Γραμμική Ανεξαρτησία. Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας. 17 Μαρτίου 2013, Βόλος



Σχετικά έγγραφα
Εξαναγκασμένες ταλαντώσεις, Ιδιοτιμές με πολλαπλότητα, Εκθετικά πινάκων. 9 Απριλίου 2013, Βόλος

17 Μαρτίου 2013, Βόλος

14 Φεβρουαρίου 2014, Βόλος

Μετασχηματισμοί Laplace. Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Η/Υ Πανεπιστήμιο Θεσσαλίας

Επίλυση ειδικών μορφών ΣΔΕ

Στοχαστικές διαφορικές εξισώσεις

Οι γέφυρες του ποταμού... Pregel (Konigsberg)

Αποδεικτικές Διαδικασίες και Μαθηματική Επαγωγή.

Σημειώσεις Μαθηματικών Μεθόδων. Οικονομικό Πανεπιστήμιο Αθηνών

Κεφάλαιο 5. Γραμμικές Βαθμωτές ΔΕ

ιάσταση του Krull Α.Π.Θ. Θεσσαλονίκη Χ. Χαραλαμπους (ΑΠΘ) ιάσταση του Krull Ιανουάριος, / 27

Παραβολή ψ=αχ 2 +βχ+γ, α 0. Η παραβολή ψ = αχ 2. Γενικά : Κάθε συνάρτηση της μορφής ψ=αχ 2 + βχ +γ, α 0 λέγεται τετραγωνική συνάρτηση.

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Εισαγωγικά. 1.1 Η σ-αλγεβρα ως πληροφορία

21/11/2005 Διακριτά Μαθηματικά. Γραφήματα ΒΑΣΙΚΗ ΟΡΟΛΟΓΙΑ : ΜΟΝΟΠΑΤΙΑ ΚΑΙ ΚΥΚΛΟΙ Δ Ι. Γεώργιος Βούρος Πανεπιστήμιο Αιγαίου

5.1 Μετρήσιμες συναρτήσεις

Παντού σε αυτό το κεφάλαιο, αν δεν αναφέρεται κάτι διαφορετικό, δουλεύουμε σε ένα χώρο πιθανότητας (Ω, F, P) και η G F είναι μια σ-άλγεβρα.

Η εξίσωση Black-Scholes

Ο τύπος του Itô. f (s) ds (12.1) f (g(s)) dg(s). (12.2) t f (B s ) db s + 1 2

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

Εστω X σύνολο και A μια σ-άλγεβρα στο X. Ονομάζουμε το ζεύγος (X, A) μετρήσιμο χώρο.

Ας υποθέσουμε ότι ο παίκτης Ι διαλέγει πρώτος την τυχαιοποιημένη στρατηγική (x 1, x 2 ), x 1, x2 0,

Αλγόριθμοι & Βελτιστοποίηση


Αναγνώριση Προτύπων. Σήμερα! Λόγος Πιθανοφάνειας Πιθανότητα Λάθους Κόστος Ρίσκο Bayes Ελάχιστη πιθανότητα λάθους για πολλές κλάσεις

1. Εστω ότι A, B, C είναι γενικοί 2 2 πίνακες, δηλαδή, a 21 a, και ανάλογα για τους B, C. Υπολογίστε τους πίνακες (A B) C και A (B C) και

Εκφωνήσεις και Λύσεις των Θεμάτων

Ο Ισχυρός Νόμος των Μεγάλων Αριθμών

602. Συναρτησιακή Ανάλυση. Υποδείξεις για τις Ασκήσεις

Το κράτος είναι φτιαγμένο για τον άνθρωπο και όχι ο άνθρωπος για το κράτος. A. Einstein Πηγή:

Δ Ι Α Κ Ρ Ι Τ Α Μ Α Θ Η Μ Α Τ Ι Κ Α. 1η σειρά ασκήσεων

Αναλυτικές ιδιότητες

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

Κεφάλαιο Η εκθετική κατανομή. Η πυκνότητα πιθανότητας της εκθετικής κατανομής δίδεται από την σχέση (1.1) f(x) = 0 αν x < 0.

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

Martingales. 3.1 Ορισμός και παραδείγματα

1 GRAMMIKES DIAFORIKES EXISWSEIS DEUTERAS TAXHS

Επιχειρησιακή Ερευνα Ι

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Κατασκευή της κίνησης Brown και απλές ιδιότητες

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

ΕΙΣΑΓΩΓΗ ΣΤΟN ΣΤΟΧΑΣΤΙΚΟ ΛΟΓΙΣΜΟ

Ανεξαρτησία Ανεξαρτησία για οικογένειες συνόλων και τυχαίες μεταβλητές

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Πρώτη Γραπτή Εργασία. Εισαγωγή στους υπολογιστές Μαθηματικά

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Εαρινό Εξάμηνο

Το υπόδειγμα IS-LM: Εισαγωγικά

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

Χαρακτηριστικές συναρτήσεις

Κεφάλαιο 1. Πίνακες και απαλοιφή Gauss

Ανελίξεις σε συνεχή χρόνο

{ i f i == 0 and p > 0

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

Πιθανότητες ΙΙ 1 o Μέρος. Οικονομικό Πανεπιστήμιο Αθηνών

Η Θεωρια Αριθμων στην Εκπαιδευση

CSE.UOI : Μεταπτυχιακό Μάθημα

Συναρτήσεις. Σημερινό μάθημα

ΠΡΟΛΟΓΟΣ. Αθήνα, 12 Απριλίου 2016.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΔΙΑΦΟΡΙΚΕΣ ΜΕΘΟΔΟΙ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ

Εφαρμογές στην κίνηση Brown

ιαφορικές Εξισώσεις 1

επίπεδων καμπυλών Χειμερινό Εξάμηνο I(P, F G) των F και G σε ένα σημείο P A 2 K

Δημήτρης Χελιώτης ΕΝΑ ΔΕΥΤΕΡΟ ΜΑΘΗΜΑ ΣΤΙΣ ΠΙΘΑΝΟΤΗΤΕΣ

Διαφορικές Εξισώσεις Πρώτης Τάξης

Εισαγωγικές Διαλέξεις στην Θεωρία των Αλυσίδων Markov και των Στοχαστικών Ανελίξεων. Οικονομικό Πανεπιστήμιο Αθηνών

ΣΥΝΟΛΑ (προσέξτε τα κοινά χαρακτηριστικά των παρακάτω προτάσεων) Οι άνθρωποι που σπουδάζουν ΤΠ&ΕΣ και βρίσκονται στην αίθουσα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Εκφωνήσεις και Λύσεις των Θεμάτων

Μεγάλες αποκλίσεις* 17.1 Η έννοια της μεγάλης απόκλισης

τους στην Κρυπτογραφία και τα

Διανυσματικές Συναρτήσεις

Εισαγωγή στη Μιγαδική Ανάλυση. (Πρώτη Ολοκληρωμένη Γραφή)

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ. Τρίτη Γραπτή Εργασία στη Στατιστική

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

Σχέσεις και ιδιότητές τους

Διαφορικές εξισώσεις δεύτερης τάξης

α 0. α ν x ν +α ν 1 x ν α 1 x+α 0 α ν x ν,α ν 1 x ν 1,...,α 1 x,α 0, ...,α 1,α 0,

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. Άλκης Τερσένοβ. Περιεχόµενα Κεφάλαιο Ι. Συνήθεις ιαφορικές Εξισώσεις. 0. Εισαγωγή... 2

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Αναγνώριση Προτύπων. Σημερινό Μάθημα

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Εξέταση Ηλεκτρομαγνητισμού Ι 2 Φεβρουαρίου 2018

Επίλυση δικτύων διανομής

Αναγνώριση Προτύπων. Σημερινό Μάθημα

Ασκήσεις Γενικά Μαθηµατικά Ι Οµάδα 6 (λύσεις)

«ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ»

ΕΙΣΑΓΩΓΗ. H λογική ασχολείται με δύο έννοιες, την αλήθεια και την απόδειξη. Oι έννοιες αυτές έχουν γίνει

ΟΙΚΟΝΟΜΕΤΡΙΑ. Αναπληρωτής Καθηγητής. Σχολή ιοίκησης Επιχειρήσεων Πανεπιστήμιο Πατρών

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. Πρόχειρες σηµειώσεις. Αλκης Τερσένοβ. Κεφάλαιο Ι. Συνήθεις ιαφορικές Εξισώσεις

Differentiation exercise show differential equation

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΘΕΜΑ 1ο Α. α) Δίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιμες, να αποδείξετε ότι: F (x)=f (x)+g (x).

Περίληψη. του Frostman 4.1. Τέλος, η ϑεωρία του μέτρου Hausdorff αναπτύσσεται περαιτέρω στην τελευταία παράγραφο. Εισαγωγή 2

Προτεινόμενα θέματα στο μάθημα. Αρχές Οικονομικής Θεωρίας ΟΜΑΔΑ Α. Στις προτάσεις από Α.1. μέχρι και Α10 να γράψετε στο τετράδιό σας τον αριθμό της

Περιεχόμενα. 3 Γεννήτριες συναρτήσεις Συνήθεις γεννήτριες συναρτήσεις Βασικές γεννήτριες συναρτήσεις

ΕΙΣΑΓΩΓΗ ΣΤΗ ΘΕΩΡΙΑ ΟΜΟΓΕΝΟΠΟΙΗΣΗΣ

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

= 1. z n 1 = z z n = 1. f(z) = x 0. (0, 0) = lim

( ιμερείς) ΙΜΕΛΕΙΣ ΣΧΕΣΕΙΣ Α Β «απεικονίσεις»

Ασκήσεις Ανάλυση Ι Λύσεις ασκήσεων Οµάδας 1

Τίτλος Μαθήματος: Συνήθεις Διαφορικές Εξισώσεις Ι

Transcript:

Γραμμικές Συνήθεις ιαφορικές Εξισώσεις Ανώτερης Τάξης Γραμμικές Σ Ε 2ης τάξης Σ Ε 2ης τάξης με σταθερούς συντελεστές Μιγαδικές ρίζες Γραμμικές Σ Ε υψηλότερης τάξης Γραμμική Ανεξαρτησία Μανόλης Βάβαλης Τμήμα Μηχανικών Η/Υ Τηλεπικοινωνιών και ικτύων Πανεπιστήμιο Θεσσαλίας 17 Μαρτίου 2013, Βόλος

Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x).

Γραμμικές Σ Ε 2ης τάξης ή A(x)y + B(x)y + C(x)y = F(x). y + p(x)y + q(x)y = f(x). (1)

Γραμμικές Σ Ε 2ης τάξης A(x)y + B(x)y + C(x)y = F(x). ή y + p(x)y + q(x)y = f(x). (1) Ομογενής γραμμική εξίσωση όταν f(x) = 0.

Παραδείγματα y + k 2 y = 0 υο λύσεις: y 1 = cos kx, y 2 = sin kx. y k 2 y = 0 υο λύσεις: y 1 = e kx, y 2 = e kx.

Θεώρημα Υπέρθεσης Αν y 1 και y 2 είναι δύο λύσεις της ομογενούς εξίσωσης τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x), είναι επίσης λύση της, για οποιεσδήποτε σταθερές C 1 και C 2. Μπορούμε να προσθέσουμε λύσεις (ή να πολλαπλασιάσουμε λύσεις με κάποιον αριθμό) και το αποτέλεσμα να είναι επίσης λύση.

Θεώρημα Υπέρθεσης - Απόδειξη Εστω y = C 1 y 1 + C 2 y 2. Τότε y + py + qy = (C 1 y 1 + C 2 y 2 ) + p(c 1 y 1 + C 2 y 2 ) + q(c 1 y 1 + C 2 y 2 ) = C 1 y 1 + C 2y 2 + C 1py 1 + C 2py 2 + C 1qy 1 + C 2 qy 2 = C 1 (y 1 + py 1 + qy 1) + C 2 (y 2 + py 2 + qy 2) = C 1 0 + C 2 0 = 0

Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1.

Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι p, q, f είναι συνεχείς συναρτήσεις και ότι οι a, b 0, b 1 είναι σταθερές. Η εξίσωση y + p(x)y + q(x)y = f(x), έχει ακριβώς μια λύση y(x) η οποία ικανοποιεί τις εξής αρχικές συνθήκες y(a) = b 0 y (a) = b 1. Παραδείγματα, y + y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cos x + b 1 sin x. y y = 0 με y(0) = b 0 και y (0) = b 1 y(x) = b 0 cosh x + b 1 sinh x.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

Σ Ε 2ης τάξης με σταθερούς συντελεστές y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τ οτε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2.

Παράδειγμα y 6y + 8y = 0, y(0) = 2, y (0) = 6. Μαντεψιά: y = e rx. Τότε y = re rx και y = r 2 e rx y 1 = e 2x και y 2 = e 4x. y 6y + 8y = 0, r 2 e rx 6re rx + 8e rx = 0, r 2 6r + 8 = 0, (r 2)(r 4) = 0. y = C 1 e 2x + C 2 e 4x. 2 = y(0) = C 1 + C 2, 6 = y (0) = 2C 1 + 4C 2. y = 7e 2x + 5e 4x.

Γενικά ay + by + cy = 0

Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0.

Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0.

Γενικά ay + by + cy = 0 Μαντεψιά y = e rx ar 2 e rx + bre rx + ce rx = 0. χαρακτηριστική εξίσωση ar 2 + br + c = 0. Θεώρημα: Εστω r 1 και r 2 οι ρίζες της χαρακτηριστικής εξίσωσης. (i) Αν r 1 r 2 R y = C 1 e r 1x + C2 e r2x. (ii) Αν r 1 = r 2 R y = (C 1 + C 2 x) e r1x.

Παραδείγματα y k 2 y = 0

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x.

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις;

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x

Παραδείγματα y k 2 y = 0 r 2 k 2 = 0 y = C 1 e kx + C 2 e kx y 8y + 16y = 0 r 2 8r + 16 = (r 4) 2 = 0 y = (C 1 + C 2 x) e 4x = C 1 e 4x + C 2 xe 4x. Είναι οι e 4x και xe 4x γραμμικές ανεξάρτητες λύσεις; y = xe 4x y = e 4x + 4xe 4x, y = 8e 4x + 16xe 4x y 8y +16y = 8e 4x +16xe 4x 8(e 4x +4xe 4x ) +16xe 4x = 0 xe 4x = Ce 4x x = C

Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη.

Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση;

Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση.

Παρατηρήσεις 1. Η περίπτωση να έχουμε διπλή ρίζα είναι εξαιρετικά σπάνιο στην πράξη. 2. Γιατί η xe rx είναι λύση; Εστω r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 είναι μια λύση. Όταν r 1 r 2 τότε er 2 x e r 1 x r 2 r 1 (e rx ) = xe rx, επίσης λύση.

Τύπος του Euler e iθ = cos θ + i sin θ e iθ = cos θ i sin θ.

Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a

Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x.

Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx.

Μιγαδικές ρίζες ar 2 + br + c = 0 με b 2 4ac <0 r 1,2 = b 2a ± i b 2 4ac 2a y = C 1 e (α+iβ)x + C 2 e (α iβ)x. Θέτοντας y 1 = e (α+iβ)x και y 2 = e (α iβ)x έχουμε y 1 = e αx cos βx + ie αx sin βx, y 2 = e αx cos βx ie αx sin βx. Κάθε γραμμικός συνδυασμός λύσεων είναι και αυτός λύση. y 3 = y 1 + y 2 = e 2 αx cos βx, y 4 = y 1 y 2 = e 2i αx sin βx.

Θεώρημα Θεώρημα Αν οι ρίζες της χαρακτηριστικής εξίσωσης της διαφορικής εξίσωσης ay + by + cy = 0. είναι οι α ± iβ, τότε η γενική της λύση είναι y = C 1 e αx cos βx + C 2 e αx sin βx.

Παράδειγμα y + k 2 y = 0 k >0.

Παράδειγμα y + k 2 y = 0 k >0. Χαρακτηριστική εξίσωση r 2 + k 2 = 0 Ρίζες r = ±ik Γενική λύση y = C 1 cos kx + C 2 sin kx.

Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10.

Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x

Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x

Παράδειγμα y 6y + 13y = 0, y(0) = 0 y (0) = 10. Χαρακτηριστική εξίσωση r 2 6r + 13 = 0 με ρίζες r = 3 ± 2i και γενική λύση y = C 1 e 3x cos 2x + C 2 e 3x sin 2x 0 = y(0) = C 1 e 0 cos 0 + C 2 e 0 sin 0 = C 1 Άρα C 1 = 0 συνεπώς y = C 2 e 3x sin 2x οπότε y = 3C 2 e 3x sin 2x + 2C 2 e 3x cos 2x 10 = y (0) = 2C 2, ή C 2 = 5. Άρα y = 5e 3x sin 2x

Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2)

Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n.

Γραμμικές Σ Ε υψηλότερης τάξης y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = 0. (2) Θεώρημα Υπέρθεσης Εάν y 1, y 2,..., y n είναι λύσεις της ομογενούς εξίσωσης, τότε η y(x) = C 1 y 1 (x) + C 2 y 2 (x) + + C n y n (x), είναι επίσης λύση για οποιεσδήποτε C 1,..., C n. Θεώρημα Υπαρξης και Μοναδικότητας Εστω ότι οι συναρτήσεις p 0, p 1,..., p n 1, και f είναι συνεχείς και οι a, b 0, b 1,..., b n 1 είναι σταθερές. Η εξίσωση y (n) + p n 1 (x)y (n 1) + + p 1 (x)y + p 0 (x)y = f(x),. έχει ακριβώς μια λύση y(x) οι οποία ικανοποιεί τις παρακάτω αρχικές συνθήκες y(a) = b 0, y (a) = b 1,..., y (n 1 )(a) = b n 1.

Γραμμική Ανεξαρτησία Ορισμός y 1, y 2,..., y n είναι γραμμικά ανεξάρτητες αν η εξίσωση c 1 y 1 + c 2 y 2 + + c n y n = 0, έχει μόνον την τετριμμένη λύση c 1 = c 2 = = c n = 0.

Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες;

Παράδειγμα Είναι οι e x, e x, cosh(x) γραμμικά ανεξάρτητες; sinh x = ex e x 2

Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες;

Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x

Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0

Παράδειγμα Είναι οι e x, e 2x, e 3x γραμμικά ανεξάρτητες; 1. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 z + c 2 z 2 + c 3 z 3 = 0 με z = e x 2. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 e 2x + c 2 e x + c 3 = 0 3. c 1 e x + c 2 e 2x + c 3 e 3x = 0 c 1 + c 2 e x + c 3 e 2x = 0 Με x = 0 παίρνουμε c 1 + c 2 + c 3 = 0. Παραγωγίζοντας και τα δύο μέρη έχουμε... c 2 e x + 2c 3 e 2x = 0,

Παράδειγμα y 3y y + 3y = 0,

Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3

Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0

Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x

Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3.

Παράδειγμα y 3y y + 3y = 0, y(0) = 1, y (0) = 2, y (0) = 3 r 3 e rx 3r 2 e rx re rx + 3e rx = 0 r 3 3r 2 r + 3 = 0 y = C 1 e x + C 2 e x + C 3 e 3x 1 = y(0) = C 1 + C 2 + C 3, 2 = y (0) = C 1 + C 2 + 3C 3, 3 = y (0) = C 1 + C 2 + 9C 3. C 1 = 1/4, C 2 = 1 και C 3 = 1/4 y = 1 4 e x + e x + 1 4 e3x

Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0

Παράδειγμα Λύστε την εξίσωση y (4) 3y + 3y y = 0 y = r 4 3r 3 + 3r 2 r = 0 r(r 1) 3 = 0 (c 0 + c 1 x + c 2 x 2 ) e x } {{ } + c }{{} 4. όροι προερχόμενοι από την r = 1 από την r = 0 (c 0 +c 1 x+ +c k 1 x k ) e αx cos βx+(d 0 +d 1 x+ +d k 1 x k ) e αx sin βx. όπου c 0,..., c k 1, d 0,..., d k 1 είναι τυχαίες σταθερές.

Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0

Παράδειγμα Λύστε την εξίσωση y (4) 4y + 8y 8y + 4y = 0 r 4 4r 3 + 8r 2 8r + 4 = 0, (r 2 2r + 2) 2 = 0, ( (r 1) 2 + 1 ) 2 = 0. y = (c 0 + c 1 x) e x cos x + (d 0 + d 1 x) e x sin x.