W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r

Σχετικά έγγραφα
u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Approximation of dynamic boundary condition: The Allen Cahn equation

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

L p approach to free boundary problems of the Navier-Stokes equation

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Modelli Matematici. Gianni Gilardi. Cortona, giugno Transizione di fase solido solido in un sistema meccanico

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Τεχνική Έκθεση Συνοπτική παρουσίαση... 3

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

D Alembert s Solution to the Wave Equation

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

High order interpolation function for surface contact problem

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Nonlinear Fourier transform and the Beltrami equation. Visibility and Invisibility in Impedance Tomography

Higher spin gauge theories and their CFT duals

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

1. Bachelor of Science in Math., University of Illinois, Chicago, 1972

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

Prey-Taxis Holling-Tanner

Fundamentals of Signals, Systems and Filtering

Heisenberg Uniqueness pairs

The Pohozaev identity for the fractional Laplacian

Sharp Interface Limit for the Navier Stokes Korteweg Equations

arxiv: v3 [math.ca] 4 Jul 2013

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Asymptotic stability of boundary layers to the Euler-Poisson equation arising in plasma physics. Based on joint research with

Nonlinear Fourier transform for the conductivity equation. Visibility and Invisibility in Impedance Tomography

Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Ηλεκτρονικοί Υπολογιστές IV

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

X g 1990 g PSRB

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Lecture 26: Circular domains

Dispersive estimates for rotating fluids and stably stratified fluids

Phase-Field Force Convergence

EXISTENCE OF POSITIVE SOLUTIONS FOR SINGULAR FRACTIONAL DIFFERENTIAL EQUATIONS

EXISTENCE OF SOLUTIONS FOR RIEMANN-LIOUVILLLE TYPE COUPLED SYSTEMS OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS AND BOUNDARY CONDITIONS

chatzipa

PROPERTIES OF CERTAIN INTEGRAL OPERATORS. a n z n (1.1)

Strong global attractors for non-damping weak dissipative abstract evolution equations

Example Sheet 3 Solutions

M a t h e m a t i c a B a l k a n i c a. On Some Generalizations of Classical Integral Transforms. Nina Virchenko

ΒΙΟΓΡΑΦΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥ ΕΣ ΥΠΟΤΡΟΦΙΕΣ

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

A thermodynamic characterization of some regularity structures near the subcriticality threshold

ΑΠΟΣΠΑΣΜΑ Π Ρ Α Κ Τ Ι Κ ΟΥ 3 ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ ΣΧΟΛΗΣ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

ADVANCED STRUCTURAL MECHANICS

A Carleman estimate and the balancing principle in the Quasi-Reversibility method for solving the Cauchy problem for the Laplace equation

Single-value extension property for anti-diagonal operator matrices and their square

On the Galois Group of Linear Difference-Differential Equations

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Wavelet based matrix compression for boundary integral equations on complex geometries

- 1+x 2 - x 3 + 7x x x x x x 2 - x 3 - -

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Eigenvalues and eigenfunctions of a non-local boundary value problem of Sturm Liouville differential equation

Research Article Existence of Positive Solutions for m-point Boundary Value Problems on Time Scales

Graded Refractive-Index

Eulerian Simulation of Large Deformations

Probabilistic Approach to Robust Optimization

Integrated Mediterranean Program on Informatics EEC: Creation of a scientific algorithms library,

Studies on Sturm-Liouville boundary value problems for multi-term fractional differential equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Boundary value problems in complex analysis II

Weak solution to compressible hydrodynamic flow of liquid crystals in 1-D

On nonlocal fractional sum-difference boundary value problems for Caputo fractional functional difference equations with delay

Positive solutions for three-point nonlinear fractional boundary value problems

Η μέθοδος των πεπερασμένων στοιχείων για την εξίσωση της θερμότητας


L 1 Existence and Uniqueness Results for Quasi-linear Elliptic Equations with Nonlinear Boundary Conditions

From a car-following model with reaction time to a macroscopic convection-diffusion traffic flow model

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

A General Note on δ-quasi Monotone and Increasing Sequence

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

Numerical Analysis FMN011

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Diderot (Paris VII) les caractères des groupes de Lie résolubles

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Finite difference method for 2-D heat equation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

( y) Partial Differential Equations

A Lambda Model Characterizing Computational Behaviours of Terms

Transcript:

2018 : msjmeeting-2018sep-09i004 ( ), Cahn Hilliard..,.,. 1.,,,. Dirichlet( ), Neumann( ), Robin(, ), 1, 2, 3., dynamic( ).,.,, system( ) transmission problem( ). 2. Cahn Hilliard 0 < T < +, R d (d = 2, 3) :=. Cahn Hilliard( ) [7] 2 (, Milanville[43] ): u µ = 0 in Q := (0, T ), (1) t µ = u + W (u) f in Q, (2) W, W, W(r) = (1/4)(r 2 1), W (r) = r 3 r., u := u(t, x) 1, u = 1 A, u = 1 B, u = 0 Supported by JSPS KAKENHI Grant Number 17K05321. e-mail: fukao@kyokyo-u.ac.jp

., ν ν, µ := µ(t, x) Neumann ν µ = 0 on Σ := (0, T ) Σ u, : u(t)dx = u(0)dx for all t [0, T ]. u Neumann., { } 1 E CH (z) := 2 z 2 dx + W(z) dx, d dt E ( ) CH u(t) + µ(t) 2 dx = 0 for all t [0, T ].., Gal[28] Goldstein Miranville Schimperna[31], Cahn Hilliard : u t + νµ µ = 0 on Σ, (3) µ = ν u u + W (u) f on Σ. (4) (3) (1), (2) (1) (4) Cahn Hilliard., (1) (3) u(t)dx + u(t)d = u(0)dx + u(0)d for all t [0, T ].,. (1) (4) { } { } 1 1 E GMS (z) := 2 z 2 dx + W(z) dx + 2 z 2 d + W (z) d, d dt E ( ) GMS u(t) + µ(t) 2 dx + µ(t) 2 d = 0 for all t [0, T ]..

3., (1) (4),., (GMS). u, µ : Q R u, µ : Σ R, : u µ = 0 t a.e. in Q, (5) µ = u + ξ + π(u) f, ξ β(u) a.e. in Q, (6) u = u, µ = µ, u t + νµ µ = 0 a.e. on Σ, (7) µ = ν u u + ξ + π (u ) f, ξ β (u ) a.e. on Σ, (8) u(0) = u 0 a.e. in, u (0) = u 0 a.e. on, (9), u u, Laplace Beltrami (, Grigor yan[32] )., W := β + π, β ˆβ W, π ˆπ W, W = ˆβ + ˆπ, β, β R 2 R,. β(r) = r 3, π(r) = r, D(β) = R, W W(r) = 1 4 (r2 1) 2 ; β(r) = ln((1 + r)/(1 r)), π(r) = 2cr, D(β) = ( 1, 1), W log W(r) = ( (1 + r) ln(1 + r) + (1 r) ln(1 r) ) cr 2,, c > 0 ( ) ; β(r) = I [ 1,1] (r), π(r) = r, D(β) = [ 1, 1], W W(r) = I [ 1,1] (r) 1 2 r2,, I [ 1,1] [ 1, 1], I [ 1,1] (r) = { 0 if r [ 1, 1], + otherwise., I [ 1,1] I [ 1,1] (, Barbu[6] )., : H := L 2 (), V := H 1 (), W := H 2 () H := L 2 (), V := H 1 (), W := H 2 (), H := H H, V := { z := (z, z ) V V : z = z a.e. on }, W := (W W ) V., : H 0 := {z H : m(z) = 0},, m : H R m(z) := 1 + { zdx + } z d for all z H

, m 0 := m(u 0 )., u 0 := (u 0, u 0 )., V 0 := V H 0., V 0, Poincaré Wirtinger z V 0 := a(z, z) 1/2 (z V 0 )., a(, ) : V V R a(z, z) := z zdx + z z d for all z, z V,., V 0 V 0 F F z, z V 0,V 0 := a(z, z) for all z, z V 0 F : V 0 V 0, C P > 0 C P z 2 V F z, z V 0,V 0 = z 2 V 0 for all z V 0., V 0 H 0 V 0 (Colli F[11, Appendix] )., Kenmochi Niezgódka Paw low[38] (, [37, 39] )., : v := (v, v ) := (u m 0, u m 0 ), v 0 := (v 0, v 0 ) := (u 0 m 0, u 0 m 0 )., : β(z) := (β(z), β (z )), π(z) := (π(z), π (z ))., : (A1) β, β : R 2 R, ˆβ, ˆβ : R [0, + ] ˆβ(0) = ˆβ (0) = 0 β = ˆβ, β = ˆβ ; (A2) π, π : R R Lipshitz ; (A3) D(β ) D(β), ϱ, c 0 > 0 β (r) ϱ β (r) + c0 for all r D(β ),, β (r) := {r β(r) : r = min s β(r) s }; (A4) m 0 intd(β ) ˆβ(u 0 ) L 1 (), ˆβ(u 0 ) L 1 () ; (A5) f := (f, f ) W 1,1 (0, T ; H) f L 2 (0, T ; V ), u 0 V. β β = β. β = β (A3)., (A3), β (A3) β (Calatroni Colli[8])., :

2.1.[11, Theorem 2.2] (A1) (A5), (v, µ, ξ) ( µ(t), z ) v H 1 (0, T ; V 0) L (0, T ; V 0 ) L 2 (0, T ; W ), µ L 2 (0, T ; V ), ξ L 2 (0, T ; H), ξ β(v + m 0 ) a.e. in Q, ξ β (v + m 0 ) a.e. on Σ, v (t), z V 0,V 0 + a( µ(t), z ) = 0 for all z V 0, H = a( v(t), z ) + ( ξ(t) + π(v(t) + m 0 1) f(t), z ) H for all z V, for a.a. t (0, T ), v(0) = v 0 in H 0. : (A5) f H 1 (0, T ; H), f(0) V, u 0 V (H 3 () H 3 ()), β (u 0 ) V. 2.2.[11, Theorem 4.2] (A1) (A4), (A5), (u, µ, ξ) u W 1, (0, T ; V ) H 1 (0, T ; V ) L (0, T ; W ), µ L (0, T ; V ) L 2 (0, T ; W ), ξ L (0, T ; H), ξ β(u) a.e. in Q, ξ β (u ) a.e. on Σ, (5) (9)., : F 1 v (t) + ϕ ( v(t) ) = P ( ξ(t) π ( v(t) + m 0 1 ) + f(t) ) in H 0, ξ(t) β ( v(t) + m 0 1 ) in H, for a.a. t (0, T ), v(0) = v 0 in H 0., ϕ : H 0 [0, + ] 1 z 2 dx + 1 z 2 d if z V 0, ϕ(z) := 2 2 + if z H 0 \ V 0., P : H H 0 P z := z m(z)1, 1 := (1, 1)., z D( ϕ) = W V 0, ϕ(z) = ( z, ν z z ) (Colli F[11, Appendix], [13] )., µ = ϕ(v)+ξ+π(v +m 0 1) f, V µ, µ m(µ) Poincaré Wirtinger Kenmochi Niezgódka Paw low[38] 1.

GMS, [11, Theorem 2.1]., f F Yamazaki[25], Kajiwara[35]., Cherfils Petcu Pierre[10], Cherfils Petcu[9] Furihata Matsuo[27] F Yoshikawa Wada[26]. Liu Wu [42]. 4. GMS u, ξ : Q R, u, ξ : Σ R u ξ = g, ξ β(u) in Q, (10) t u ξ = ξ, ξ β(u ), t + νξ ξ = g on Σ, (11) u(0) = u 0 in, u (0) = u 0 on. (12) β(= β ) : R 2 R (10) (12). k s r r < 0, β(r) := 0 0 r L, β(r) := r q 1 r (q > 0), β(r) := I [0,1] (r) (13) k l (r L) r > L,, (10) (12) Stefan (k l, k s, L ), (q > 1), fast diffusion (0 < q < 1), Hele-Shaw. Stefan Aiki[1, 2, 3] 1990, Laplace Beltrami, Laplace Beltrami,., Igbida, [5, 34]. Hele-Shaw Igbida[33]., GMS : ε (0, 1] u ε t µ ε = 0 in Q, (14) µ ε = ε u ε + ξ ε + π ε (u ε ) f, ξ ε β(u ε ) in Q, (15) u,ε u,ε = (u ε ), µ,ε = (µ ε ), + ν µ ε µ,ε = 0 a.e. on Σ, (16) t µ,ε = ε ν u ε ε u,ε + ξ,ε + π ε (u,ε ) f, ξ,ε β(u,ε ) a.e. on Σ, (17) u ε (0) = u 0,ε a.e. in, u,ε (0) = u 0,ε a.e. on, (18), π ε : R R, β (13) W := ˆβ + ˆπ ε (14) (18) Cahn Hilliard., β(r) = r 3, π ε (r) = εr., :

(A6) g L 2 (0, T ; H 0 ), u 0 H; (A7) ε (0, 1] π ε : R R Lipschitz., c 1 > 0 σ : [0, 1] [0, 1] σ(0) = 0, σ(1) = 1 πε (0) + π ε L (R) c 1 σ(ε)., f L 2 (0, T ; V 0 ) ϕ(f) = g in H 0 a.e. in (0, T ), v 0,ε V 0 v 0,ε + ε ϕ(v 0,ε ) = v 0 := u 0 m 0 1 in H 0, C > 0 v 0,ε 2 H 0 C, ε v 0,ε 2 V 0 C, ˆβ(v 0,ε + m 0 )dx C, ˆβ(v 0,ε + m 0 )d C for all ε (0, 1], v 0,ε v 0 in H 0, u 0,ε := v 0,ε + m 0 1 u 0 in H as ε 0. (10) (12) (14) (18) : 3.1.[21, Theorem 2.1] [22, Theorem 2.1] (A1), (A4), (A6), (A7), (u, ξ) u H 1 (0, T ; V ) L (0, T ; H), ξ L 2 (0, T ; V ), ξ β(u) a.e. in Q, ξ β(u ) a.e. on Σ, u (t), z V,V + u (t), z = V,V + g(t)zdx + ξ(t) zdx + g (t)z d for all z V, for a.a. t (0, T ), u(0) = u 0 in H. ξ (t) z d [21, Theorem 2.2]. Cahn Hilliard., Neumann Colli-F[12] u ε u 2 C([0,T ];V ) + T 0 ( ξε (s) ξ(s), u ε (s) u(s) ) H ds Const.ε 1 2, Robin F Motoda[24] Neumann., [12], Cahn Hilliard β., H 1 () ˆβ, H 1 (),. Neumann, Kenmochi[36], Akagi[4], log Kubo Lu[40]., Robin

Damlamian Kenmochi[15],. Cahn Hilliard, Cahn Hilliard. Damlamian[14] H 1 () [15] 1 (L 1 Barbu[6] ). F Kurima Yokota[23]. 5., Σ Cahn Hilliard : u, µ : Σ R u t µ = ν µ on Σ, (19) µ = u + W (u ) f + ν u on Σ, (20), ν Q µ, u : µ = 0, τ u t u + W (u) = f in Q, (21), τ > 0 0,., Cahn Hilliard,., (quasi-static)., (19) (21). u (t)d = u 0 d for all t [0, T ]. (19) (21) u = u, µ = µ GMS [13].,., Lions[41], Escher[16], Fila Quittner[20], Fila Ishige Kawakami[17, 18, 19], Gal Meyries[29], Cahn Hilliard Garcke Kampmann Rätz Röger[30]. [1] T. Aiki, Two-phase Stefan problems with dynamic boundary conditions, Adv. Math. Sci. Appl., 2 (1993), 253 270. [2] T. Aiki, Multi-dimensional Stefan problems with dynamic boundary conditions, Appl. Anal., 56 (1995), 71 94. [3] T. Aiki, Periodic stability of solutions to some degenerate parabolic equations with dynamic boundary conditions, J. Math. Soc. Japan, 48 (1996), 37 59. [4] G. Akagi, Energy solutions of the Cauchy Neumann problem for porous medium equations, pp.1 10 in Discrete and Continuous Dynamical Systems, supplement 2009, American Institute of Mathematical Sciences, 2009.

[5] F. Andreu, J. M. Mazón, J. Toledo and N. Igbida, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound., 8 (2006), 447 479. [6] V. Barbu, Nonlinear differential equations of monotone types in Banach spaces, Springer, London 2010. [7] J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, J. Chem. Phys., 2 (1958), 258 267. [8] L. Calatroni and P. Colli, Global solution to the Allen Cahn equation with singular potentials and dynamic boundary conditions, Nonlinear Anal., 79 (2013), 12 27. [9] L. Cherfils and M. Petcu, A numerical analysis of the Cahn Hilliard equation with non-permeable walls, Numer. Math., 128 (2014), 518 549. [10] L. Cherfils, M. Petcu and M. Pierre, A numerical analysis on the Cahn Hilliard equation dynamic boundary conditions, Discrete Contin. Dyn. Syst., 27 (2010), 1511 1533. [11] P. Colli and T. Fukao, Equation and dynamic boundary condition of Cahn Hilliard type with singular potentials, Nonlinear Anal., 127 (2015), 413 433. [12] P. Colli and T. Fukao, Nonlinear diffusion equations as asymptotic limits of Cahn Hilliard systems, J. Differential Equations, 260 (2016), 6930 6959. [13] P. Colli and T. Fukao, Cahn Hilliard equation on the boundary with bulk condition of Allen Cahn type, preprint arxiv:1803.05314v4 [math.ap] (2018), pp. 1 30, to appear in Adv. Nonlinear Anal. [14] A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial Differential Equations, 2 (1977), 1017 1044. [15] A. Damlamian and N. Kenmochi, Evolution equations generated by subdifferentials in the dual space of (H 1 ()), Discrete Contin. Dyn. Syst., 5 (1999), 269 278. [16] J. Escher, Smooth solutions of nonlinear elliptic systems with dynamic boundary conditions, pp. 173 183 in Evolution equations, control theory, and biomathematics, Lecture Notes in Pure and Appl. Math., 155, Dekker, New York, 1994. [17] M. Fila, K. Ishige and T. Kawakami, Convergence to the Poisson kernel for the Laplace equation with a nonlinear dynamical boundary condition, Commun. Pure. Appl. Anal., 11 (2012), 1285 1301. [18] M. Fila, K. Ishige and T. Kawakami, Existence of positive solutions of a semilinear elliptic equation with a dynamical boundary condition, Calc. Var. Partial Differential Equations, 54 (2015), 2059 2078. [19] M. Fila, K. Ishige and T. Kawakami, The large diffusion limit for the heat equation with a dynamical boundary condition, preprint arxiv:1806.06308 [math.ap] (2018), pp. 1 19. [20] M. Fila and P. Quittner, Global solutions of the Laplace equation with a nonlinear dynamical boundary condition, Math. Methods Appl. Sci., 20 (1997), 1325 1333. [21] T. Fukao, Convergence of Cahn Hilliard systems to the Stefan problem with dynamic boundary conditions, Asymptot. Anal., 99 (2016), 1 21. [22] T. Fukao, Cahn Hilliard approach to some degenerate parabolic equations with dynamic boundary conditions, pp. 282 291 in: L. Bociu, J-A. Désidéri and A. Habbal (Eds.), System Modeling and Optimization, Springer, Switzerland, 2016. [23] T. Fukao, S. Kurima and T. Yokota, Nonlinear diffusion equations as asymptotic limits of Cahn Hilliard systems on unbounded domains via Cauchy s criterion, Math. Methods Appl. Sci., 41 (2018), 2590 2601. [24] T. Fukao and T. Motoda, Nonlinear diffusion equations with Robin boundary conditions as asymptotic limits of Cahn Hilliard systems, J. Elliptic Parabol. Equ., 4 (2018), 271

291. [25] T. Fukao and N. Yamazaki, A boundary control problem for the equation and dynamic boundary condition of Cahn Hilliard type, pp.255 280 in Solvability, Regularity, Optimal Control of Boundary Value Problems for PDEs, Springer INdAM Series, Vol.22, Springer, Cham, 2017. [26] T. Fukao, S. Yoshikawa and S. Wada, Structure-preserving finite difference schemes for the Cahn Hilliard equation with dynamic boundary conditions in the one-dimensional case, Commun. Pure Appl. Anal., 16 (2017), 1 20. [27] D. Furihata and T. Matsuo, Discrete variational derivative method. A structurepreserving numerical method for partial differential equations, Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton, 2011. [28] C. Gal, A Cahn Hilliard model in bounded domains with permeable walls, Math. Methods Appl. Sci., 29 (2006), 2009 2036. [29] C. Gal and M. Meyries, Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type, Proc. Lond. Math. Soc. (3), 108 (2014), 1351 1380. [30] H. Garcke, J. Kampmann, A. Rätz and M. Röger, A coupled surface-cahn Hilliard bulk-diffusion system modeling lipid raft formation in cell membranes, Math. Models Methods Appl. Sci., 26 (2016), 1149 1189. [31] G. R. Goldstein, A. Miranville and G. Schimperna, A Cahn Hilliard model in a domain with non-permeable walls, Physica D, 240 (2011), 754 766. [32] A. Grigor yan, Heat kernel and analysis on manifolds, American Mathematical Society, International Press, Boston, 2009. [33] N. Igbida, Hele-Shaw type problems with dynamical boundary conditions, J. Math. Anal. Appl., 335 (2007), 1061 1078. [34] N. Igbida and M. Kirane, A degenerate diffusion problem with dynamical boundary conditions, Math. Ann. 323 (2002), 377 396. [35] N. Kajiwara, Maximal L p regularity of a Cahn Hilliard equation in bounded domains with permeable and non-permeable walls, preprint 2017. [36] N. Kenmochi, Neumann problems for a class of nonlinear degenerate parabolic equations, Differential Integral Equations, 2 (1990), 253 273. [37] N. Kenmochi and M. Niezgódka, Viscosity approach to modelling non-isothermal diffusive phase separation, Japan J. Indust. Appl. Math., 13 (1996), 135 169. [38] N. Kenmochi, M. Niezgódka and I. Paw low, Subdifferential operator approach to the Cahn Hilliard equation with constraint, J. Differential Equations, 117 (1995), 320 354. [39] M. Kubo, The Cahn Hilliard equation with time-dependent constraint, Nonlinear Anal., 75 (2012), 5672 5685. [40] M. Kubo and Q. Lu, Nonlinear degenerate parabolic equations with Neumann boundary condition, J. Math. Anal. Appl., 307 (2005), 232 244. [41] J. L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod Gauthier-Villas, Paris, 1968. [42] C. Liu and H. Wu, An energetic variational approach for the Cahn Hilliard equation with dynamic boundary conditions: derivation and analysis, preprint arxiv:1710.08318 [math.ap] (2017), pp. 1 68. [43] A. Miranville, The Cahn Hilliard equation and some of its variants, AIMS Mathematics., 2 (2017), 479 544.