6, :! CFD7 R ; HI < 4 FG.Spal [6] V ; >,!5a 4 <=( K>; (),*$ +," -.a34+,, Churchfield [7] BTT AUVNO PQ. / 34+,0V K> 34_ `, 1 9:.^UVNO PQ [8] 34+

Σχετικά έγγραφα
Γ. Πειραματισμός Βιομετρία

March 14, ( ) March 14, / 52

Sheet H d-2 3D Pythagoras - Answers

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Το άτομο του Υδρογόνου

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Αλληλεπίδραση ακτίνων-χ με την ύλη

HONDA. Έτος κατασκευής

!"! # $ %"" & ' ( ! " # '' # $ # # " %( *++*

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

ΠΟΣΟΤΙΚΕΣ ΜΕΘΟΔΟΙ ΔΕΟ 13 ΤΟΜΟΣ Δ ΣΤΑΤΙΣΤΙΚΗ ΓΙΑ ΤΗ ΔΙΟΙΚΗΣΗ ΕΠΙΧΕΙΡΗΣΕΩΝ

! "#" "" $ "%& ' %$(%& % &'(!!")!*!&+ ,! %$( - .$'!"

2G &:)* +HIJ LM=,ABCD 231 K= U b-u a 1 100% (1) U a T Q 1 )* +,- Q Fig.1 SketchmapoftheTarimRiverBasin - [) 398km,+%,+% <, `, 2, 2 #; + ( [ - ) 428km,

Δημήτριος Σπαθάρας Σχολικός Σύμβουλος Μαθηματικών

' ' ( ) * & & & & & & & & & & & & &

TALAR ROSA -. / ',)45$%"67789

A 1 A 2 A 3 B 1 B 2 B 3

Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

Ax = b. 7x = 21. x = 21 7 = 3.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

! " #! $ %! & & $ &%!

!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=

ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΧΩΡΟΤΑΞΙΑΣ ΚΑΙ ΗΜΟΣΙΩΝ ΕΡΓΩΝ

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

6 7 8, :E? 43 AB> QR )* E '>? 4 '>? 4 [ > 4, W, B WP [21] 4 '>? 4)*a >,)*` 3E '>?> 4 FA)*, = 2WP '>? 4 > 3'>?$ > '>?

]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Κεφάλαιο q = C V => q = 48(HiC. e και. I = -3- => I = 24mA. At. 2. I = i=>i= -=>I = e- v=»i = 9,28 1(Γ 4 Α. t Τ


Parts Manual. Trio Mobile Surgery Platform. Model 1033

! " # " $ #% $ "! #&'() '" ( * / ) ",. #


! "#$ %#&'()* ## # '$ $ +, -# * +./ 0$ # " )"1.0229:3682:;;8)< &.= A = D"# '$ $ A 6 A BE C A >? D

MICROMASTER Vector MIDIMASTER Vector

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

MÉTHODES ET EXERCICES

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

rs r r â t át r st tíst Ó P ã t r r r â

Αυτό το κεφάλαιο εξηγεί τις ΠΑΡΑΜΕΤΡΟΥΣ προς χρήση αυτού του προϊόντος. Πάντα να μελετάτε αυτές τις οδηγίες πριν την χρήση.

, 犔 γ. ρ 狌 2 犕 犆. ρ 狌 犆 犇 ( 犚 犇 ( 犚 + 犚犖

4 261 Ⅲ,P-Ⅲ [22], P-Ⅲ Γ,, 2 ~7 f(x)= P-Ⅲ Γ(α) βα x-b) α-1 e - β(x-b),(b<x < ") ; GeoStudio (1) F = F(x x p )β ; Γ(α) α (x-b) α-1 e -β(x-b) dx x p (2),

-! " #!$ %& ' %( #! )! ' 2003

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

ΑΡΙΘΜΟΣ ΟΞΕΙΔΩΣΗΣ - ΓΡΑΦΗ ΧΗΜΙΚΩΝ ΤΥΠΩΝ- ΟΝΟΜΑΤΟΛΟΓΙΑ

Appendix B Table of Radionuclides Γ Container 1 Posting Level cm per (mci) mci

m i N 1 F i = j i F ij + F x

tel , version 1-7 Feb 2013

-! () $M ' 1' /W /,9 /' 1 :c Q \/0,> Z 1/0 " 1! GDP * &'() =! P[\ 01, '!R W! :,Q (Sachs&Warner,1995) a' / Qbc,,, J L bc, [1] (Pomeranz,2000) R


ΔΗΜΟΤΙΚΕΣ ΕΚΛΟΓΕΣ 18/5/2014 ΑΚΥΡΑ

! " # $ $ % # & ' (% & $ &) % & $ $ # *! &+, - &+

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK


Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

Cable Systems - Postive/Negative Seq Impedance

ΤΙΜΟΚΑΤΑΛΟΓΟΣ ΠΡΟΪΟΝΤΩΝ ΚΛΙΜΑΤΙΣΜΟΥ 2009

! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $

(... )..!, ".. (! ) # - $ % % $ & % 2007

!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*

!"#$%#&'(#)*+,$-.#/ 0%&#1%&%#)*2!1/&%3) 0&/(*+"45 64.%*)52(/7

! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$

αριθμός δοχείου #1# control (-)

Η κατανομή ορμής Από την στατιστική μηχανική, ο αριθμός των μικροσκοπικών καταστάσεων dn στο στοιχείο όγκου του χώρου των φάσεων d 3 p d 3 r είναι

d 2 y dt 2 xdy dt + d2 x

➆t r r 3 r st 40 Ω r t st 20 V t s. 3 t st U = U = U t s s t I = I + I


.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

Wb/ Μ. /Α Ua-, / / Βζ * / 3.3. Ηλεκτρομαγνητισμός Ι Μ. 1. Β = k. 3. α) Β = Κ μ Π 2. B-r, 2 10~ ~ 2 α => I = ~ } Α k M I = 20Α


ΕΒ ΟΜΗ ΒΑΛΚΑΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑ Α JBMO ( ΓΙΑ ΜΑΘΗΤΕΣ ΚΑΤΩ ΤΩΝ 15,5 ΕΤΩΝ ) - ΣΜΥΡΝΗ

20/9/2012. Διδάσκοντες. Γραμμική κινηματική. Αξιολόγηση. Γωνιακή κινηματική. Γραμμική Κινητική Δυναμική

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

ΜΕΛΕΤΗ ΤΗΣ ΥΝΑΤΟΤΗΤΑΣ ΑΞΙΟΠΟΙΗΣΗΣ ΤΟΥ ΓΕΩΘΕΡΜΙΚΟΥ ΠΕ ΙΟΥ ΘΕΡΜΩΝ ΝΙΓΡΙΤΑΣ (Ν. ΣΕΡΡΩΝ)

ΠΕΡΙΟΔΙΚΟ ΣΥΣΤΗΜΑ ΤΩΝ ΣΤΟΙΧΕΙΩΝ (1) Ηλία Σκαλτσά ΠΕ ο Γυμνάσιο Αγ. Παρασκευής

το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει


( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

M p f(p, q) = (p + q) O(1)


1 Adda247 No. 1 APP for Banking & SSC Preparation Website:store.adda247.com

ΟΦΘΑΛΜΟΣΚΟΠΙΟ ΕΥΡΕΙΑΣ ΓΩΝΙΑΣ

). = + U = -U U= mgy (y= H) =0 = mgh. y=0 = U=0


Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

(2), ,. 1).

Η Ομάδα SL(2,C) και οι αναπαραστάσεις της

Supplementary Information 1.

Mixed Distributions = + k k. = n. k k k. ρ k Χ Χ ] e [ ] Χ i


v w = v = pr w v = v cos(v,w) = v w

3. Η διάρκεια της διαβούλευσης ορίζεται σε τέσσερις (4) ημέρες από την ημέρα ανάρτησης.

1. Ma trận A = Ký hiệu tắt A = [a ij ] m n hoặc A = (a ij ) m n


το περιεχόµενο των οποίων είναι διανεµηµένο µε τον εξής τρόπο: : κάθε πίστα περιέχει

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Transcript:

32 6 Vol.32.6 2011 6 JournalofHarbinEngineeringUniversity Jun.2011 doi:10.3969/j.isn.1006-7043.2011.06.002 CFD,, (! ",#$ %& 430033) :!"#,$%&' N S ()* VOF(volumefraction)+,, -./01! *,2% 34+,567&'$8+,.59:;, <= > ; *?@. AB C!DE FG* <,5 HI+JKELMNO 4, NO PQ R$%S34+,=,BTUVPQ 34+,WXY, Z[(\],^AUPQ 34 +,V E34_ `.abc, ()* VOF+,! 7*, < Z Z. :!;)* VOF!+,;34+,;NO PQ; 7 :U661.31!"#$%:A!&' :1006 7043(2011)06 0702 06 NumericalstudyoftipvortexcavitationusingCFDmethod HANBaoyu,XIONGYing,LIUZhihua (ColegeofNavalArchitectureandPower,NavalUniversityofEngineering,Wuhan430033,China) Abstract:Thenumericalsimulationoftipvortexcavitationissignificantintheprocestoaleviatetheefectsofthe cavitation.thecharacteristicsoftipvortexcavitationbehindanelipticfoilwerestudiedusingreynolds averaged Navier Stokes(RANS)equationswithamodifiedVOF(volumefraction)cavitationmodel.Theturbulencemodel selectedwasanexplicitalgebraicreynoldsstresmodel.inordertoreducethediscreteerorinducedbythegrid, meshrefinementwasappliedtotheareaofthetipvortexcoreinnumericalsimulation.first,theaxisandtangential velocityofthetipvortexflowfieldwithnocavitationwerecalculated.toconsidertheefectofsystemrotationand streamlinecurvature,therotation curvaturecorectionwasadaptedtotheturbulencemodelanditwasfoundthe turbulencemodelaftercorectionincreasedthepredictionprecision.numericalresultsshowthatthecorectededdyvis cosityturbulencemodelsagreedwelwiththeexperiment,whiletheunmodifiedversionsover predictedtheturbulence induceddifusion.basedonthat,thedesinencecavitationnumberoftipvortexcavitationwaspredictedusingtherans methodandmodifiedvofcavitationmodel,andthenumericalresultshowsgoodagreementwithexperimentalresult. Keywords:tipvortexcavitation;modifiedVOFcavitationmodel;turbulencemodel;rotation curvaturecorection; desinencecavitationnumber! N 01! F.!BCD,, B, C.a =!, H I 4! /. [1 4] a N 01! / B.,7 :2010 07 13. (): c (51079157). *+,-: (1981 ),, C,E mail:hamberg001@si na.com; (1958 ),,, C../*+:. R 4 E 7 "#, S E 4, b$%7 R+J 8!.,$% RANS R ( 4 +J!4/ FG,b! 4 7.RANS Ra < 4 D 7,K>; 34+,;^ 4 = as! +,. Dacles Mariani [5] RANS R=7 ; <,!5 _ " #$,K%& '

6, :! CFD7 R 703 15 ; HI < 4 FG.Spal [6] V ; >,!5a 4 <=( K>; (),*$ +," -.a34+,, Churchfield [7] BTT AUVNO PQ. / 34+,0V K> 34_ `, 1 9:.^UVNO PQ [8] 34+, K> _ `,Y <.!+,, [9] $%23!+,+ J * 4 1 5. [10] % ) * VOF (volumefraction)+, [11] +J NACA66*41, 5!FG, 7D 5 B 67T8*. 91& 5 NACA160201, -./0 15 8,2%UVNO PQ 67& '$834+, 014 FG, Z*.abc,%)* VOF+, +J : 7;! /, 7*. 1 1.1 01 5 ρ t + x j (ρu j )=0, (1) t (ρu i)+ (ρu x j u i )=- ρ + j x i [ ( ) ] ρ (μ+μ x t ) u i + u j - 2 u k δ j x j x i 3 x. (2) ij k 4 = NO4 13 _ \,$%_ 34+,+J 4 FG ZWX.5 <,Walin [12] Y = X > 6 7 & ' $ 8 +, (EARSM),?+, &'$8 @A * B!>,CD =. E 4 T8 $, &'$8 $ EL>, F 34. G W4 N 4 H IJK NOA 5L E4 FG, M4= 3 N9.5 O 5L $, Walin [13] Y= )%S EARSM34+, NO PQ R,9:KE 3 _ `. [14] V %/ +, 6 EARSM+, * NO PQ, 34+, 1 4 7 +J.BTUVPQ EARSM 3 4+, < Z\ 34+, Z[( ].b5 P, 9 <=Q%UVNO P Q EARSM34+,. 1.2 RP Bakir [11] Y=,S( TU V,W X 3 F.YLS( :,S( @ : 1 ρ=. (3) (1-y d -y v )/ρ l +y d /ρ d +y v /ρ v X U. (%; mg ),YL X F75 7,@ ρ m,g 5 1 ρ m =. (4) (1-y d )/ρ l +y d /ρ d >=:ρ5@,y5 F7,; dg X,lG 0,vG V,y =ρ /α /ρ.?s( 5 t (ρ mα m )+ x j (ρ m u j α m )=S l. (5) >=:α5 ZF7,V ZF7 α v =1-α m ;S l= -S v,5s( V [ \].X ( ^ _ S l G">,`>(1)~(5)a,- V ZF7. Fbc/X V, v S =Nρ v 4πR 2 br b. (6) >=:R b 5X,N5 ZEX 7. RP Rayleigh Pleset,CD *$ _,, R b = 2 p v -p sgn(p 3 ρ v -p). (7) 槡 l >=:p v p ρ l F 5X!W8 4 W8 0 @.^ { 3α d α 4πR 3 m,p v -p>0; b N = (8) 3α v,p 4πR 3 v -p 0. b RP>(6)~(8), Sl =-F c Nρ v 4πR 2 b 槡 2p v -p sgn(p 3 ρ v -p).(9) >=:F c U L7,%SPQX.a>(4)~(9)=,y d R b F c 5U 7.RP 9 [10], p v -p>0d,f c =100; p v -p 0D, F c =0.005. <=!5 y d =1.3 10-7,R b =1 10-6 m. 2 9 <+, 1& 5 NACA160201/ -./01,1 C=0.475m, l

704 32 L=0.7125m. [1] a 0 =2, %& 5 1.14m 1.14m. 4 V= 10m/s,cS 4 &'75 4.75 10 6,1 α=10. 5 < R HI, 9 <.1. a1r = >, = 1 F 5 2.5C,10.0C. < L 1. 3.1 6 789 M4= IJK NOA 4 7?,a+JE4 D,$ % H67&'$8+,(EARSM)+, UNO PQ 34+,(EARSM CC) < Z WX. 3 4F x 3 > E (U/U ) (V t /U ) z FG < Z Z. 1 Fig.1 Domainusedincomputations RP < /, 9 % H,; < * ; F, 2. F / 1 E4 E,5 \HI +J E4, 9$% O,; 1 I ; * >,Y ;,. ; y + a 1~30[. (a)x/c=0.1 2 2345 Fig.2 Overalviewofcomputationaldomaingrid TSKE \,5 9:? 7, 9 K ; *?@, KE ; 7" 50 50, < ; 75 500. a, 45 &' 7.1, * W5 151170Pa, $ 4 5 10m/s, > 34 5 0.15%, _ 5 5;= 5 4 12957kg/s; 1G < ;G 5,. <a % CFD CFX=2. (b)x/c=0.2 3 9 < 014 FG, V? R,.abc $%!+,! *. (c)x/c=0.3 3 :; Fig.3 Profilesofvelocityintipvortex

6, :! CFD7 R 705 3=, =,a x >,AUPQ 67&'$8+, WX S Z, a x/c=0.3d S 4, Z. 5 ; B, IJK NO?, _ ` 9 :,^AUPQ 34+,V E3 4_ `, 1E 9V.^UVNO PQ 67&'$8+, 9 3 _ `, ai x/c=0.1> Z[( ].^? >Q! C E,5! C Y. 4, =,UVNO PQ 34 +,HI = x > FG, Z[(\];^AUPQ 34+, V, Z WX. Z, =,am4i x >, z<0d,e4 awx, T.9 [15]!5H 01 *, <H I+J= * %. (c)x/c=0.3 4 : Fig.4 Profilesoftangentialvelocityintipvortex 55$%PQ 34+, < F (ω x C/U )a x/c=0.1 0.2 > ( 5 ; ), =, *. =, =,a x/c=0.1>* \, \WX, 4 < Z=,. ; B,* BCF, ( =. T8, 6 =, = 5 ω x C/U =100,* 5 ω x C/U =-20. (a)x/c=0.1 (b)x/c=0.2 5 <=>?@ Fig.5 Formationandrolupofthetipvortex

706 32 6 ABC; DE Fig.6 Iso surfacesofnormalizedaxialvorticity 3.2 9 < ZX,a <01I F GD, 9 % 34+, ;,.a bc, 9 )* VOF+,, 01 7 /*.! C 4 =XK /, V,TSXK.LD,^ +,cs!a / YL, b?+,a! CV a <.a = C 7 \,^ 7 \5L, b % 7 5 BC H7. C,, b$% +, 7.L,. 7501a 7 σ=2.5 2.6 2.7 2.8D V ZF7 α v =0.1 < Z. =, =,a? 7E,01(=T!,^ A=T. 7 % 9:,.9 [16]! 5 " 1~3mmD!5!, 9 2mm5 P. 7" 2.6~2.7D,? % " 2mm,bD,L 5, 7a5! 7 σ d, < [1] Z σ d =2.65[(\]. (c)σ=2.7 (d)σ=2.8 7 FGHIE (α v =0.1) Fig.7 Iso surfacesofwatervapourvolumefraction α v =0.1indiferentcavitationnumber 4 9 $ % RANS R < 1 & 5 NA CA160201, -./014 FG, ( )* VOF!+, *, =; : 1)a <IJK NOA 4 D, AUNO PQ 34+,V M4 = _ `, 1KE 9:V.^ UVPQ 67&'$834+,\] )* < Z, [(\]. 2) 9$% 7 RHI = E * EL, Z,5 Lc. 3)$%!+, 7,, Z [(\]. JK!": (a)σ=2.5 (b)σ=2.6 [1]FRUMANDH,DUGUEC,CERRUTTIP.Tipvortexrol upandcavitation[c]//19thsymposiumonnavalhydrody namic.washingtondc,usa,1992:633 654. [2]ARNDTREA,ARAKERIVH,HIGUCHIH.Someob servationsoftip vortexcavitation[j].journaloffluidme chanics,1991,229:269 289. [3]ARNDTREA,MAINESBH.Viscousefectsintipvortex cavitationandnucleation[c]//20thsymposium onnaval Hydrodynamic.WashingtonDC,USA,1994:268 289.

6, :! CFD7 R 707 [4]MAINESBH,ARNDTR EA.Tipvortexformationand cavitation[j].journaloffluidengineering,1997,119: 413 419. [5]DACLES MARIANIJ,KWAKD,ZILLIACG.Onnumeri calerorsandturbulencemodelingintipvortexflowpredic tion[j].internationaljournalfornumericalmethodsin Fluids,1999,30:65 82. [6]SPALLRE.Numericalstudyofawing tipvortexusingthe Eulerequations[J].JournalofAircraft,2001,38(1):22 27. [7]CHURCHFIELDM J,BLAISDELLGA.Nearfieldwingtip vortexcomputationusingthewind code[r].washington DC:AIAA,2006. [8]SPALARTPR,SHUR M.Onthesensitizationofturbu lencemodelstorotationandcurvature[j].aerospacesci enceandtechnology,1997,5:297 302. [9]HUANGSheng,HEMiao,WANGChao,etal.Simulation ofcavitatingflowarounda2 Dhydrofoil[J].JournalofMa rinescienceandapplication,2010,1:63 68. [10],,. *41!4 7 +J [J].0 8 *,2009,24(6):740 746. HANBaoyu,XIONGYing,CHENShuangqiao.Numerical simulationofcavitationaround2 dimentionalhydrofoil[j]. ChineseJournalofHydrodynamics,2009,24(6):740 746. [11]BAKIRF,REYR,GERBERAG.Numericalandexperi mentalinvestigationsofthecavitatingbehaviorofaninduc er[j].internationaljournalofrotatingmachinery,2004, 10:15 25. [12]WALLINS,IOHANSSONA.Acompleteexplicitalgebra icreynoldsstresmodelforincompresibleandcompresi bleflows[j].journaloffluidmechanics,2000,403:89 132. [13]WALLINS,IOHANSSONA.Modelingstreamlinecurva tureefectsinexplicitalgebraicreynoldsstresturbulence models[j].internationaljournalofheatandfluidflow, 2002,23(5):721 730. [14],,!.34+, "414 7 +J [J].#,2010,31(12):2342 2347. HANBaoyu,XIONG Ying,YEJinming.Efectofturbu lencemodelsonnumericalsimulationoftipvortexflow fieldbehind3dwing[j].actaaeronauticaetastronauti casinica,2010,31(12):2342 2347. [15]ARNDTREA,KELLERAP.Waterqualityefectson cavitationinceptioninatrailingvortex[j].journalofflu idsengineering,1992,114:430 438. [16]$ %,&$=. ' (;)[M]. : \ =,2004:68. [LM'N:O ]