2009,42(1):261-266 Scientia Agricultura Sinica doi: 10.3864/j.issn.0578-1752.2009.01.033 210095 Effects of Flaxseed Lignans on the Growth of Skeletal Muscle of Male Rats and Its Possible Mechanism ZHOU Wei, WANG Guo-jie, HAN Zheng-kang (Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture of China, Nanjing Agricultural University, Nanjing 210095) Abstract: Objective To determine whether flaxseed lignans could affect the growth of skeletal muscle in male animals and its possible mechanisms. Method The effect of the flaxseed lignans on skeletal muscle in male rats were determined in vivo. Daidzein (5 mg kg -1 ) and flaxseed lignans (50 mg kg -1 ) were added into the basal diets, respectively, and the concentrations of the serum lignans and daidzein were measured by HPLC, serum growth hormone and testosterone (T) levels were analyzed by RIA, and the expression of estrogen receptor β (ERβ) in the soleus muscle and hypothalamus were determined by RT-PCR. Result Flaxseed lignans and daidzein significantly improved the feed efficiency and increased the total weight gain of the femoral muscle in male rats. The rate of RNA to DNA in muscles and serum T levels were remarkably increased, while the urea nitrogen concentrations were significantly decreased by daidzein and flaxseed lignan and/or its metabolites. Meanwhile the expression of estrogen receptorβ (ERβ) in soleus muscle and hypothalamus were both upgraded by the two phytoestrogens. Conclusion Flaxseed lignan promoted the growth of male rats, and it may regulate serum T levels through binding to ER β in hypothalamus. In turn, it depressed the catabolism of protein and promoted the hypertrophy of skeletal muscle cells. Key words: phytoestrogens; flaxseed lignans; daidzein; mammalian lignans; skeletal muscle growth isoflavoneslignans 2 13 mg g -1 75 80 40 000 t 2008-01-022008-04-05 39970534 1981 E-mail Zhouwei0732@sohu.com 1924E-mail zhengkanghan@163.com
262 42 [1] secoisolariciresinol diglusoside SDG Mammalian lignans [2] 20 80 -enterolactone, ENL enterodiol END [3] [4] [5] [6] [7] [8] daidzein Da Sprague-Dawley SD Andersson [9] 1 1 V V 48 h 1.6% 2 mol L -1 ph 3.0 0.063 0.200 mm Kieselgel 60 65 35 10 V V V HPLC Agilent 1100 Series 95.2% 28 d SD Sprague-Dawley 75 85 g SLAC 36 SD 3 1 50 mg kg -1 SDG 5 mg kg -1 5 20 70 35% 35% 20% 5% 1% 1% 1% 1% 1% 1.0 g STS [10] β estrogen receptorβ ERβ mrna RT-PCR ERβcDNA AF042059 Primer Primer 5.0 [11] 5 -TGT CCA GCC ACG AAT CAG-3 5 -CCT ACC TCC ACG ATT ACC-3 GAPDH 3- [12] 5 -CTT CCG TGC GAG CAC TGC-3 5 -CAT TAT GGC GTG TGC AG-3 PCR 2.5 µl 10 PCR Buffer 1.5 µl 1.5 mmol L -1 MgCl 2 2 µl 0.2 mmol L -1 dntp 2 µl RT 1 µl 0.5 µl 13.8 µl ddh 2 O 5U Taq DNA 95 5 min 94 45 s 54.5 30 s 72 45 s 72 10 min 32 28 SDG 1 ml 1 ml 45 12 000 r/min 4 30 min 200 µl SDG 1 ml 37 [7] [13] Spherisorb ODS2 4.6 mmi.d. 150 mm 5 µm Waters, 1 ml min -1 0 min 20 min 10% 90% 280 nm 8 nm 25 20 µl Bowey [14] SPSS t Mean±SD
1 263 1 3 SDG SDG SDG ENL END SDG 2 SDG 12.44% P 0.05 20.44% P 0.01 19.79% P 0.05 31.35% P mg ml -1 Table 1 The concentrations of serum lignans and daidzein (mg ml -1 ) Control SDG treatment Da treatment SDG UD 0.072±0.018 UD END UD 0.019±0.006 UD ENL UD 0.030±0.007 UD Daidzein UD UD 0.010±0.001 UD UD means under detection levels Table 2 Effects of dadzein and SDG on the feed efficiency ratio and skeletal muscle growth parameters Control SDG treatment Da treatment Feed efficiency (g g -1 ) 0.225±0.006a 0.253±0.007b 0.271±0.009c Weight of femoral muscle(g) 6.57±0.63a 7.87±0.61b 8.63±0.89b Soleus muscle weight/body weight (g kg -1 ) 0.417±0.034a 0.432±0.027a 0.432±0.029a RNA (mg g -1 ) 0.529±0.041a 0.909±0.062b 1.014±0.044b DNA (mg g -1 ) 0.461±0.080a 0.576±0.122a 0.600±0.068a RNA/DNA 1.147±0.355a 1.578±0.284b 1.692±0.362b P 0.05 Values in the same row that do not share the same superscript letter are significantly different (analysis of variance, P 0.05) 0.05 RNA P 0.05DNA RNA/DNA 37.58% P 0.05 47.52% P 0.05 1 SDG Da 26.24% P 0.01 35.34% P 0.01 261.36% P 0.01 101.80% P 0.05 2 70 * P 0.05 ** P 0.01 Compare with control *: P 0.05, **: P 0.01 Fig. 1 Effects of SDG and daidzein on serum urea-n, testosterone and growth hormones levels in male rats
264 42 M Mark 1 2 SDG 3 Da * P 0.05 ** P 0.01 M: Marker PUC19 Lanes 1-3 represent the control, SDG, and Da; Compare with control *P 0.05, **P 0.01 Fig. 2 Effect of SDG and daidzein on the expression of ER-β mrna in the soleus muscle and hypothalamus ER-β mrna SDG P 0.05 ER-βmRNA Da P 0.01P 0.05 ER-βmRNA SECO secoisolariciresinol END [15] END ENL [7] Wang [2] SDG SDG END ENL SDG END ENL Kah [16] Bowey [14] Knust [17] SDG END ENL 3 g t -1 RNA /DNA [18] 5 mg kg -1 [19] [20-21] RNA DNA RNA/DNA estradiol E 2 α estrogen receptorα ERα β ERβ ERβ [22-23]
1 265 β mrna SDG / ERβ ERβ ER-β 1 ER-β 2 ER-β [24] 5 ER-β [11] δ ERβ ERβ -- [8] SDG Da END ENL [5,25] SDG END ENL ERβ -- References [1].., 2004, 29(6): 72-75. Chen H H. Nutrient compounds and utilization of flaxseed. Chinese Lipid, 2004, 29(6): 72-75. (in Chinese) [2] Wang L Q. Mammalian phytoestrogens: enterodiol and enterolactone. Journal of Chromatography B, 2002, 777: 289-309. [3] Adlercreutz H. Phytoestrogens and breast cancer. Journal of Steroid Biochemistry Molecular Biology, 2003, 83: 113-118. [4] Prasad K. Reduction of serum cholesterol and hypercholesterolemic atherosclerosis in rabbits by secoisolariciresinol diglucoside isolated from flaxseed. Circulation, 1999, 99: 1355-1362. [5] Adlercreutz H, Bannwart C, Wähälä K, Mäkelä T, Brunow G, Hase T, Arosemena PJ, Kellis J T, Vickery L E. Inhibition of human aromatase by mammalian lignans and isoflavonoid phytoestrogens. Journal of Steroid Biochemistry Molecular Biology, 1993, 44(2): 147-153. [6] Martin M E, Haourigui M, Pelissero C, Benassayag C, Nunez E A. Interactions between phytoestrogens and human sex steroid binding protein. Life Sciences, 1996, 58: 429-436. [7],,.., 2007, 28(3): 89-94. Zhou W, Wang G J, Han Z K. Progress on linseed lignans. Progress in Veterinary Medicine, 2007, 28(3): 89-94. (in Chinese) [8]. -., 1999, 31 (1): 1-2. Han Z K. Studies of isoflavonic phytoestrogen-daidzein affecting growth and related endocrine secretion in male animals. Animal Husbandry & Veterinary Medicine, 1999, 31(1): 1-2. (in Chinese) [9] Andersson R, Lundgren L N, Åman P. Polymeric fractions containing phenol glucoside in flaxseed. Food Chemistry, 2002, 76: 207-212. [10],.. :, 1982: 148-150. Cai W C, Yuan H J. The Commonly Chemical Analysis of Biological Substance. Beijing: Science Press, 1982: 148-150. (in Chinese) [11] Petersen D N, Tkalcevic G T, Koza-Taylor P H, Turi T G, Brown T A. Identification of estrogen receptor β2, a functional variant of estrogen receptor β expressed in normal rat tissues. Endocrinology, 1998, 139: 1082-1092. [12] Shirwalkar H, Modi D N, Maitra A. Exposure of adult rats to estradiol valerate induces ovarian cyst with early senescence of follicles. Molecular and Cellular Endorcrinology, 2007, 272: 22-37. [13] Rickard S E, Thompson L U. Chronic exposure to secoisolariciresinol diglycoside alters lignan disposition in rats. Journal of Nutrion, 1998, 128: 615-623. [14] Bowey E, Adlercreutz H, Rowland I. Metabolism of isoflavones and lignans by the gut microflora: a study in germ-free and human flora associated rats. Food and Chemical Toxicology, 2003, 41: 631-636. [15] Clavel T, Henderson G, Alpert C A, Philippe C, Rigottier-Gois L, Doré J, Blaut M. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Applied and Environmental Microbiology, 2005, 71: 6077-6085. [16] Kah P, Jianmin C, Wendy E. Mammary gland morphogenesis is enhanced by exposure to flaxseed or its major lignan during sucking in rats. Experimental Biology and Medicine, 2004, 229: 147-157. [17] Knust U, Spiegelhalder B, Strowitzki T, Owen R W. Contribution of linseed intake to urine and serum enterolignan levels in German
266 42 females: A randomized controlled intervention trial. Food and Chemical Toxicology, 2006, 44: 1057-1064. [18],,,.., 1994, 19(3): 4-7. Wang G J, Han Z K, Chen J, Chen W H. Effects of daidzein on mauscle growth in broilers and mechanism involved. Guangdong Journal of Animal and Veterinary Science, 1994, 19(3): 4-7. (in Chinese) [19],,,.., 2005, 28(1): 76-79. Ma H T, Han Z K, Wang G J, Zou S X. Effects of isoflavone on a romatase activity and muscle growth in male rats. Journal of Nanjing Agricultural University, 2005, 28(1): 76-79. (in Chinese) [20].. :, 2000, 181-182. Yang Z M. The Basic and Clinical Tissue Engineering. Chengdu: Sichuan Science Press, 2000: 181-182. (in Chinese) [21],,,,,,.. Wei K H, Pei G X, Jin D, Wang K, Chen B, Ma Z L, Hu B S. Effects of bone morphogenetic protein on proliferation and collagen-1 synthesis of skeletal muscle satellite cells. Journal of Reparative and Reconstructive Surgery, 2002, 16(6): 422-425. (in Chinese) [22] Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H, Van der S PT, Van der B B, Gustafsson J-Å. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor. Endocrinology, 1998, 139: 4252-4263. [23] Patisaul H B, Melby M, Whitten P L, Young L J. Genistein affects ERβ but not ERα-dependent gene expression in the hypothalamus. Endocrinology, 2002, 143: 2189-2197. [24],. β., 2001, 32: 68-70. Zhang J Q, Cai W Q. The progress on estrogen receptor β. Progress on Physiology, 2001, 32: 68-70. (in Chinese) [25] Thomas C, Daniela B, Annett B, Joël D, Michael B. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaecrobe, 2006, 12: 140-147., 2002, 16(6): 422-425.