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Δυναμική Ροή Δυναμική Ροή (potential flow): η ροή ιδανικού ρευστού

Διαβάστε περισσότερα

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά

2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2 Μετάδοση θερμότητας με εξαναγκασμένη μεταφορά 2.1 Εισαγωγή Η θερμοκρασιακή διαφορά μεταξύ δυο σημείων μέσα σ' ένα σύστημα προκαλεί τη ροή θερμότητας και, όταν στο σύστημα αυτό περιλαμβάνεται ένα ή περισσότερα

Διαβάστε περισσότερα

Εργαστηριακή άσκηση: Σωλήνας Venturi

Εργαστηριακή άσκηση: Σωλήνας Venturi Εργαστήριο Μηχανικών των Ρευστών Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Δυτικής Αττικής Σκοπός της άσκησης Εργαστηριακή άσκηση: Σωλήνας Veturi Σκοπός της άσκησης είναι η κατανόηση της χρήσης της συσκευής

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ανάδευση και Ανάµειξη Ρευστών. Ανάδευση - Ανάµειξη

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ανάδευση και Ανάµειξη Ρευστών. Ανάδευση - Ανάµειξη ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Ανάδευση και Ανάµειξη Ρευστών Ανάδευση - Ανάµειξη Με τον όρο ανάδευση στην βιοµηχανία τροφίµων εννοούµε τον εξαναγκασµό ενός ρευστού να µετακινηθεί σε ένα δοχείο κυκλικά ή κατά κάποιο

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ

ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Α.Ε.Ι. ΠΕΙΡΑΙΑ Τ.Τ. ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε. ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΡΕΥΣΤΩΝ 8 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΥΔΡΑΥΛΙΚΕΣ ΑΠΩΛΕΙΕΣ ΚΑΤΑ ΤΗΝ ΡΟΗ ΝΕΡΟΥ ΣΕ ΚΛΕΙΣΤΟ ΑΓΩΓΟ Σκοπός του πειράματος είναι να μελετηθεί

Διαβάστε περισσότερα

Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες

Υδροδυναμική. Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Υδροδυναμική Σταθερή ασυμπίεστη ροή σε αγωγούς υπό πίεση: Στρωτή και τυρβώδης ροή Γραμμικές απώλειες Τεράστια σημασία του ιξώδους: Ύπαρξη διατμητικών τάσεων που δημιουργούν απώλειες ενέργειας Είδη ροών

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ

Εφαρμοσμένη Υδραυλική. ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ Εφαρμοσμένη Υδραυλική Πατήστε για προσθήκη Γ. Παπαευαγγέλου κειμένου ΕΔΙΠ, Τμήμα Αγρονόμων και Τοπογράφων Μηχανικών, ΑΠΘ 1 Εισαγωγή Ρευστομηχανική = Μηχανικές ιδιότητες των ρευστών (υγρών και αερίων) Υδρομηχανική

Διαβάστε περισσότερα

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους.

Το μισό του μήκους του σωλήνα, αρκετά μεγάλη απώλεια ύψους. Πρόβλημα Λάδι πυκνότητας 900 kg / και κινηματικού ιξώδους 0.000 / s ρέει διαμέσου ενός κεκλιμένου σωλήνα στην κατεύθυνση αυξανομένου υψομέτρου, όπως φαίνεται στο παρακάτω Σχήμα. Η πίεση και το υψόμετρο

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΤΕΧΝΙΚΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ 27 Φεβρουαρίου 2006 Διάρκεια εξέτασης : 2.5 ώρες Ονοματεπώνυμο: ΑΕΜ Εξάμηνο: (α) Επιτρέπονται: Τα βιβλία

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9

ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ 7-9 Μετρήσεις ταχύτητας ροής αέρα με τη βοήθεια σωλήνα Prandtl και απεικόνιση του πεδίου

Διαβάστε περισσότερα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα

Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εξοπλισμός για την εκπαίδευση στην εφαρμοσμένη μηχανική Υπολογισμός της τριβής σε σωλήνα Εργαστηριακή Άσκηση HM 150.01 Περιεχόμενα 1. Περιγραφή συσκευών... 1 2. Προετοιμασία για το πείραμα... 1 3. Πειράματα...

Διαβάστε περισσότερα

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές).

μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Μερικές ερωτήσεις στους κλειστούς αγωγούς: D Παροχή: Q (στους ανοικτούς αγωγός συνήθως χρησιμοποιούμε 4 μία ποικιλία διατομών, σε αντίθεση με τους κλειστούς που έχουμε συνήθως κυκλικές διατομές). Έστω

Διαβάστε περισσότερα

Σημειώσεις Εγγειοβελτιωτικά Έργα

Σημειώσεις Εγγειοβελτιωτικά Έργα 4. ΚΛΕΙΣΤΟΙ ΑΓΩΓΟΙ 4.1. Γενικά Για τη μελέτη ενός δικτύου κλειστών αγωγών πρέπει να υπολογιστούν οι απώλειες ενέργειας λόγω τριβών τόσο μεταξύ του νερού και των τοιχωμάτων του αγωγού όσο και μεταξύ των

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 7: Φυγοκέντριση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Αρχή λειτουργίας

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο µηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήµατα µεταφοράς ρευστών Ισοζύγιο µηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών µέσα σε σωληνώσεις επιτυγχάνεται µε την παροχή ενέργειας ή απλά µε την αλλαγή της δυναµικής

Διαβάστε περισσότερα

Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον

Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εγγειοβελτιωτικά Έργα και Επιπτώσεις στο Περιβάλλον Ενότητα 3 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων

Διαβάστε περισσότερα

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ

ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Environmental Fluid Mechanics Laboratory University of Cyprus Department Of Civil & Environmental Engineering ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ ΕΓΧΕΙΡΙΔΙΟ ΟΔΗΓΙΩΝ HM 134 ΣΥΣΚΕΥΗ ΜΕΤΡΗΣΗΣ ΙΞΩΔΟΥΣ ΥΓΡΩΝ Εγχειρίδιο

Διαβάστε περισσότερα

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας

3. Τριβή στα ρευστά. Ερωτήσεις Θεωρίας 3. Τριβή στα ρευστά Ερωτήσεις Θεωρίας Θ3.1 Να συμπληρωθούν τα κενά στις προτάσεις που ακολουθούν: α. Η εσωτερική τριβή σε ένα ρευστό ονομάζεται. β. Η λίπανση των τμημάτων μιας μηχανής οφείλεται στις δυνάμεις

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου.

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ. (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ ΡΕΟΛΟΓΙΑ (συνέχεια) Περιστροφικά ιξωδόμετρα μεγάλου διάκενου. Στα ιξωδόμετρα αυτά ένας μικρός σε διάμετρο κύλινδρος περιστρέφεται μέσα σε μια μεγάλη μάζα του ρευστού. Για

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία

ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ. Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση. Βλιώρα Ευαγγελία ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Πτώση πίεσης σε αγωγό σταθερής διατομής 2η εργαστηριακή άσκηση Βλιώρα Ευαγγελία ΘΕΣΣΑΛΟΝΙΚΗ 2014 Σκοπός της εργαστηριακής άσκησης Σκοπός της εργαστηριακής άσκησης είναι ο υπολογισμός της

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών

Εργαστήριο Μηχανικής Ρευστών Εργαστήριο Μηχανικής Ρευστών Αργυρόπουλος Αθανάσιος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Β Ημ/νία εκτέλεσης Πειράματος: 26-11-1999 Ημ/νία παράδοσης Εργασίας: 16-12-1999 1 Θεωρητική Εισαγωγή: 1. Εισαγωγικές έννοιες

Διαβάστε περισσότερα

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία

3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3 Μετάδοση Θερμότητας με Φυσική Μεταφορά και με Ακτινοβολία 3.1 Εισαγωγή Η μετάδοση θερμότητας, στην πράξη, γίνεται όχι αποκλειστικά με έναν από τους τρεις δυνατούς μηχανισμούς (αγωγή, μεταφορά, ακτινοβολία),

Διαβάστε περισσότερα

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ

ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ ΜΕΤΡΗΣΗ ΣΥΝΤΕΛΕΣΤΗ ΕΣΩΤΕΡΙΚΗΣ ΤΡΙΒΗΣ Σκοπός της άσκησης Σε αυτή την άσκηση θα μετρήσουμε τον συντελεστή εσωτερικής τριβής ή ιξώδες ρευστού προσδιορίζοντας την οριακή ταχύτητα πτώσης μικρών σφαιρών σε αυτό

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ

ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ ΥΠΟΛΟΓΙΣΜΟΣ ΑΠΩΛΕΙΩΝ ΥΔΡΑΥΛΙΚΗΣ ΕΝΕΡΓΕΙΑΣ Α.Μ.Β.Υ. ΛΟΓΩ ΙΞΩΔΩΝ ΤΡΙΒΩΝ ΣΕ ΡΟΕΣ ΥΠΟ ΠΙΕΣΗ (σε «κλειστούς αγωγούς») Οι απώλειες υδραυλικής ενέργειας λόγω ιξωδών τριβών σε μια υδραυλική εγκατάσταση που αποτελείται

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής

Εργαστήριο Μηχανικής Ρευστών. Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Εργαστήριο Μηχανικής Ρευστών Εργασία 1 η : Πτώση πίεσης σε αγωγό κυκλικής διατομής Ονοματεπώνυμο:Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημερομηνία εκτέλεσης Πειράματος : 12/4/2000 Ημερομηνία

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Συναγωγή Γενικές αρχές Κεφάλαιο 6 2 Ορισµός Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται σε κίνηση Εξαναγκασµένη

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ ΜΕΤΑΦΟΡΑ ΟΡΜΗΣ - ΡΕΟΛΟΓΙΑ Ρεολογία Επιστήµη που εξετάζει την ροή και την παραµόρφωση των υλικών κάτω από την άσκηση πίεσης. Η µεταφορά των υγρών στην βιοµηχανία τροφίµων συνδέεται άµεσα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο μηχανικής ενέργειας

ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ. Ισοζύγιο μηχανικής ενέργειας ΜΗΧΑΝΙΚΗ ΤΡΟΦΙΜΩΝ Συστήματα μεταφοράς ρευστών Ισοζύγιο μηχανικής ενέργειας Η αντίσταση στην ροή και η κίνηση ρευστών μέσα σε σωληνώσεις επιτυγχάνεται με την παροχή ενέργειας ή απλά με την αλλαγή της δυναμικής

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 3 Ιξώδες Ταχύτητα διάτμησης Αριθμός Reynolds Διδάσκων Δρ. Παντελής Σ. Αποστολόπουλος (Επίκουρος

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 4 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΠΑΡΑΛΛΗΛΗ ΡΟΗ ΕΠΑΝΩ ΑΠΟ ΕΠΙΠΕΔΗ ΠΛΑΚΑ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

Στοιχεία Μηχανολογικού Εξοπλισμού

Στοιχεία Μηχανολογικού Εξοπλισμού Στοιχεία Μηχανολογικού Εξοπλισμού Σκοπός Η γνωριμία και η εξοικείωση των φοιτητών με τον μηχανολογικό εξοπλισμό (σωληνώσεις, αντλίες, ανεμιστήρες, συμπιεστές, μετρητικά όργανα) που χρησιμοποιείται στη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D

2g z z f k k z z f k k z z V D 2g 2g 2g D 2g f L ka D ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΟΜΕΑΣ ΥΔΑΤΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΜΑΘΗΜΑ: ΥΔΡΑΥΛΙΚΗ ΚΑΙ ΥΔΡΑΥΛΙΚΑ ΕΡΓΑ ΕΞΕΤΑΣΗ ΠΡΟΟΔΟΥ ΝΟΕΜΒΡΙΟΥ 017 Άσκηση 1 1. Οι δεξαμενές Α και Β, του Σχήματος 1, συνδέονται με σωλήνα

Διαβάστε περισσότερα

Βασικές Διεργασίες Μηχανικής Τροφίμων

Βασικές Διεργασίες Μηχανικής Τροφίμων Βασικές Διεργασίες Μηχανικής Τροφίμων Ενότητα 7: Φυγοκέντριση, 1ΔΩ Τμήμα: Επιστήμης Τροφίμων και Διατροφής Του Ανθρώπου Σταύρος Π. Γιαννιώτης, Καθηγητής Μηχανικής Τροφίμων Μαθησιακοί Στόχοι Αρχή λειτουργίας

Διαβάστε περισσότερα

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ

PP οι στατικές πιέσεις στα σημεία Α και Β. Re (2.3) 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 2: ΡΟΗ ΣΕ ΑΓΩΓΟΥΣ 1. ΑΝΤΙΚΕΙΜΕΝΟ ΚΑΙ ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ Η πειραματική εργασία περιλαμβάνει 4 διαφορετικά πειράματα που σκοπό έχουν: 1. Μέτρηση απωλειών πίεσης σε αγωγό κυκλικής διατομής.

Διαβάστε περισσότερα

ΠΕΙΡΑΜΑΤΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΔΗΜΙΟΥΡΓΙΑΣ ΦΥΣΑΛΙΔΩΝ ΑΠΟ μ-σωληνα ΣΕ ΜΗ ΝΕΥΤΩΝΙΚΟ ΡΕΥΣΤΟ

ΠΕΙΡΑΜΑΤΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΔΗΜΙΟΥΡΓΙΑΣ ΦΥΣΑΛΙΔΩΝ ΑΠΟ μ-σωληνα ΣΕ ΜΗ ΝΕΥΤΩΝΙΚΟ ΡΕΥΣΤΟ ΠΕΙΡΑΜΑΤΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΜΕΛΕΤΗ ΔΗΜΙΟΥΡΓΙΑΣ ΦΥΣΑΛΙΔΩΝ ΑΠΟ μ-σωληνα ΣΕ ΜΗ ΝΕΥΤΩΝΙΚΟ ΡΕΥΣΤΟ Γ.Ι. Κονταξή, Γ.Γ. Στεργίου, Α.Α. Μουζά* Τμήμα Χημικών Μηχανικών, Πολυτεχνική Σχολή, ΑΠΘ (*mouza@auth.gr) ΠΕΡΙΛΗΨΗ

Διαβάστε περισσότερα

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q

Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού. Μανομετρικό Υψος h. Υψος h2. Ροή q Υπολογισμός συνάρτησης μεταφοράς σε Υδραυλικά συστήματα. Αντίσταση ροής υγρού Υψος h Μανομετρικό Υψος h Υψος h Σχήμα.4 Ροή q Ας υποθέσουμε ότι έχουμε δύο δεξαμενές που επικοινωνούν με ένα σωλήνα όπως ακριβώς

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΧΤΩΝ ΚΑΙ ΚΛΕΙΣΤΩΝ ΑΓΩΓΩΝ Π. Σιδηρόπουλος Δρ. Πολιτικός Μηχανικός Εργαστήριο Υδρολογίας και Ανάλυσης Υδατικών Συστημάτων Τμήμα Πολιτικών Μηχανικών Π.Θ. E-mail: psidirop@teilar.gr ΕΓΓΕΙΟΒΕΛΤΙΩΤΙΚΑ

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0

Διαβάστε περισσότερα

Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης

Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης Ονοματεπώνυμο: Μάθημα: Ύλη: Επιμέλεια διαγωνίσματος: Αξιολόγηση: Φυσική Προσανατολισμού Ρευστά Ιωάννης Κουσανάκης ΘΕΜΑ Α Α1. Το ανοιχτό κυλινδρικό δοχείο του σχήματος βρίσκεται εντός πεδίο βαρύτητας με

Διαβάστε περισσότερα

Τα τρία βασικά προβλήματα της Υδραυλικής

Τα τρία βασικά προβλήματα της Υδραυλικής Τα τρία βασικά προβλήματα της Υδραυλικής Α βασικό πρόβλημα,, παροχή γνωστή απλός υπολογισμός απωλειών όχι δοκιμές (1): L1 = 300, d1 = 0.6 m, (): L = 300, d = 0.4 m Q = 0.5m 3 /s, H=?, k=0.6 mm Διατήρηση

Διαβάστε περισσότερα

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός

ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός ηµήτρης Τσίνογλου ρ. Μηχανολόγος Μηχανικός 1 Φυσική (ελεύθερη) συναγωγή Κεφάλαιο 8 2 Ορισµός του προβλήµατος Μηχανισµός µετάδοσης θερµότητας ανάµεσα σε ένα στερεό και σε ένα ρευστό, το οποίο βρίσκεται

Διαβάστε περισσότερα

Εισαγωγή Διάκριση των ρευστών

Εισαγωγή Διάκριση των ρευστών ΥΔΡΑΥΛΙΚΗ Εισαγωγή στην Υδραυλική Αντικείμενο Πυκνότητα και ειδικό βάρος σωμάτων Συστήματα μονάδων Ιξώδες ρευστού, επιφανειακή τάση, τριχοειδή φαινόμενα Υδροστατική πίεση Εισαγωγή Ρευστομηχανική = Μηχανικές

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ A ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (2016-17) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΕΚΦΩΝΗΣΕΙΣ Στις προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση,

Διαβάστε περισσότερα

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του

Κινηματική ρευστών. Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του 301 Κινηματική ρευστών Ροή ρευστού = η κίνηση του ρευστού, μέσα στο περιβάλλον του Είδη ροής α) Σταθερή ή μόνιμη = όταν σε κάθε σημείο του χώρου οι συνθήκες ροής, ταχύτητα, θερμοκρασία, πίεση και πυκνότητα,

Διαβάστε περισσότερα

Σφαιρικές συντεταγμένες (r, θ, φ).

Σφαιρικές συντεταγμένες (r, θ, φ). T T r e r 1 T e r Σφαιρικές συντεταγμένες (r, θ, φ). 1 T e. (2.57) r sin u u e u e u e, (2.58) r r οπότε το εσωτερικό γινόμενο u.t γίνεται: T u T u T u. T ur. (2.59) r r r sin 2.5 Η ΑΡΧΗ ΔΙΑΤΗΡΗΣΗΣ ΤΗΣ

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I. Εργαστηριακή Άσκηση ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΝΑΥΠΗΓΩΝ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΝΑΥΤΙΚΗΣ ΜΗΧΑΝΟΛΟΓΙΑΣ I Εργαστηριακή Άσκηση Μέτρηση Ιξώδους Επιμέλεια: Λάμπρος Καϊκτσής Μάρτιος

Διαβάστε περισσότερα

Διατήρηση της Ύλης - Εξίσωση Συνέχειας

Διατήρηση της Ύλης - Εξίσωση Συνέχειας Διατήρηση της Ύλης - Εξίσωση Συνέχειας Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ρευστό χαρακτηρίζεται ως πραγματικό όταν α. κατά τη ροή του δεν παρουσιάζει εσωτερικές τριβές. β. κατά τη ροή του δεν παρουσιάζονται

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΜΟΣ ΒΙΟΑΝΤΙΔΡΑΣΤΗΡΩΝ

ΣΧΕΔΙΑΣΜΟΣ ΒΙΟΑΝΤΙΔΡΑΣΤΗΡΩΝ ΣΧΕΔΙΑΣΜΟΣ ΒΙΟΑΝΤΙΔΡΑΣΤΗΡΩΝ Τύποι ιδανικών βιοαντιδραστήρων Τρόποι λειτουργίας αναδευόμενων βιοαντιδραστήρων Το πρόβλημα του σχεδιασμού Ο βιοχημικός μηχανικός καλείται να επιλέξει: τον τύπο βιοαντιδραστήρα

Διαβάστε περισσότερα

Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές

Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Απώλειες φορτίου Συντελεστής τριβής Ο αριθμός Reynolds Το διάγραμμα Moody Εφαρμογές Στο σχήμα έχουμε ροή σε ένα ιδεατό ρευστό. Οι σωλήνες πάνω στον αγωγό (μανομετρικοί σωλήνες) μετρούν μόνο το ύψος πίεσης

Διαβάστε περισσότερα

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας

ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ. Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας ΦΑΙΝΟΜΕΝΑ ΜΕΤΑΦΟΡΑΣ ΙΙ Διδάσκων: Παπασιώπη Νυμφοδώρα Αναπληρώτρια Καθηγήτρια Ε.Μ.Π. Ενότητα 9 η : Μεταφορά Μάζας Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creatve Coons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης

Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Μεθοδολογία επίλυσης προβληµάτων καταβύθισης Τα προβλήµατα που υπάρχουν πάντα στις περιπτώσεις βαρυτοµετρικών διαχωρισµών είναι η γνώση της συµπεριφοράς των στερεών, όσον αφορά στην καταβύθισή τους µέσα

Διαβάστε περισσότερα

ΥδροδυναµικέςΜηχανές

ΥδροδυναµικέςΜηχανές ΥδροδυναµικέςΜηχανές Χαρακτηριστικές καµπύλες υδροστροβίλων Εργαστήριο Αιολικής Ενέργειας Τ.Ε.Ι. Κρήτης ηµήτρης Αλ. Κατσαπρακάκης Θεωρητικήχαρακτηριστική υδροστροβίλου Θεωρητική χαρακτηριστική υδροστροβίλου

Διαβάστε περισσότερα

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2

h 1 M 1 h 2 M 2 P = h (2) 10m = 1at = 1kg/cm 2 = 10t/m 2 ΕΡΓΑΣΤΗΡΙΟ 4 Ο Ενότητα: Βασικές υδραυλικές έννοιες Πίεση απώλειες πιέσεως Ι. Υδροστατική πίεση Η υδροστατική πίεση, είναι η πίεση που ασκεί το νερό, σε κατάσταση ηρεμίας, στα τοιχώματα του δοχείου που

Διαβάστε περισσότερα

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ

ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ Α. ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ ΑEI ΠΕΙΡΑΙΑ(ΤΤ) ΣΤΕΦ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ-ΜΗΧΑΝΙΚΩΝ ΤΕ ΕΡΓ. ΜΕΤΑΔΟΣΗΣ ΘΕΡΜΟΤΗΤΑΣ 5 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ ΜΕΤΑΔΟΣΗ ΘΕΡΜΟΤΗΤΑΣ ΜΕ ΣΥΝΑΓΩΓΙΜΟΤΗΤΑ ΕΓΚΑΡΣΙΑ ΡΟΗ ΓΥΡΩ ΑΠΟ ΚΥΛΙΝΔΡΟ Σκοπός της άσκησης Η κατανόηση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΡΕΥΣΤΑ - ΘΕΜΑΤΑ ΘΕΜΑ A Στις προτάσεις Α1α έως Α4β να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ)

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΦΥΣΙΚΗ ΠΡΟΣΝΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝ) 3/3/019 ΤΖΓΚΡΚΗΣ ΓΙΝΝΗΣ ΘΕΜ A Να γράψετε στην κόλλα σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton):

[ ] = = Συναγωγή Θερμότητας. QW Ahθ θ Ah θ θ. Βασική Προϋπόθεση ύπαρξης της Συναγωγής: Εξίσωση Συναγωγής (Εξίσωση Newton): Συναγωγή Θερμότητας: Συναγωγή Θερμότητας Μέσω Συναγωγής μεταδίδεται η θερμότητα μεταξύ της επιφάνειας ενός στερεού σώματος και ενός ρευστού το οποίο βρίσκεται σε κίνηση σχετικά με την επιφάνεια και ταυτόχρονα

Διαβάστε περισσότερα

4 Τριβές σε Σωλήνες και Εξαρτήματα

4 Τριβές σε Σωλήνες και Εξαρτήματα 4 Τριβές σε Σωλήνες και Εξαρτήματα 4.1 Εισαγωγή 4.1.1 ΜΟΡΙΑΚΗ ΘΕΩΡΗΣΗ ΤΗΣ ΚΙΝΗΣΗΣ ΤΩΝ ΡΕΥΣΤΩΝ Ένα ρευστό δεν είναι παρά ένα σύνολο μορίων, τα οποία αφενός κινούνται (έχουν κινητική ενέργεια) και αφετέρου

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου.

θα πρέπει να ανοιχθεί μια δεύτερη οπή ώστε το υγρό να εξέρχεται από αυτήν με ταχύτητα διπλάσιου μέτρου. Δίνονται g=10m/s 2, ρ ν =1000 kg/m 3 [u 2 =3u 1, 10 3 Pa, 0,5m/s] ΚΕΦΑΛΑΙΟ 3 ο : ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ ΕΝΟΤΗΤΑ 3: Η ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΕΝΕΡΓΕΙΑΣ ΚΑΙ Η ΕΞΙΣΩΣΗ BERNOULLI 16 Το ανοικτό δοχείο του σχήματος περιέχει

Διαβάστε περισσότερα

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό.

Εργαστήριο Μηχανικής Ρευστών. Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Εργαστήριο Μηχανικής Ρευστών Εργασία 2 η Κατανομή πίεσης σε συγκλίνοντα αποκλίνοντα αγωγό. Κυρκιμτζής Γιώργος Σ.Τ.Ε.Φ. Οχημάτων - Εξάμηνο Γ Ημ/νία παράδοσης Εργασίας: Τετάρτη 24 Μαΐου 2 1 Θεωρητική Εισαγωγή:

Διαβάστε περισσότερα

Ατομικά Δίκτυα Αρδεύσεων

Ατομικά Δίκτυα Αρδεύσεων ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6 : Βασικές Υδραυλικές και Μαθηματικές Έννοιες Ευαγγελίδης Χρήστος Τμήμα Αγρονόμων & Τοπογράφων Μηχανικών Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ

ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΗΧΑΝΙΚΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΔΙΕΡΓΑΣΙΩΝ ΟΔΗΓΙΕΣ ΕΡΓΑΣΤΗΡΙΑΚΗΣ ΑΣΚΗΣΗΣ ΥΓΡΗΣ ΕΚΧΥΛΙΣΗΣ Ελένη Παντελή, Υποψήφια Διδάκτορας Γεωργία Παππά, Δρ. Χημικός Μηχανικός

Διαβάστε περισσότερα

Μιχαήλ Π. Μιχαήλ Φυσικός

Μιχαήλ Π. Μιχαήλ Φυσικός 3. ΜΗΧΑΝΙΚΗ ΤΩΝ ΡΕΥΣΤΩΝ - Ρευστά σε κίνηση Είδη ροής - Ρευµατικές γραµµές και εξίσωση συνέχειας - Διατήρηση ενέργειας, εξίσωση Bernoulli - Πραγµατικά ρευστά Εσωτερική τριβή ιξώδες, Νόµος Poiseuille 3.

Διαβάστε περισσότερα

(1.1) Ακόμη επειδή ο αεριοκυκλώνας είναι τυπικών διαστάσεων, θα ισχύει: b= D/4 h= D/2 N e= 3D/h

(1.1) Ακόμη επειδή ο αεριοκυκλώνας είναι τυπικών διαστάσεων, θα ισχύει: b= D/4 h= D/2 N e= 3D/h Άσκηση 1 Από την εκφώνηση της άσκησης μας δίνεται ότι: Παροχή απαερίων: Q g= 40 m 3 /s Θερμοκρασία: T g= 80 o C Πυκνότητα: ρ p= 2.6 g/cm 3 Συγκέντρωση: C P= 0.08 kg/m 3 Ακόμη, δίνεται ο παρακάτω πίνακας.

Διαβάστε περισσότερα

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας.

Συνοπτική Παρουσίαση Σχέσεων για τον Προσδιορισμό του Επιφανειακού Συντελεστή Μεταφοράς της Θερμότητας. 5 η ΔΙΑΛΕΞΗ Στόχος της διάλεξης αυτής είναι η κατανόηση των διαδικασιών αλλά και των σχέσεων που χρησιμοποιούνται για τον προσδιορισμό του ρυθμού μεταφοράς θερμότητας, Q &, αλλά και του επιφανειακού συντελεστή

Διαβάστε περισσότερα

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών»

Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» Ανάθεση εργασίας για το εργαστηριακό μέρος του μαθήματος «Μηχανική των Ρευστών» : Στρωτή και τυρβώδης ροή σε λείο σωλήνα Συντάκτες: Α. Φιλιός, Κ. Μουστρής, Κ.-Σ. Νίκας 1 Αντικείμενο της εργαστηριακής άσκησης

Διαβάστε περισσότερα

p = p n, (2) website:

p = p n, (2) website: Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Τμήμα Φυσικής Μηχανική Ρευστών Ιδανικά ρευστά Μαάιτα Τζαμάλ-Οδυσσέας 7 Απριλίου 2019 1 Καταστατικές εξισώσεις ιδανικού ρευστού Ιδανικό ρευστό είναι ένα υποθετικό

Διαβάστε περισσότερα

Εγχειρίδιο Οδηγιών HM Οριζόντια Επίδειξη Osborne Reynolds

Εγχειρίδιο Οδηγιών HM Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών 2 Περιεχόμενα 1 Περιγραφή εξοπλισμού.............................. 4 2 Προετοιμασία και ρύθμιση του εξοπλισμού...............

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. Καθηγητής Δ. Ματαράς ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής Δ. Ματαράς Παράδειγμα 1 Στατική ρευστών Να υπολογιστεί το βάθος της θάλασσας στο οποίο η απόλυτη πίεση είναι 10 atm. ΔP = ρ g Δz Δz = ΔP ρ g = 10 1 101325

Διαβάστε περισσότερα

ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου.

ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου. ΠΘ ΤΜΜ ΠΜΣ ΑΣΚΗΣΗ ΤΜΘΕ ΕΡΓ - 1 10-3-2010 : Χρήση θερμοανεμομετρίας για μέτρηση ταχύτητας σε τυρβώδη ροή και στο απόρευμα κυκλικού κυλίνδρου. Διδάσκοντες : Α. Σταματέλλος, Ε. Σταπουντζής Εκτέλεση : Ο. Ζώγου

Διαβάστε περισσότερα

Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ. Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων. SI CGS American Engineering System - UK

Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ. Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων. SI CGS American Engineering System - UK ΔΙΑΣΤΑΣΕΙΣ- ΜΟΝΑΔΕΣ Ε. Παυλάτου, 2019 ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ 2 Σκοπός : κοινή ορολογία στη μέτρηση των διαστάσεων SI CGS American Engineering System - UK ΒΑΣΙΚΕΣ ΚΑΙ ΠΑΡΑΓΟΜΕΝΕΣ ΔΙΑΣΤΑΣΕΙΣ

Διαβάστε περισσότερα

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών

Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Κεφάλαιο 1 - Μέτρηση πυκνότητας και ιξώδους ρευστών Σύνοψη Στο Κεφάλαιο 1 περιλαμβάνονται εργαστηριακές ασκήσεις στις οποίες εφαρμόζονται κλασικές μέθοδοι προσδιισμού της πυκνότητας και του ιξώδους ισμένων

Διαβάστε περισσότερα

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) :

Απόβλητα. Ασκήσεις. ίνεται η σχέση (Camp) : ΠΑΝΕΠΙΣΤΗΜΙΟ ΥΤΙΚΗΣ ΜΑΚΕ ΟΝΙΑΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΙΑΧΕΙΡΙΣΗΣ ΕΝΕΡΓΕΙΑΚΩΝ ΠΟΡΩΝ Τομέας Περιβάοντος και Χρήσης Ενέργειας Εργαστήριο Τεχνοογίας Περιβάοντος ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΤΕΧΝΟΛΟΓΙΑ ΠΕΡΙΒΑΛΛΟΝΤΟΣ (3 ο ΕΞΑΜΗΝΟ)

Διαβάστε περισσότερα

Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι

Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι Ερωτήσεις θεωρίας - Θέμα Β Εκφώνηση 1η Στο διπλανό σχήμα το έμβολο έχει βάρος Β, διατομή Α και ισορροπεί. Η δύναμη που ασκείται από το υγρό στο έμβολο είναι α) β) γ) Λύση Εκφώνηση 2η Στο διπλανό υδραυλικό

Διαβάστε περισσότερα

Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης»

Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης» Ερωτήσεις στο Κεφ. «Αρχές κατακάθισης ή καθίζησης» 1) Ποιοι είναι οι κυριότεροι λόγοι για τη χρησιμοποίηση της κατακάθισης ως μεθόδου διαχωρισμού στερεών από ρευστά; ) Ποιοι είναι οι κυριότεροι στόχοι

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 11 ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΘΕΡΜΟΚΙΝΗΤΗΡΩΝ ΚΑΙ ΘΕΡΜΙΚΩΝ ΣΤΡΟΒΙΛΟΜΗΧΑΝΩΝ ΔΙΔΑΚΤΙΚΗ ΠΕΡΙΟΧΗ: ΕΡΓΑΣΤΗΡΙΟ ΣΤΡΟΒΙΛΟΚΙΝΗΤΗΡΩΝ Υπεύθυνος: Επικ. Καθηγητής Δρ. Α. ΦΑΤΣΗΣ ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds

Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών HM150.35 Οριζόντια Επίδειξη Osborne Reynolds Εγχειρίδιο Οδηγιών Περιεχόμενα 1. Περιγραφή Εξοπλισμού... 4 2. Προετοιμασία και ρύθμιση της συσκευής... 5 3. Εκτέλεση του πειράματος... 6

Διαβάστε περισσότερα

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών

Ρευστoμηχανική Εισαγωγικές έννοιες. Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Ρευστoμηχανική Εισαγωγικές έννοιες Διδάσκων: Άλκης Παϊπέτης Αναπληρωτής Καθηγητής Τμήμα Μηχανικών Επιστήμης Υλικών Εισαγωγή Περιεχόμενα μαθήματος Βασικές έννοιες, συνεχές μέσο, είδη, μονάδες διαστάσεις

Διαβάστε περισσότερα