PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

Σχετικά έγγραφα
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

GENIKEUMENA OLOKLHRWMATA

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

Ανάλυση ις. συστήματα

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc


ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Eisagwg sthn KosmologÐa

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

Θεωρία Πιθανοτήτων και Στατιστική

στο Αριστοτέλειο υλικού.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

JEMATA EXETASEWN Pragmatik Anˆlush I

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

Στατιστική για Χημικούς Μηχανικούς


HU215 - Frontist rio : Seirèc Fourier

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Κλασσική Ηλεκτροδυναμική II

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

Shmei seic Sunarthsiak c Anˆlushc

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

Ask seic me ton Metasqhmatismì Laplace

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

Ergasthriak 'Askhsh 2

Στατιστική για Χημικούς Μηχανικούς

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

Mègisth ro - elˆqisth tom

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

2

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

Shmei seic sto mˆjhma Analutik GewmetrÐa

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

Ανάλυση. σήματα και συστήματα

APEIROSTIKOS LOGISMOS I

Ανάλυση ασκήσεις. συστήματα

N.Σ. Μαυρογιάννης 2010

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015

Ergasthriak 'Askhsh 3

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Θεωρία Πιθανοτήτων και Στατιστική

Shmei seic sto mˆjhma Analutik GewmetrÐa

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

Apeirostikìc Logismìc. Pragmatikèc Sunart seic Miac Pragmatik c Metablht c

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot

L mma thc 'Antlhshc. A. K. Kapìrhc

στο Αριστοτέλειο υλικού.

JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac

Σχόλια για το Μάθημα. Λουκάς Βλάχος


I

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61)

SofÐa ZafeirÐdou: GewmetrÐec

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Ανάλυση ΙΙ Σεπτέµβριος 2012 (Λύσεις)

t t j=1 span(x) = { 1-1


KATASTATIKO 3. XRHSIMOPOIHSH TVN OIKONOMIKVN MESVN, KOINH VFELEIA

Eukleideiec Gewmetriec

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

S mata Sunart. Tm ma Majhmatik n Panepist mio Kr thc. epiblèpwn kajhght c Jeìdouloc Garefalˆkhc. To Je rhma Twn Pr twn Arijm n Se. Gi rgoc N.

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

ΜΑΘΗΜΑ 2, Έλεγχος ροής προγράμματος ΒΑΣΙΚΗ ΣΥΝΤΑΞΗ:

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

Transcript:

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS 6h Seirˆ Ask sewn OmogeneÐc grammikèc diaforikèc exis seic me stajeroôc suntelestèc Jèma 1. Na lujoôn oi diaforikèc exis seic: i. y 3y + 2y = 0 ii. y 9y = 0 iii. y + 2y = 0 iv. y 6y + 9y = 0 v. y + 2y + y = 0 vi. y 12y + 36y = 0 vii. y 4y + 5y = 0 viii. y + 16y = 0 ix. y 6y + 10y = 0 Jèma 2. Na lujoôn oi diaforikèc exis seic: i. y + 4y = 0 ii. y 3y + 2y = 0 iii. y 5y + 8y 4y = 0 iv. y + 3y + 3y + y = 0 v. y 2y + y = 0 vi. y + y 2y = 0 Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc 1

Jèma 1. Na lujoôn oi diaforikèc exis seic: i. y 3y + 2y = 0 ii. y 9y = 0 iii. y + 2y = 0 iv. y 6y + 9y = 0 v. y + 2y + y = 0 vi. y 12y + 36y = 0 vii. y 4y + 5y = 0 viii. y + 16y = 0 ix. y 6y + 10y = 0 LUSH Sthn ˆskhsh aut, ja doôme na efarmìzontai gia exis seic (grammikèc - omogeneðc) opoiasd pote taxewc me stajeroôc suntelestèc, ìsa efarmìsame sthn prohgoômenh ˆskhsh gia antðstoiqec D.E. (grammikèc - omogeneðc me stajeroôc suntelestèc) deôterhc tˆxhc. i. y + 4y = 0. Me << antikatˆstash >> y 1, y λ prokôptei h qarakthristik algebrik : H genik lôsh thc D.E. eðnai: λ + 4 = 0 λ = 4. y = c 1 e 4x afoô h e λx = e 4x eðnai mða (grammikˆ anexˆrthta) lôsh thc D.E. ii. y 3y + 2y = 0. λ 3 3λ 2 + 2λ = 0 λ ( λ 2 3λ + 2 ) = 0 pou proèkuye apì th D.E. me << antikatˆstash >> : y 1, y λ, y λ 2, y λ 3. Oi rðzec thc eðnai λ 1 = 0 kai oi rðzec tou triwnômou λ 2 3λ + 2 pou eðnai λ 2 = 1, λ 3 = 2. Treic grammikˆ anexˆrthtec lôseic eðnai e λ 1x = e 0 x = 1, e λ 2x = e x, e λ 3x = e 2x 2

opìte h genik lôsh thc D.E. eðnai: ìpou c 1, c 2, c 3 eðnai aujaðretec stajerèc. y = c 1 1 + c 2 e x + c 3 e 2x y = c 1 + c 2 e x + c 3 e 2x iii. y 5y + 8y 4y = 0. λ 3 5λ 2 + 8λ 4 H eôresh twn riz n mðac exðswshc trðtou bajmoô, ìpwc eðnai h algebrik qarakthristik, eðnai genikˆ èna polôploko prìblhma. GnwrÐzoume ìmwc ìti an upˆrqoun akèraiec rðzec, prèpei na eðnai diairètec tou stajeroô ìrou. Ja anazht soume rðzec anˆmesa stouc diairètec (±1, ±2, ±3, ±4) rðzec eðnai mìno oi λ 1 = 1, λ 2 = 2, ìpwc polô eôkola mporoôme na sumperˆnoume me apl antikatˆstash. To polu numo grˆfetai: λ 3 5λ 2 + 8λ 4 λ 3 5λ 2 + 8λ 4 = (λ 1)(λ 2)(λ λ 3 ). Metˆ thn ektèlesh twn prˆxewn kai exðswsh twn suntelest n twn omobajmðwn ìrwn, twn poluwnômwn tou λ, prokôptei λ 3 = 2. 'Etsi, h algebrik qarakthristik èqei telikˆ tic rðzec λ 1 = 1, λ 2 = λ 3 = 2 (dipl ). 'Ara, treðc grammikˆ anexˆrthtec lôseic thc D.E. eðnai: kai epomènwc h genik lôsh thc D.E. eðnai: e λ1x = e x, e λ2x = e 2x, xe λ3x = xe 2x y = c 1 e x + c 2 e 2x + c 3 xe 2x (c 1, c 2, c 3 aujaðreta). iv. y + 3y + 3y + y = 0. λ 3 + 3λ 2 + 3λ + 1 = 0 pou eðnai pˆli trðtou bajmoô. Oi diairètec tou stajeroô ìrou eðnai ±1. Me apl dokim brðskoume eôkola ìti h λ 1 = 1 eðnai mða rðza. An λ 2, λ 3 oi upìloipec rðzec, eðnai: λ 3 + 3λ 2 + 3λ + 1 = (λ + 1)(λ λ 2 )(λ λ 3 ). 3

Mèta thn ektèlesh twn prˆxewn kai exðswsh twn suntelest n twn omobajmðwn ìrwn twn dôo mel n, prokôptei λ 2 = λ 3 = 1. 'Etsi, h qarakthristik algebrik èqei rðza to 1 me bajmì pollaplìthtac 3 (tripl rðza): λ 1 = λ 2 = λ 3 = 1. TreÐc grammikˆ anexˆrthtec lôseic thc D.E. eðnai: H genik lôsh thc D.E. eðnai: ìpou c 1, c 2, c 3 aujaðretec stajerèc. e λ 1x = e x, xe λ 2x = xe x, x 2 e λ 3x = x 2 e x. y = c 1 e x + c 2 xe x + c 3 x 2 e x Genikˆ, an λ eðnai mða rðza thc qarakthristik c algebrik c, me bajmì pollaplìthtac ν, antistoiqoôn s> aut oi grammikˆ anexˆrthtec lôseic (ν to pl joc): e λx, xe λx, x 2 e λx,..., x ν 1 e λx. v. y 2y + y = 0. Me y 1, y λ 2, y λ 4 prokôptei h qarakthristik algebrik : λ 4 2λ 2 + 1 = 0. H exðswsh aut eðnai gnwst san ditetrˆgwnh. Me λ 2 = ω, grˆfetai: ω 2 2ω + 1 = 0. H teleutaða èqei rðzec ω 1 = ω 2 = 1 (dipl ). Oi rðzec thc algebrik c qarakthristik c eðnai: λ 2 = ω 1, λ 2 = ω 2 λ 1 = 1 (dipl ) λ 2 = 1 (dipl ). Sth dipl rðza λ 1 = 1 antistoiqoôn oi grammikˆ anexˆrthtec lôseic thc D.E. e x, xe x en sth dipl rðza λ 2 = 1 oi epðshc grammikˆ anexˆrthtec lôseic e x, xe x. 'Etsi h genik lôsh thc D.E. eðnai: y = c 1 e x + c 2 xe x + c 3 e x + c 4 xe x. 4

vi. y + y 2y = 0 Me y 1, y λ 2, y λ 4 brðskoume th qarakthristik algebrik : λ 4 + λ 2 2 = 0 pou eðnai ditetrˆgwnh exðswsh. Me λ 2 = ω grˆfetai: ω 2 + ω 2 = 0 ω 1 = 1, ω 2 = 2 opìte apì tic exis seic λ 2 = ω 1, λ 2 = ω 2 prokôptoun oi rðzec thc qarakthristik c: λ 1 = 1, λ 2 = 1, λ 3 = i 2, λ 4 = i 2. Stic λ 1 = 1, λ 2 = 1 antistoiqoôn oi grammikˆ anexˆrthtec lôseic e x, e x, en sto zeugˆri twn (suzug n) migadik n riz n λ 3, λ 4 me α ± βi = 0 ± i 2 oi epðshc grammikˆ anexˆrthtec lôseic: ( ) ( ) ( ) e 0x sin 2 x = sin 2 x, e 0x cos 2 x ( ) = cos 2 x. H genik lôsh eðnai: y = c 1 e x + c 2 e x + c 3 sin ( ) ( ) 2 x + c 4 cos 2 x. 5

Jèma 2. Na lujoôn oi diaforikèc exis seic: i. y + 4y = 0 ii. y 3y + 2y = 0 iii. y 5y + 8y 4y = 0 iv. y + 3y + 3y + y = 0 v. y 2y + y = 0 vi. y + y 2y = 0 LUSH Sthn ˆskhsh aut, ja doôme na efarmìzontai gia exis seic (grammikèc - omogeneðc) opoiasd pote taxewc me stajeroôc suntelestèc, ìsa efarmìsame sthn prohgoômenh ˆskhsh gia antðstoiqec D.E. (grammikèc - omogeneðc me stajeroôc suntelestèc) deôterhc tˆxhc. i. Me << antikatˆstash >> prokôptei h qarakthristik algebrik : y + 4y = 0. y 1, y λ λ + 4 = 0 λ = 4. H genik lôsh thc D.E. eðnai: y = c 1 e 4x afoô h e λx = e 4x eðnai mða (grammikˆ anexˆrthta) lôsh thc D.E. ii. y 3y + 2y = 0. λ 3 3λ 2 + 2λ = 0 λ ( λ 2 3λ + 2 ) = 0 pou proèkuye apì th D.E. me << antikatˆstash >> : y 1, y λ, y λ 2, y λ 3. Oi rðzec thc eðnai λ 1 = 0 kai oi rðzec tou triwnômou λ 2 3λ + 2 pou eðnai λ 2 = 1, λ 3 = 2. Treic grammikˆ anexˆrthtec lôseic eðnai opìte h genik lôsh thc D.E. eðnai: ìpou c 1, c 2, c 3 eðnai aujaðretec stajerèc. e λ1x = e 0 x = 1, e λ2x = e x, e λ3x = e 2x y = c 1 1 + c 2 e x + c 3 e 2x y = c 1 + c 2 e x + c 3 e 2x 6

iii. y 5y + 8y 4y = 0. λ 3 5λ 2 + 8λ 4 H eôresh twn riz n mðac exðswshc trðtou bajmoô, ìpwc eðnai h algebrik qarakthristik, eðnai genikˆ èna polôploko prìblhma. GnwrÐzoume ìmwc ìti an upˆrqoun akèraiec rðzec, prèpei na eðnai diairètec tou stajeroô ìrou. Ja anazht soume rðzec anˆmesa stouc diairètec (±1, ±2, ±3, ±4) rðzec eðnai mìno oi λ 1 = 1, λ 2 = 2, ìpwc polô eôkola mporoôme na sumperˆnoume me apl antikatˆstash. To polu numo grˆfetai: λ 3 5λ 2 + 8λ 4 λ 3 5λ 2 + 8λ 4 = (λ 1)(λ 2)(λ λ 3 ). Metˆ thn ektèlesh twn prˆxewn kai exðswsh twn suntelest n twn omobajmðwn ìrwn, twn poluwnômwn tou λ, prokôptei λ 3 = 2. 'Etsi, h algebrik qarakthristik èqei telikˆ tic rðzec λ 1 = 1, λ 2 = λ 3 = 2 (dipl ). 'Ara, treðc grammikˆ anexˆrthtec lôseic thc D.E. eðnai: kai epomènwc h genik lôsh thc D.E. eðnai: e λ1x = e x, e λ2x = e 2x, xe λ3x = xe 2x y = c 1 e x + c 2 e 2x + c 3 xe 2x (c 1, c 2, c 3 aujaðreta). iv. y + 3y + 3y + y = 0. λ 3 + 3λ 2 + 3λ + 1 = 0 pou eðnai pˆli trðtou bajmoô. Oi diairètec tou stajeroô ìrou eðnai ±1. Me apl dokim brðskoume eôkola ìti h λ 1 = 1 eðnai mða rðza. An λ 2, λ 3 oi upìloipec rðzec, eðnai: λ 3 + 3λ 2 + 3λ + 1 = (λ + 1)(λ λ 2 )(λ λ 3 ). Mèta thn ektèlesh twn prˆxewn kai exðswsh twn suntelest n twn omobajmðwn ìrwn twn dôo mel n, prokôptei λ 2 = λ 3 = 1. 7

'Etsi, h qarakthristik algebrik èqei rðza to 1 me bajmì pollaplìthtac 3 (tripl rðza): λ 1 = λ 2 = λ 3 = 1. TreÐc grammikˆ anexˆrthtec lôseic thc D.E. eðnai: H genik lôsh thc D.E. eðnai: ìpou c 1, c 2, c 3 aujaðretec stajerèc. e λ 1x = e x, xe λ 2x = xe x, x 2 e λ 3x = x 2 e x. y = c 1 e x + c 2 xe x + c 3 x 2 e x Genikˆ, an λ eðnai mða rðza thc qarakthristik c algebrik c, me bajmì pollaplìthtac ν, antistoiqoôn s> aut oi grammikˆ anexˆrthtec lôseic (ν to pl joc): e λx, xe λx, x 2 e λx,..., x ν 1 e λx. v. y 2y + y = 0. Me y 1, y λ 2, y λ 4 prokôptei h qarakthristik algebrik : λ 4 2λ 2 + 1 = 0. H exðswsh aut eðnai gnwst san ditetrˆgwnh. Me λ 2 = ω, grˆfetai: ω 2 2ω + 1 = 0. H teleutaða èqei rðzec ω 1 = ω 2 = 1 (dipl ). Oi rðzec thc algebrik c qarakthristik c eðnai: λ 2 = ω 1, λ 2 = ω 2 λ 1 = 1 (dipl ) λ 2 = 1 (dipl ). Sth dipl rðza λ 1 = 1 antistoiqoôn oi grammikˆ anexˆrthtec lôseic thc D.E. e x, xe x en sth dipl rðza λ 2 = 1 oi epðshc grammikˆ anexˆrthtec lôseic e x, xe x. 'Etsi h genik lôsh thc D.E. eðnai: y = c 1 e x + c 2 xe x + c 3 e x + c 4 xe x. 8

vi. y + y 2y = 0 Me y 1, y λ 2, y λ 4 brðskoume th qarakthristik algebrik : λ 4 + λ 2 2 = 0 pou eðnai ditetrˆgwnh exðswsh. Me λ 2 = ω grˆfetai: ω 2 + ω 2 = 0 ω 1 = 1, ω 2 = 2 opìte apì tic exis seic λ 2 = ω 1, λ 2 = ω 2 prokôptoun oi rðzec thc qarakthristik c: λ 1 = 1, λ 2 = 1, λ 3 = i 2, λ 4 = i 2. Stic λ 1 = 1, λ 2 = 1 antistoiqoôn oi grammikˆ anexˆrthtec lôseic e x, e x, en sto zeugˆri twn (suzug n) migadik n riz n λ 3, λ 4 me α ± βi = 0 ± i 2 oi epðshc grammikˆ anexˆrthtec lôseic: ( ) ( ) ( ) e 0x sin 2 x = sin 2 x, e 0x cos 2 x ( ) = cos 2 x. H genik lôsh eðnai: y = c 1 e x + c 2 e x + c 3 sin ( ) ( ) 2 x + c 4 cos 2 x. 9