Higher order corrections to H. production. Nikolaos Kidonakis. production channels. Higher-order corrections. Charged Higgs production at the LHC

Σχετικά έγγραφα
Large β 0 corrections to the energy levels and wave function at N 3 LO

Math221: HW# 1 solutions

Effective weak Lagrangians in the Standard Model and B decays

Higgs production -Theory-

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

News from NRQCD. Matthias Steinhauser TTP Karlsruhe Dresden, July 3,

1 Bhabha scattering (1936)

Hadronic Tau Decays at BaBar

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

ω = radians per sec, t = 3 sec

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Areas and Lengths in Polar Coordinates

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Lifting Entry (continued)

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Matrices and Determinants

What happens when two or more waves overlap in a certain region of space at the same time?

ST5224: Advanced Statistical Theory II

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Other Test Constructions: Likelihood Ratio & Bayes Tests

Areas and Lengths in Polar Coordinates

Probing Anomalous Top-Gluon Couplings at Colliders

2 Composition. Invertible Mappings

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

6.003: Signals and Systems

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Riemann Hypothesis: a GGC representation

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

Homework 8 Model Solution Section

Statistical Inference I Locally most powerful tests

Topics on QCD and Spin Physics

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

SPECIAL FUNCTIONS and POLYNOMIALS

Lecture 12 Modulation and Sampling

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

The static quark potential to three loops in perturbation theory

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr


ECON 381 SC ASSIGNMENT 2

Ó³ Ÿ , º 6(190) Ä1133. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

The ε-pseudospectrum of a Matrix

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

6.003: Signals and Systems. Modulation

Fourier Series. Fourier Series

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Divergence for log concave functions

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΗΛΕΚΤΡΙΚΗΣ ΙΣΧΥΟΣ

Εισαγωγή στη Φυσική Στοιχειωδών Σωματιδίων. 5 ο Εξάμηνο Δεκέμβριος 2009

Numerical Analysis FMN011

Srednicki Chapter 55

Finite Field Problems: Solutions

The Student s t and F Distributions Page 1

DARK MATTER. Seen making gravitational interactions: rotational curves, CMB, gravitational lensing. BBN, bullet. Multimedia: Images

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Higher Derivative Gravity Theories

Abstract Storage Devices

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

Theory predictions for the muon (g 2): Status and Perspectives

TRM +4!5"2# 6!#!-!2&'!5$27!842//22&'9&2:1*;832<

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Approximation of distance between locations on earth given by latitude and longitude

1 String with massive end-points

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Κβαντική Χρωμοδυναμική και Κορεσμός Παρτονίων

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Forced Pendulum Numerical approach

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Problem Set 3: Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Trigonometric Formula Sheet

Aluminum Electrolytic Capacitors (Large Can Type)

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Commutative Monoids in Intuitionistic Fuzzy Sets

1) Formulation of the Problem as a Linear Programming Model

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Τελικό Project Εργαστηρίου Ηλεκτρονικών Φίλτρων Χειµερινό Εξάµηνο

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Πώς μπορεί κανείς να έχει έναν διερμηνέα κατά την επίσκεψή του στον Οικογενειακό του Γιατρό στο Ίσλινγκτον Getting an interpreter when you visit your

The challenges of non-stable predicates

Transcript:

igher order correcions o producion Nikolaos Kidonakis (Kennesaw Sae Universiy) producion channels igher-order correcions Charged is producion a he LC N. Kidonakis, c arged 008, Uppsala, Sepember 008

Charged is: sure sign of new physics (MSSM or oher DM) LC has good poenial for discovery Producion processes bg Zhu ( 0) [NLO QCD]; Belyaev, Garcia, Guasch, Sola ( 0, 0) [-loop SUSY]; ( b ) Plehn ( 0) [NLO QCD+SUSY]; Berger, an, Jiang, Plehn ( 03) [NLO QCD+SUSY]; Jin, Li, Oakes, Zhu ( 99) [Yukawa], ( 00) [SUSY elecroweak]; Alwall, Rahsman ( 04) [maching]; Kidonakis ( 04) [sof-gluons, approx NNLO], ( 05) [approx NNNLO] W Barrienos e al ( 98, 00); Brein, ollik, Kanemura ( 00) [quark, squark loops]; b b W ollik, Zhu ( 0); Gao, Li, Li ( 07) [NLO QCD] Eriksson, esselbach, Rahsman ( 06) [decays of, W ] Jiang e al ( 97); Krause, Plehn, Spira, Zerwas ( 97); Brein, ollik ( 99) [LO loops] b b ou e al ( 05) [NLO]; Alves, Plehn ( 05) [NLO] b b Morei, Rahsman ( 03) [LO] qq qqv V qq Morei ( 0) [LO] N. Kidonakis, c arged 008, Uppsala, Sepember 008

Associaed and op quark producion LO: bg b b b g g Born cross secion αα s m b an β m co β use MS m b in he coupling; m b 0 elsewhere N. Kidonakis, c arged 008, Uppsala, Sepember 008 3

Associaed and op quark producion NLO: bg (virual correcions) bg g b q q b bq q b q q bb b b b b QCD correcions large Reduced scale dependence SUSY correcions significan Issues: boom paron disribuion gluon spliing o b b in collinear approximaion valid for small b-quark p T N. Kidonakis, c arged 008, Uppsala, Sepember 008 4

b g g b b b g b g b Maching [Alwall, Rahsman] Find reliable descripion for all b-quark p T large p T : use marix elemens small p T : use paron showers simple adding gives double couning for small p T N. Kidonakis, c arged 008, Uppsala, Sepember 008 5

bg resums large logarihms α s ln µ F /m b n for small p T 3 process described by gluon spliing imes marix elemen of process b ougoing b-quark described by 3 marix elemen for large p T Mach analyic double-couning subracion erm: σ σ σ 3 σdc [Alwall, Rahsman] can be implemened in even generaors (PYTIA, ERWIG) smooh differenial disribuions N. Kidonakis, c arged 008, Uppsala, Sepember 008 6

Producion near hreshold b p b Define s g p g p b p g p, p b p p, u p g p and s 4 s u m m A hreshold s 4 Sof correcions 0 ln l s 4 /m s 4 Near hreshold sof correcions are dominan and provide excellen approximaions o he full cross secion For he order α n s correcions l LL: l=n- NLL: l=n- n Calculae NLO and NNLO correcions a NLL accuracy The hadronic cross secion σ f dx dx φ f /p x, µ F φ f / p x, µ F ˆσ s,, u, µ F, µ R, α s N. Kidonakis, c arged 008, Uppsala, Sepember 008 7

Resummed cross secion Resummaion follows from facorizaion properies of he cross secion - performed in momen space where ˆσ res N exp S f i f j exp i α s i E f i s N i dµ µ R µ β Ñ s exp exp α s µ s i s/ñ f i f j s dµ µ F µ γ i/i α s µ R dµ µ ReΓ f i f j S α s N i, α s µ µ i E f i N i i C i dz zn i 0 z z dλ λ α s λs π αs π z s α s C i C F N c / N c, B q 3C F /4 for quarks; C i C A N c, B g β 0 /4 for gluons Γ S is he sof anomalous dimension - a marix in color space Γ S C F ln m m s CA ln u m m CA iπ N. Kidonakis, c arged 008, Uppsala, Sepember 008 8

NNNLO expansions of resummed cross secion Inver back o momenum space and expand o arbirary order NLO sof gluon correcions ˆσ F B α s µ R π c 3 ln s 4 /m s 4 c s 4 c µ δ s 4 wih c 3 C F C A NNLO sof gluon correcions ˆσ F B α s µ R π c 3 ln 3 s 4 /m s 4 3 c 3 c β 0 4 c 3 ln s 4 /m s 4 NNNLO sof gluon correcions ˆσ 3 F B α3 s µ R π 3 8 c3 3 ln 5 s 4 /m s 4 5 8 c 3 c 5 4 β 0 c 3 ln 4 s 4 /m s 4 N. Kidonakis, c arged 008, Uppsala, Sepember 008 9

Charged is producion a he LC bg --> - a LC S / =4 TeV µ=m -+m bg --> - a LC S / =4 TeV µ=m -+m, (m -+m )/.8.4.7.6 NLO-exac/LO NLO-NLL/LO NLO-NLL/NLO-exac.3 Born NLO-NLL NNLO-NLL K-facor.5.4.3 σ(µ) / σ(m -).... 0.9 00 400 600 800 000 m - (GeV) 0.8 00 400 600 800 000 m - (GeV) various choices of cenral scale in he lieraure N. Kidonakis, c arged 008, Uppsala, Sepember 008 0

bg --> - a LC S / =4 TeV anβ=30 µ=m - bg --> - a LC S / =4 TeV µ=m - LO NLO-NLL NNLO-NLL NNNLO-NLL.8 NLO-NLL / LO NNLO-NLL / LO NNNLO-NLL/LO σ (pb) 0. 0.0 K-facor.6.4. 0.00 00 400 600 800 000 m - (GeV) 00 400 600 800 000 m - (GeV) K facors Mass (GeV) NNLO-NLL NNNLO-NLL 00.34.47 300.43.53 400.49.59 500.53.65 600.57.69 700.60.7 800.63.75 900.66.79 000.68.8 N. Kidonakis, c arged 008, Uppsala, Sepember 008

Scale dependence of he cross secion bg --> - a LC S / =4 TeV anβ=30 µ=m -/, m - bg --> - a LC S / =4 TeV anβ=30 m -=500 GeV LO NLO-NLL NNLO-NLL NNNLO-NLL 0. 0.5 LO NLO-NLL NNLO-NLL NNNLO-NLL 0. σ (pb) σ (pb) 0. 0.0 0.05 0.00 00 400 600 800 000 m - (GeV) 0 0. 0 µ / m - Reduced scale dependence over large range of scale 0. µ/m 0 σ max /σ min 3.39.50.38.3 LO NLO-NLL NNLO-NLL NNNLO-NLL N. Kidonakis, c arged 008, Uppsala, Sepember 008

Dependence of he cross secion on an β and op quark mass bg --> - a LC S / =4 TeV µ=m -=500 GeV bg --> - a LC S / =4 TeV anβ=30 µ=m -=500 GeV 0. Born NLO-NLL NNLO-NLL NNNLO-NLL 0.5 Born NLO-NLL NNLO-NLL NNNLO-NLL σ (pb) 0. σ (pb) 0. 0.05 0.0 0 0 0 30 40 50 an β 0 50 60 70 80 90 00 m (GeV) an β shape same for all curves Mild m dependence N. Kidonakis, c arged 008, Uppsala, Sepember 008 3

Associaed and W producion, b b W b b h 0, 0 b W b W σ (fb) 0 3 0 0 an β=50 an β=0 BR( ± ) τν 0 - an β=50 an β=0 0-00 400 600 800 000 m ± (GeV) 0-00 400 600 800 000 m ± (GeV) Eriksson, esselbach, Rahsman ( 06) N. Kidonakis, c arged 008, Uppsala, Sepember 008 4

Associaed pair producion 0 anβ = 30 pp + σ o [fb] anβ =.5 0 pp + σ o [fb] m = 00 GeV + s = 4TeV 0 - anβ = 6 oal cross secion wihou riangle conribuion 0-0 - 00 50 00 50 300 350 400 m + [GeV] 3 4 5 6 7 8 0 0 30 40 anβ Krause, Plehn, Spira, Zerwas ( 97) N. Kidonakis, c arged 008, Uppsala, Sepember 008 5

Associaed pair producion b b 0 qq,sum σ o,bb (pp + ) [fb] anβ = 0 0 sum qq σ o,bb (pp + ) [fb] anβ = 0 0 - bb 0 - bb 0-00 50 300 350 400 450 500 m [GeV] 00 50 300 350 400 450 500 m [GeV] 0 0 - sum qq bb σ o,bb (pp + ) [fb] anβ = 30 0 0 0 - sum qq bb σ o,bb (pp + ) [fb] anβ = 50 00 50 300 350 400 450 500 m [GeV] 00 50 300 350 400 450 500 m [GeV] Alves, Plehn ( 05) N. Kidonakis, c arged 008, Uppsala, Sepember 008 6

b b dominan pair producion mode a large an β relevan for riple-is couplings consider signaure: 4 b-jes + q-jes+ τ +p miss T Morei, Rahsman ( 03) N. Kidonakis, c arged 008, Uppsala, Sepember 008 7

Summary Several producion processes for a he LC NLO QCD and SUSY correcions bg, b a he LC - maching bg Sof and collinear correcions hrough NNNLO bg Large K facors -reduced scale dependence Associaed producion wih a W Charged is pair producion N. Kidonakis, c arged 008, Uppsala, Sepember 008 8