(U) (+) (+) dq + dw = du + d(v 2 /2) C v dt, du = C v dt u 2 u 1 = T 1. dq + dw = du + d(v 2 /2) + vdp + pdv. dq + dw = d(h + V 2 2 )=dh t. T v=const.

Σχετικά έγγραφα
SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Eisagwg sthn KosmologÐa

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

Ανάλυση ις. συστήματα

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

GENIKEUMENA OLOKLHRWMATA

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Κλασσική Ηλεκτροδυναμική II

στο Αριστοτέλειο υλικού.

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Mègisth ro - elˆqisth tom

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

Ανάλυση ασκήσεις. συστήματα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

Θεωρία Πιθανοτήτων και Στατιστική

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

Ask seic me ton Metasqhmatismì Laplace

Στατιστική για Χημικούς Μηχανικούς

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ



ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

στο Αριστοτέλειο υλικού.

Στατιστική για Χημικούς Μηχανικούς

SofÐa ZafeirÐdou: GewmetrÐec

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

Eukleideiec Gewmetriec

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...


ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Shmei seic sto mˆjhma Analutik GewmetrÐa

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61)

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

APEIROSTIKOS LOGISMOS I

Ανάλυση. σήματα και συστήματα

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.


Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

JEMATA EXETASEWN Pragmatik Anˆlush I

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

I

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.


Θεωρία Πιθανοτήτων και Στατιστική

Ergasthriak 'Askhsh 2

r ν = I ν I c α ν =1 r ν = I c I ν W ν =

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

majhmatikoð upologismoð. To biblðo mporeð na qwristeð jematikĺ se treic enìthtec. Thn prÿth enìthta apoteloôn


SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

PerÐlhyh H moriak arqitektonik kai o sqediasmìc polôplokwn morðwn pou perièqoun foullerènia antiproswpeôei èna pedðo thc upermoriak c epist mhc sto op

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

2

N.Σ. Μαυρογιάννης 2010

Shmei seic sto mˆjhma Analutik GewmetrÐa

HU215 - Frontist rio : Seirèc Fourier

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

2

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

EfarmogËc twn markobian n alus dwn

Shmei seic Sunarthsiak c Anˆlushc

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

2 PERIEQ OMENA H epðdrash tou upokeimènou diktôou sthn poiìthta uphresðac H diepaf thc uphresðac proc to qr


Transcript:

DPMS PARAGWGH KAI DIAQEIRISH ENERGEIAS JermikoÐ StajmoÐ Paragwg c Jermikèc Strobilomhqanèc Epimèleia: K.Q. Giann koglou, Anaplhrwt c Kajhght c EMP 3 AprilÐou 006 Perieqìmena Arqèc Jermodunamik c. Anoikt kai Kleist Jermodunamik Sust mata:................... Pr to Jermodunamikì AxÐwma:............................ 3.3 Energeiakìc Isologismìc se Anoiktì SÔsthma:................... 3.4 DeÔtero Jermodunamikì AxÐwma:........................... 4.5 Paroq M zac se Diatom :.............................. 6 Pterug seic AxonikoÔ Sumpiest kai StrobÐlou 7 3 Polutropik Metabol 5 3. Se Sumpiest ):................................ 5 3. Se Strìbilo ):................................. 5 4 AgwgoÐ 6 4. AkrofÔsia :....................................... 6 4. DiaqÔtec :....................................... 6 4.3 Suntelest can kthshcpðeshcse DiaqÔth :.................... 6 To keðmeno autì, se meg lo jajmì, apoteleð surraf emploutismènwn) apospasm twn apì to biblðo EISAGW- GH STIS JERMIKES STROBILOMHQANES upì K. PapahlioÔ, K. Majioud kh kai K. Giann koglou me to opoðo kalôptetai h Ôlh tou antðstoiqou proptuqiakoô maj matoc sth Sqol Mhqanolìgwn Mhqanik n EMP. Gia perissìterec plhroforðec, o anagn sthc mporeð na anatrèxei sto parap nw biblðo. Stic exet seic tou metaptuqiakoô maj matoc epitrèpetai na èqete mazð sac mìno autèc tic shmei seic.

5 Axonikìc Sumpiest c 6 5. Par gontec pou Ephre zoun to Lìgo PÐeshc AxonikoÔ Sumpiest :........ 7 5. Suntelest cparoq c:................................. 8 5.3 Suntelest cfìrtishc:................................. 8 5.4 Isentropikìc Suntelest cfìrtishc:......................... 9 5.5 Bajmìc AntÐdrashc:.................................. 9 5.6 Jewrhtikìc Bajmìc AntÐdrashc:........................... 9 5.7 EpÐlush Trig nwn Taqut twn AxonikoÔ Sumpiest :................. 9 5.8 GwnÐec Apìklishc thcro c:.............................. 0 5.9 Jewrhtik Adi stath Qarakthristik AxonikoÔ Sumpiest :............ 0 5.0 LeitourgÐa se flsunj kec Anafor c fl:......................... 5. Qarakthristikèc LeitourgÐac:............................. 3 5. LeitourgÐa se TuqaÐo ShmeÐo kai stic Sunj kec Anafor c me Ðdio Isentropikì Bajmì Apìdoshc:.................................... 5 5.3 AntÐstoiqa ShmeÐa LeitourgÐac :........................... 5 5.4 PerÐ AstajoÔc LeitourgÐac Sumpiest :........................ 6 6 Axonikìc Strìbiloc 9 6. Suntelest cparoq c:................................. 9 6. Suntelest cfìrtishc:................................. 30 6.3 Bajmìc AntÐdrashc:.................................. 30 6.4 EpÐlush Trig nwn Taqut twn AxonikoÔ Strìbilou:................. 30 6.5 GwnÐec Apìklishc thcro c:.............................. 3 6.6 Jewrhtik Adi stath Qarakthristik AxonikoÔ Strìbilou:............ 3 6.7 Anhgmènec Par metroi Paroq c kai Fìrtishc:.................... 3 6.8 Anhgmènh Qarakthristik :.............................. 3 6.9 Qarakthristik Polub jmiou Strìbilou:...................... 3 7 Ask seic 3

Arqèc Jermodunamik c H enìthta aut sunoyðzei basikècarqècthcjermodunamik c, qr simecgia ìsa ja akolouj soun. H parousðash eðnai perilhptik afoô h sqetik Ôlh kalôptetai apì lla maj mata. ParatÐjentai, ìmwc, se graf qr simh gia tic strobilomhqanèc kai h gn sh twn epilegmènwn jem twn pou akoloujeð eðnai aparaðthth gia thn parakoloôjhsh tou maj matoc.. Anoikt kai Kleist Jermodunamik Sust mata: H leitourgða miac strobilomhqan c eðnai mesa sundedemènh me th metabol tou energeiakoô epipèdou tou ergazìmenou mèsou. H teleutaða sundèetai me th dunamik allhlepðdrash tou mèsou aèrac, kausaèrio, k poio aèrio klp) me ta peristrefìmena pterôgia. Etsi, se èna sumpiest, h ro tou ergazìmenou mèsou ufðstatai mia sun jwcadiabatik metabol sun jhcparadoq ) kai h enèrgeia tou reustoô aux nei apì th mhqanik enèrgeia pou dapan tai gia thn peristrof thcpterugiofìrou atr ktou. Sto strìbilo, mèsw miac diergasðac pou epðshc sunhjðzetai na jewreðtai adiabatik, to energeiakì epðpedo tou ergazìmenou mèsou mei netai, me apotèlesma thn paragwg mhqanikoô èrgou ston xona thcmhqan c. Sth jermodunamik, èna sôsthma sto opoðo epitrèpetai sunallag enèrgeiac kai m zac me to perib llon kai k ti tètoio eðnai mia strobilomhqan ) orðzetai wc anoiktì sôsthma. Se autì, oi upologismoð pragmatopoioôntai jewr ntacènan ìgko anafor c elègqou, me ìria ta opoða merik olik ) diarrèei to ergazìmeno mèso. Sto anoiktì sôsthma, sq ma, eðnai dunatoð isologismoð enèrgeiac kai m zac me to perib llon qwrðc na eðnai aparaðthth h pl rhc gn sh twn epimèrouc diergasi n sto eswterikì tou ìgkou elègqou. Etsi, ènac trìpoc melèthc thc ro c stic strobilomhqanèc l.q. se èna sumpiest ) eðnai me th je rhsh anoiktoô sust matoc. Kaj c oi allagèc kat stashc miac m zac reustoô sumbaðnoun suneq c kat thn kðnhs tou di mèsou thc mhqan c, stic di forec jèseic miac bajmðdac prin met k je stajer peristrefìmenh pterôgwsh) jewroôme makroskopik stajerècidiìthtec tou ergazìmenou mèsou. A m W +) +) Q m Sq ma : Genik di taxh anoiktoô jermodunamikoô sust matoc. ApeikonÐzetai h sunallag èrgou kai jermìthtac me to perib llon. HeÐsodoc tou reustoô sto sôsthma gðnetai apì th jèsh diatom eisìdou A )kaihèxodìctou apì th jèsh diatom exìdou A ). Ena sôsthma pou perilamb nei sugkekrimènh, stajer m za kai sto opoðo epitrèpontai mìno sunallagècèrgou jermìthtacìqi ìmwcm zac) me to perib llon, apoteleð èna kleistì sôsthma. Ta ìria tou kleistoô sust matoc mporeð na kinoôntai, to sq ma tou na all zei kai o ìgkoc A 3

pou eswkleðei na metab lletai. 'Ena stoiqeðo reustoô apoteleð èna stoiqei dec kleistì sôsthma, sq ma, to opoðo kineðtai akolouj ntac troqièc tou pedðou ro c mèsa l.q. se mia pterôgwsh sumpiest ). δw δq U) +) +) Sq ma : Genik di taxh kleistoô jermodunamikoô sust matoc. H perikleiìmenh m za reustoô paramènei stajer an kai o ìgkoc kai to sq ma tou mporoôn na all zoun. To kleistì sôsthma mporeð na kineðtai ìqi, an kai stic strobilomhqanèc mac endiafèroun mìno ta kinoômena kleist sust mata pou antistoiqoôn se kinoômena stoiqeða reustoô. H for twn bel n eðnai se sumfwnða me ta prìshma pou shmei nontai, ìso afor sth sunallaglh èrgou W kai jermìthtac Q me to perib llon. Apì ta parap nw sun getai ìti oi sqèseic pou dièpoun kleist /kai anoikt jermodunamik sust mata brðskoun efarmog sth melèth twn strobilomhqan n. Oi piì qr simec apì autèc tic sqèseic akoloujoôn se suntomða.. Pr to Jermodunamikì AxÐwma: Gia èna kinoômeno kleistì sôsthma, l.q. mia kleist m za reustoô pou diatrèqei to pedðo ro c miac strobilomhqan c, to algebrikì) jroisma jermìthtac q kai èrgou w pou sunall ssei me to perib llon isoôntai me th metabol thceswterik cenèrgeiacan mon da m zac u kai th metabol thckinhtik c enèrgeiac V / tou kleistoô sust matoc. Gia stoiqei sh metabol, eðnai dq + dw = du + dv /) Kat sômbash, eðnai jetik ta q, w ta opoða lamb nei to sôsthma. Gia thn eswterik enèrgeia, gia jermoqwrhtik tèleio aèrio, eðnai du = C v dt u u = T T C v dt, ìpou C v = ) u o suntelest cjermoqwrhtikìthtacupì stajerì ìgko kai T h jermokrasða. T v=const..3 Energeiakìc Isologismìc se Anoiktì SÔsthma: Gia qronik mìnimh ro l.q. mèsa se mia pterôgwsh enìc sumpiest ), to pr to jermodunamikì axðwma pou sumperilamb nei plèon kai to èrgo ex jhshc) diatup netai wc dq + dw = du + dv /) + vdp + pdv dq + dw = dh + V )=dh t 4

ìpou v =/ρ eðnai o eidikìc ìgkoc kai ρ h puknìthta tou reustoô. H parap nw exðswsh dièpei stoiqei dh metabol. H statik enjalpða h = u + vp sunajroðzei ìroucpou sunart ntai twn jermodunamik n idiot twn tou reustoô. H olik enjalpða h t = h + V / prokôptei sunupologðzontac kai thn kinhtik enèrgeia tou reustoô. 'Etsi, me th sun jh paradoq ìti h strobilomhqan eðnai jermik monwmènh ro adiabatik, dq =0) h prìsdosh enèrgeiac sto reustì kinht pterôgwsh sumpiest, dw > 0) aux nei thn olik enjalpða tou dh t > 0) en h prìsdosh enèrgeiac apì to reustì sta peristrefìmena pterôgia kinht pterôgwsh strobðlou, dw < 0) mei nei thn olik enjalpða tou dh t < 0). H ro se agwgoôc diaqôtec akrofôsia) kai stic stajerèc pterug seic sumpiest strìbilou eðnai ergh, ra dw =0kai, an epiplèon eðnai kai adiabatik, dq =0,tìte dh t =0h olik enjalpða diathreðtai stajer ). An o rujmìcparoq cm zacsto sôsthma eðnai ṁ l.q. se kg/sec) tìte h parap nw energeiak sqèsh gr fetai wc [ Q + Ẇ = ṁ h + V ] out EÐnai de ìpou C p = ) h T R = C p C v, C p = p=const. = ṁ [h t ] out in dh = C p dt h h = in T T C p dt o suntelest cjermoqwrhtikìthtacupì stajer pðesh kai, gia tèleia aèria, γ R kai C γ v = R γ eðnai o ekjèthc thc isentropik c metabol c kai R h γ stajer tou aerðou). To epðpedo tim c thc olik c enjalpðac h t apoteleð to sunhjismèno mètro tou energeiakoô epipèdou tou reustoô se k je jèsh miac strobilomhqan c..4 DeÔtero Jermodunamikì AxÐwma: H eidik ) entropða S, qrhsimopoioômenh wcdiafor thctim cthcmetaxô dôo jèsewn, apoteleð èna apì ta dôo mètra to llo eðnai oi ap leiec olik c pðeshc) pou qrhsimopoioôntai gia na posotikopoi soun ap leiec lìgw sunektikìthtac. H metabol c entropðac gia mia anastrèyimh deðkthc R) metabol eðnai: ds = dq R T H isìthta Clausius gia kleist anastrèyimh metabol diatup nei: ds =0 en h antðstoiqh aniso-isìthta gia kleist pragmatik metabol kôklo) gr fetai: dq T < 0 5

To sq ma 3 exhgeð jermodunamik th metabol thcentropðacmetaxô dôo jèsewn kai se mia strobilomhqan l.q. ekatèrwjen thc kinht c thc stajer c pterôgwshc), ìpou h ro jewreðtai adiabatik. H susqètish twn dôo dunat n metabol n A kai B bl. sqìlia sth lez nta) odhgeð sto sumpèrasma S >S H aôxhsh entropðac S S apoteleð mètro twn apwlei n thc adiabatik c ro c. Α ΙΑΒΑΤΙΚΗ ΜΗ ΑΝΑΣΤΡΕΨΙΜΗ ΜΕΤΑΒΟΛΗ A B ΜΗ Α ΙΑΒΑΤΙΚΗ ΑΝΑΣΤΡΕΨΙΜΗ ΜΕΤΑΒΟΛΗ Sq ma 3: H ro reustoô se mia sunist sa strobilomhqan c, apì th jèsh sth jèsh, mporeð na parastajeð sto q ro twn jermodunamik n metabol n) me dôo diaforetikoôc trìpouc. O pr toc trìpoc eðnai mia adiabatik lìgw thc sun jouc paradoq c) metabol enìc pragmatikoô aerðou ra, mh anastrèyimh) pou antistoiqeð sthn poreða A, me kateôjunsh apì to sto. O deôteroc eðnai mia metabol enìc ideatoô, atriboôc aerðou ra, anastrèyimh metabol, poreða B, me kateôjunsh apì to sto ) sthn opoða ìmwc prosdðdetai jermìthta apì exwterik phg. H prìsdosh jermìthtac fikalôpteifl thn aôxhsh thc jermokrasðac tou reustoô lìgw sunektikìthtac trib c metaxô kinoômenwn stoiqeðwn reustoô all kai trib c touc me ta stere toiq mata). Apì ta parap nw aporrèoun oi sqèseic isentropik c metabol c, oi opoðec, gia mia metabol metaxô twn jèsewn, gr fontai wc: p p = T T ) γ γ ) γ ρ = ρ kai, profan c, dièpoun kai th susqètish metaxô statik n kai olik n anakop c) jermodunamik n megej n sthn Ðdia jèsh, wc p t p T t T = + γ ) γ M = + γ M ìpou M o topikìc arijmìc Mach. H susqètish olik c kai statik c pðeshc, p t kai p, sto Ðdio shmeðo enìcpedðou ro c sumpiestoô reustoô dièpetai apokleistik apì thn parap nw isentropik sqèsh. H gnwst kai wcexðswsh Bernoulli ) p t = p + ρv γ 6

isqôei mìno gia asumpðesto reustì. Proseggistik, mporeð na qrhsimopoihjeð kai gia sumpiestì reustì se qamhlèctaqôthtecro cperðpou gia M<0.3, tìte h ro mporeð na jewrhjeð fiasumpðesthfl). O arijmìc Mach thcro corðzetai wc to phlðko thctopik c taqôthtac tou reustoô proc thn topik taqôthta tou qou c = γrt, dhlad M = V γrt H taqôthta tou qou upologðzetai qrhsimopoi ntac th statik kai ìqi thn olik jermokrasða..5 Paroq M zac se Diatom : Se diatom A l.q. thn eðsodo, thn èxodo mia opoiad pote llh jèsh metaxô twn pterug sewn strobilomhqanèc) ìpou h ro enìc tèleiou aèriou γ,r) dièrqetai upì gnwst gwnða a wcprocthn k jeto sthdiatom, se olikèc sunj kec p t,t t ) dhlad me gnwstì energeiakì epðpedo), h paroq m zac ekfr zetai wc: γ ṁ=ap t cosam + γ ) γ+ RT t M γ ) ṁ=av cosa p t V ) γ RT t C p T t Oi dôo sqèseic eðnai apolôtwc isodônamec, h pr th qrhsimopoieð ton arijmì Mach thc ro c kai h deôterh thn antðstoiqh taqôthta. EÐte wc proc M wc proc V h exðswsh aut apaiteð epðlush mèsw epanalhptikoô sq matocl.q. me th mèjodo tou stajeroô shmeðou). To sq ma epanalhptik c epðlushcwcproc M mporeð na eðnai èna apì ta dôo akìlouja: ìpou M = F M = F = γ + γ M M F ṁ RT t Ap t cosa γ ) γ+ γ ) ) γ ) γ+ To pr to sq ma ja d sei thn upohqhtik lôsh kai to deôtero thn uperhqhtik lôsh pou antistoiqoôn sth sugkekrimènh paroq m zac kai tic sugkekrimènec sunj kec ro c. Oi antðstoiqoi trìpoi epðlushcwcprocv, gia ticðdiecdôo fusikèclôseicupohqhtik kai uperhqhtik, antðstoiqa) eðnai: V κ+ = G ) V κ ) γ C p T t ) ) V κ+ = V κ γ Cp T t G ìpou κ eðnai o metrht ctwn epanal yewn tou algìrijmou stajeroô shmeðou kai G = ṁrt t p t Acosa 7 )

Pterug seic AxonikoÔ Sumpiest kai StrobÐlou H an lush thc leitourgðac miac bajmðdac axonikoô sumpiest strobðlou, odhgeð sth susqètish jermodunamik n kai kinhmatik n megej n se di forecqarakthristikècjèseicthc. EpÐshc, sth susqètish metaxô twn gewmetrik n stoiqeðwn thckai thcjermodunamik cmetabol ctou ergazìmenou mèsou. H melèth didi statwn pterug sewn eðnai mia je rhsh pou prokôptei apì mia diadikasða tom c tou pedðou ro c sth strobilomhqan me mia ek peristrof c epif neia, ìpwc aut pou faðnetai sto sq ma 4. To sqetikì an ptugma gia aplìthta, jewr ste tom me kulindrik epif neia antð opoiasd pote mh anaptôximhcek peristrof cepif neiac) apeikonðzetai sto sq ma 5, ìpou dðnontai kai orismènoi basikoð orismoð. To sq ma 5 parousi zei mporeð na antistoiqeð se mia grammik mia perifereiak pterôgwsh. H grammik pterôgwsh linear cascade) apoteleðtai apì meg lo arijmì jewrhtik peira) Ðdiwn pterugðwn, koinoô prosanatolismoô, ta opoða eðnai topojethmèna se stajer apìstash metaxô touc h teleutaða ja onom zetai b ma thc pterôgwshc, pitch). Perifereiak pterôgwsh eðnai aut pou apeikonðzetai sto sq ma 4. Kat th melèth thcro cse mia didi stath pterôgwsh, h eðsodoc tou qwrðou ro c deðkthc ) lamb netai se arket apìstash an nti thc akm c prosbol c twn pterugðwn, ste ekeð na epikratoôn omoiìmorfecsunj kecro c. H èxodoctou qwrðou deðkthc ) mporeð genik na lhfjeð eðte kont sthn akm ekfug c, mèsa ston omìrrou thcro c, eðte arket makri ìpou ja jewrhjoôn omoiìmorfec sunj kec ro c. An h èxodoc keðtai mèsa ston omìrrou thc ro c, tìte kat m koc thcanamènetai shmantik anomoiomorfða sthn katanom thc taqôthtac twn jermodunamik n megej n. Se otid pote akoloujeð, h ro upotðjetai qronik mìnimh. ΓΕΝΕΤΕΙΡΑ ΕΚ ΠΕΡΙΣΤΡΟΦΗΣ ΕΠΙΦΑΝΕΙΑΣ ΠΕΡΙΣΤΡΕΦΟΜΕΝΗ ΠΤΕΡΥΓΩΣΗ Α Μ Γ ΑΚΙΝΗΤΗ ΠΤΕΡΥΓΩΣΗ ΕΞΩΤΕΡΙΚΟ ΚΕΛΥΦΟΣ SHROUD) Β ΑΞΟΝΑΣ ΠΕΡΙΣΤΡΟΦΗΣ ΕΣΩΤΕΡΙΚΟ ΚΕΛΥΦΟΣ HUB) Sq ma 4: Meshmbrin tom bajmðdac axonikoô sumpiest. ApeikonÐzetai h peristrefìmenh kinht ) kai h stajer akðnhth) pterôgwsh, oi genèteirec tou eswterikoô hub) kai exwterikoô kelôfouc shroud) kaj c kai h genèteira me mia ek peristrof c epif neia pou antistoiqeð sto monodi stato upologismì thc bajmðdac. An h genèteira eðqe axonik dieôjunsh, antistoiqoôse dhlad se kulindrik epif neia, to an ptugma thc ja èdine èna didi stato sq ma, sq ma 5 faðnetai mìno h mia pterôgwsh, h peristrefìmenh). Mia pr th an lush tou pedðou ro cse mia didi stath bajmðda sumpiest sumperilamb nei thn peristrefìmenh pterôgwsh h opoða akoloujeðtai apì th stajer ) perilamb nei ton upologismì twn trig nwn taqut twn stic jèseic eðsodoc peristrefìmenhc pterôgwshc), èxodoc peristrefìmenhc kai, tautìqrona, eðsodoc stajer c pterôgwshc) kai 3 èxodoc stajer c pterôgwshc). Profan c, eðnai h eðsodoc thcbajmðdackai 3 h èxodìc thc. Sto sq ma 6, h fiorizìntiafl antistoiqeð thn axonik kateôjunsh deðkthc a) kai h fikatakìrufosfl sthn perifereiak kateôjunsh deðkthc u). Ta trðgwna taqut twn apeikonðzoun th dianusmatik sônjesh thc taqôthtac kat thn poyh tou akðnhtou parathrht apìluth taqôthta, V, me axonik sunist sa thn V a kai 8

x y ΜΕΤΩΠΟ ΠΡΟΣΠΤΩΣΗΣ C γ β W s φ β W β β ΜΕΤΩΠΟ ΕΚΦΥΓΗΣ i ΑΞΟΝΙΚΗ ΚΑΤΕΥΘΥΝΣΗ W Sq ma 5: Sq ma didi stathc pterôgwsh axonikoô sumpiest. FaÐnontai dôo diadoqikèc aerotomèc, h mèsh gramm kurtìthtac k je aerotom c diakekommènh), gwnðec met llou ìpwc l.q. h gwnða met llou β / thc akm c ekfug c), dianôsmata taqôthtac sthn eðsodo kai thn èxodo thc pterôgwshc sumbolðzontai me W wc na eðnai sqetikèc taqôthtec gia kinht pterôgwsh antikajðstatai me V gia stajer pterôgwsh) kai oi sqetikèc gwnðec thc ro c ed, kai p li, sumbolðzontai wc sqetikèc gwnðec β kai β ). perifereiak sunist sa thn V u ) kai aut tou peristrefìmenou parathrht sqetik taqôthta, W, me axonik sunist sa thn W a = V a kai perifereiak sunist sa thn W u ). O peristrefìmenoc sqetikìcparathrht ckineðtai me th grammik taqôthta peristrof c U thckinht cpterôgwshc. EÐnai U = πn 60 R ìpou N oi strofècse RP M, R haktðna m) kaihu ekfr zetai se m/sec. H U èqei apokleistik perifereiak sunist sa. H basik dianusmatik sqèsh pou sundèei ta V kai W eðnai h V = W + U me sunist sec V a = W a V u = W u + U Oi deðktec sta V kai U qarakthrðzoun th jèsh sthn opoða anafèretai k je posìthta. Oi axonikèc sunist secthctaqôthtac eðnai p nta jetikèc en oi perifereiakèc V u kai W u eðnai proshmasmènec. 'Eqoun jetikì prìshmo ìtan èqoun thn Ðdia for me to di nusma peristrof c U 9

kai arnhtikì sthn antðjeth perðptwsh. H apìluth α kai h sqetik gwnða ro c β, se opoiad pote jèsh orðzontai wcprocthn axonik kateôjunsh kai eðnai epðshc proshmasmènec. Gia to prìshmì touc isqôei o prohgoômenoc kanìnac. 'Etsi, sômfwna me to sq ma 6, h sqetik gwnða thc ro c β sthn eðsodo thcperistrefìmenhcpterôgwshceðnai arnhtik en h apìluth gwnða thcro cα sthn eðsodo thckinht c pterôgwshceðnai jetik. Sthn eidik perðptwsh pou ta dianôsmata eisìdou kai exìdou thcro csth bajmðda eðnai Ðdia V = V 3 Ðsa mètra kai α = α 3 ) h bajmðda onom zetai epanalhptik. EpÐshc, ìtan h tom tou sq matoc 4 gðnetai me kulindrik epif neia sônhjecgia polloôctôpouckajar axonik n sumpiest n) tìte U = U kai, sunep c, o deðkthc sto U mporeð na paraleifjeð. Tèloc, suqn h sqedðash miac bajmðdac axonikoô sumpiest gðnetai me stajer axonik taqôthta V a stic treic jèseic, kai 3. Epeid h stajer ) paroq m zac ṁ sundèetai me k je diatom A me th sqèsh ṁ = AρV a kai epeid h puknìthta aux nei apì thn eðsodo sthn èxodo enìc monob jmiou polub jmiou) axonikoô sumpiest eðnai profanèc ìti antðstoiqa mei netai h diatom tou. Sthn perðptwsh bajmðdac axonikoô sumpiest, ìpou h V a kai h U paramènoun stajerèc stic treðc qarakthristikèc jèseic, eðnai eôkolo na sqedi soume me koin koruf ta trðgwna taqut twn stic jèseic kai kai na parathr soume ìti sthn peristrefìmenh pterôgwsh epibradônetai h sqetik taqôthta W kai epitaqônetai h apìluth taqôthta V. Me antðstoiqh susqètish twn jèsewn kai 3 prokôptei h epibr dunsh thc apìluthc taqôthtac V sth stajer pterôgwsh. To sumpèrasma genikeôetai qwrðc, ìmwc, thn Ðdia epopteða, sqeta metoanisqôoun oi dôo parap nw periorismoð). H epibr dunsh thc apìluthc sqetik c, kat perðptwsh) ro c, qarakthristikì thc ro c se apoklðnontec agwgoôc diaqôtec, sundèetai me to tm ma thc an kthshc pðeshc se èna sumpiest pou den ofeðletai sthn prìsdosh enèrgeiac sto reustì apì ta peristrefìmena pterôgia. H di qush eðnai ènacshmantikìcpar gontac pou ephre zei thn poiìthta thcro csta pterôgia enìcsumpiest. Ena shmantikì posostì twn aerodunamik n apwlei n ektìcapì autècpou sqetðzontai me th qamènh kinhtik enèrgeia thcro csthn èxodo thcmhqan c) ofeðletai sth di qush pou dhmiourgoôn ta oriak str mata pou anaptôssontai sta stere toiq mata pterôgia kai kelôfh), kurðwc ìtan aut eðnai apokollhmmèna, èstw brðskontai se kat stash ètoimhc apokìllhshc. H apokìllhsh separation) sumbaðnei praktik ìtan sthn kurðwc ro dhmiourgeðtai mia isqur aôxhsh pðeshc, h opoða èqei wc apotèlesma th shmantik epibr dunsh tou oriakoô str matoc. An se k poio shmeðo p nw sto stereì toðqwma to oriakì str ma akinhtopoihjeð, tìte sun jwcsqhmatðzetai ènac strìbiloc sta kat nti tou idiìmorfou autoô shmeðou kai apì ekeð kai pèra up rqei èna tm ma thcro c, sth geitoni tou toiq matoc, pou antistrèfei th ro tou. H apokìllhsh thcro c dhmiourgeð mia nèa morf tou pedðou twn gramm n ro cse ekeðnh thn perioq, tropopoieð th diam kh klðsh pðeshcpou thn prok lese kai merikècforècodhgeð sthn epanakìllhsh reattachment) thc ro c se epìmeno shmeðo. 'Ena praktikì krit rio gia ton èlegqo thc epibr dunshc eðnai to krit rio de Haller. Autì upodeiknôei to an tato epitreptì ìrio epibr dunshc metaxô dôo jèsewn kai sto pedðo ro c, wc V /V kat perðptwsh) W /W 0, 7. Gia thn pterôgwsh tou sq matoc 6, to krit rio de 0

Haller apaiteð sthn kinht kai th stajer pterôgwsh, antðstoiqa, na isqôoun W /W 0, 7 V 3 /V 0, 7 H teleutaða sqèsh gr fetai kai wc V /V 0, 7 an h bajmðda eðnai epanalhptik. H jermodunamik metabol sth bajmðda tou axonikoô sumpiest, se di gramma entropðac - enjalpðac S h dðnetai epðshcsto sq ma 7. Oi ap leiecl.q. sth stajer pterôgwsh metaxô twn jèsewn kai 3) parist ntai eðte wcaôxhsh entropðacs 3 S wcpt sh olik c pðeshc p t p t3. To Je rhma Rop c thc Orm c je rhma tou Euler sticstrobilomhqanècefarmìzetai sthn peristrefìmenh pterôgwsh kai gr fetai wc h t h t = U V u U V u, gia stajer taqôthta peristrof c U h t h t = UV u V u ) An epiplèon eðnai stajer kai haxonik taqôthta V a stic jèseic kai, gr fetai kai h t h t = UV a tanα tanα ) isodônamo thcdiat rhshcthcsqetik c olik c enjalpðac h tr = h tr ). H teleutaða orðzetai wc h tr = h + W U 'Omoia, h peristrefìmenh olik enjalpða orðzetai wc h tr = h + W Gia asumpðestecroèc, h sqetik olik pðesh orðzetai wc kai h peristrefìmenh olik pðesh wc p tr = p + ρw ρu p tr = p + ρw Me b sh to je rhma tou Euler, h isqôc P miacperistrefìmenhcpterôgwshckai, ra, olìklhrhc thcbajmðdac) isoôtai me P = ṁh t h t )=ṁu V u U V u ) H isqôc pou prokôptei apì ton parap nw tôpo eðnai jetik.

ΠΕΡΙΣΤΡΕΦΟΜΕΝΗ ΠΤΕΡΥΓΩΣΗ ΑΚΙΝΗΤΗ ΠΤΕΡΥΓΩΣΗ V 3 α 3 α V W β U ΠΕΡΙΣΤΡΟΦΗ V α U β W ΘΕΣΗ ΘΕΣΗ ΘΕΣΗ ) ) 3) Sq ma 6: PterÔgwsh axonikoô sumpiest. h h h h / t / t3 / 3 V h 3 // p t p 3 p t3 V 3 h 3 p 3 h t = h t3 W h / h h t W U U p t V p h h t ht R = ht R3 s Sq ma 7: Jermodunamikì di gramma bajmðdac sumpiest.

Mia tupik pterôgwsh axonikoô strobðlou parousi zetai sto sq ma 9, mazð me to antðstoiqo jermodunamikì di gramma sto epðpedo S, h). To je rhma tou Euler mporeð na prosarmosjeð kai sthn perðptwsh bajmðdac strobðlou, wc P = ṁh t h t3 )=ṁu V u U 3 V u3 ) Ed, qrhsimopoi jhke skìpima h diafor thcexìdou apì thn eðsodo thcperistrefìmenhcpterôgwshc ste h prokôptousa isqôcna èqei p li jetikì prìshmo. Parìlo pou, kai sticdôo peript seic, h diatôpwsh od ghse se jetik isqô, sto sumpiest dðnetai enèrgeia sto reustì en sto strìbilo afaireðtai enèrgeia apì to reustì. Me th bo jeia twn jermodunamik n diagramm twn, orðzetai o isentropikìc bajmìc apìdoshc bajmðdac sumpiest isentropic efficiency) bajmìc apìdoshc olikèc -proc -olikèc. Autìc ekfr zei posotik to lìgo tou èrgou pou ja prosel mbane to ergazìmeno mèso apì ta kinht pterôgia se mia idanik diergasða qwrðc ap leiec, proc to èrgo pou sthn pragmatikìthta proslamb nei, ètsi ste kai stic duo peript seic va pragmatopoi sei th sugkekrimènh sumpðesh, apì tic arqikèc olikèc sunj kec T t,p t ) stic telikèc T t3,p t3 ). η is,c = η t t,c = h/ t3 h t h t3 h t ìpou to shmeðo 3 / orðzetai sto sq ma 7 kai eðnai isentropik metabol ) T / t3 = p γ t3 γ T t p t γ γ = πc H posìthta π C > orðzetai wc lìgoc pðeshc tou sumpiest pressure ratio). O bajmìc apìdoshc olikèc -proc -statikèc miac bajmðdac sumpiest orðzetai wc η t s,c = h/ 3 h t h t h t H diafor sth fusik shmasða twn dôo bajm n apìdoshc ègkeitai sth diaforetik fiqr simhfl olik pðesh exìdou. H fiqr simhfi pðesh exìdou mporeð na eðnai eðte h olik eðte h statik pðesh. Kai oi dôo bajmoð apìdoshc qrhsimopoioôn thn olik kat stash sthn eðsodo thc ro c. H metaxô touc diafor epikentr netai sto an ja qrhsimopoihjeð h olik h statik kat stash sthn èxodo tou sumpiest. Prèpei na tonisjeð ìti den up rqei fiswstìc fl orismìc tou isentropikoô bajmoô apìdoshc, all fikat llhloc fl, an loga me to prìblhma pou analôoume. Otan h kinhtik enèrgeia sthn èxodo qrhsimopoieðtai me opoiond pote trìpo) sth sunolik diergasða, tìte eðnai perissìtero antiproswpeutikì na qrhsimopoieðtai h olik kat stash sthn èxodo kai kat sunèpeia o η t t,c. Otan ìmwc hkinhtik enèrgeia sthn èxodo q netai, tìte protim tai na qrhsimopoieðtai o η t s,c Gia ro teleðou aerðou h t = C p T t, h = C p T, C p = stajerì), o η t t,c gr fetai kai wcsun rthsh twn jermokrasi n: η is,c = η t t,c = T / t3 T t T t3 T t O isentropikìc bajmìc apìdoshc bajmìc apìdoshc olikèc -proc -olikèc miac bajmðdac strobðlou ekfr zei to lìgo tou èrgou pou dðnei to pragmatikì reustì sthn trakto proc thn antðstoiqh posìthta gia mia idanik ro qwrðc ap leiec) me thn Ðdia olik pðesh sthn èxodo. EÐnai η is,t = η t t,t = h/ t h t3 h t h / t3 3

η is,t = η t t,t = T / t T t3 T t T / t3 ìpou to shmeðo 3 / orðzetai sto sq ma 9 kai eðnai isentropik metabol ) T / t3 = p γ t3 γ T t p t = π T ) γ γ H posìthta π T > orðzetai wc lìgoc pðeshc tou strobðlou. 4

ΑΚΙΝΗΤΗ ΠΤΕΡΥΓΩΣΗ ΠΕΡΙΣΤΡΕΦΟΜΕΝΗ ΠΤΕΡΥΓΩΣΗ V U V α ΠΕΡΙΣΤΡΟΦΗ α 3 V 3 W β 3 W 3 β U 3 ΘΕΣΗ ) ΘΕΣΗ ) ΘΕΣΗ 3) h h / t p t Sq ma 8: PterÔgwsh axonikoô strìbilou. pt p ht = ht V h V / h p h h t W U U 3 W 3 h / t3 h / / 3 3 p t3 p 3 V 3 h t3 htr = h R3 h h 3 / 3 t s Sq ma 9: Jermodunamikì di gramma bajmðdac strìbilou. 5

3 Polutropik Metabol Oisentropikìcbajmìcapìdoshcgia sumpiest strìbilo parousi zei èna shmantikì meionèkthma ìtan prìkeitai na qrhsimopoihjeð gia to qarakthrismì thc poiìthtac tou aerodunamikoô sqediasmoô miac strobilomhqan c. To meionèkthma autì sqetðzetai me thn adunamða tou isentropikoô bajmoô apìdoshcna problèyei mesa ticap leiecoi opoðeclamb noun q ra se mia strobilomhqan pou leitourgeð se diaforetikèc sunj kec ro c. To prìblhma sundèetai me th morf pou èqoun oi isìjliptec sto di gramma S, h), en majhmatik entopðzetai sto gegonìc ìti o isentropikìc bajmìc apìdoshc miac strobilomhqan c sundèetai afenìc men me to lìgo pðeshc kai afetèrou me tic ap leiec thcmhqan ckai ìqi mìno me tic teleutaðec ìpwc ja tan epijumhtì. Opolutropikìcbajmìcapìdoshcèqei skopì na kalôyei to meionèkthma autì kai na apotelèsei mètro thc poiìthtac tou aerojermodunamikoô sqediasmoô thc mhqan c. Ena praktikì par deigma bohj katarq sthn katanìhsh thc an gkhc orismoô tou polutropikoô bajmoô apìdoshc η p,c. Estw monob jmioc sumpiest c me gnwstì η is,c. Sundu zontac merikèc ìmoiec tètoiec bajmðdec, sqhmatðzoume èna polub jmio sumpiest, tou opoðou ìmwc o η is,c genik prokôptei shmantik mikrìteroc tou antðstoiqou bajmoô miac bajmðdac. O η p,c epitrèpei mia koin ektðmhsh gia thn poiìthta sqediasmoô tou monob jmiou kai tou polub jmiou sumpiest, diathr ntac thn Ðdia tim kai gia ticduo peript seic. H tim aut ja apoteleð mètro thcpoiìthtactou aerojermodunamikoô sqediasmoô twn bajmðdwn kai tou polub jmiou sumpiest. 3. Se Sumpiest ): p T t γ γη p,c t Gia ton polutropikì ekjèth n isqôei: = const. T t T t = pt p t ) n n n n = γ γη pc n = γ γη p,c Gia ton polutropikì bajmì apìdoshc η p,c sumpiest isqôei ìti η p,c η is,c me: η is,c = η t t,c = T / t T t T t T t = π C π C = p t p t = 3. Se Strìbilo ): π n n γ γ C +η is,c Tt T t )) γ γ p T t γ γ η p,t t Gia ton polutropikì ekjèth n isqôei: = const. T t T t = pt p t ) n n n n = γ γ η p T n = γ η γ p,t 6

Gia ton polutropikì bajmì apìdoshc η p,t strobðlou isqôei ìti η p,t η is,t me: 4 AgwgoÐ 4. AkrofÔsia : η is,t = η t t,t = T t T t T t T / t η is,t π T = p t p t = = /π T ) n n /π T ) γ γ T t T t Isentropikìc bajmìc apìdoshc statikèc -proc -statikèc sunj kec: η s s,n = h h h h / Isentropikìc bajmìc apìdoshc olikèc -proc -statikèc sunj kec: 4. DiaqÔtec : η t s,n = h t h h t h / Isentropikìc bajmìc apìdoshc statikèc -proc -statikèc sunj kec: )) γ γ η s s,d = h/ h h h Gia asumpðesto-atribèc reustì, apodeiknôetai ìti: η s s,d = + p t p t p p Isentropikìc bajmìc apìdoshc statikèc -proc -olikèc sunj kec: η s t,d = h/ t h h t h 4.3 Suntelest c An kthshc PÐeshc se DiaqÔth : O Suntelest can kthshcpðeshcorðzetai wc C pr = p p p t p kai gia asumpðesth-atrib ro gr fetai kai wc C pr = V /V ). O Jewrhtikìc Suntelest c An kthshc PÐeshc orðzetai wc C pr,th = V /V ) qwrðc proôpojèseic. Stic asumpðestecroèceðnai η s s,d = C pr /C pr,th. 5 Axonikìc Sumpiest c AnalÔontai, me perissìterh leptomèreia monob jmioi axonikoð sumpiestèc kai susqetðzontai jermodunamik kai kinhmatik megèjh touc. Skopìc thc an lushc eðnai h majhmatik diatôpwsh thc susqètishc metaxô twn gewmetrik n stoiqeðwn enìc sumpiest kai thc jermodunamik c metabol c 7

tou ergazìmenou mèsou. Parousi zontai qarakthristikèc kampôlec leitourgðac monob jmiwn polub jmiwn axonik n sumpiest n kai oi adi statec par metroi pou qrhsimopoioôntai gia thn perigraf thc leitourgðac touc. Tèloc, analôontai fainìmena astajoôc leitourgðac peristrofik apokìllhsh kai p lmwsh) pou emfanðzontai stouc axonikoôc sumpiestèc. H perigraf thc leitourgðac miac bajmðdac axonikoô sumpiest gðnetai qrhsimopoi ntac treic qarakthristikèc adi statec paramètrouc, epiplèon tou bajmoô apìdoshc. Autèc oi par metroi perigr foun tìso thn fiexwterik fl sumperifor thc bajmðdac dhlad ta stoiqeða leitourgðac thc, qwrðc gn sh stoiqeðwn gia thn fieswterik fl dom thc) all kai th di taxh twn pterug se n thc. Ta dôo basik stoiqeða ta opoða sqetðzontai me thn epðdosh miacbajmðdacsumpiest eðnai h paroq m zac pou anarrof kai h aôxhsh olik c enjalpðac pou prokaleð sto ergazìmeno mèso. 5. Par gontec pou Ephre zoun to Lìgo PÐeshc AxonikoÔ Sumpiest : To gegonìc ìti h ro sto sumpiest eðnai epibradunìmenh, tìso stic kinhtèc h sqetik ro ) ìso kai sticstajerèch apìluth ro ) pterug seic, epib llei orismèna ìriastolìgo pðeshcpou mporeð na petôqei mia axonik bajmðda. H mègisth tim pou èqei epiteuqjeð s mera eðnai thc t xhc tou, en mia sun jhc bajmðda uyhl n epidìsewn èqei lìgo pðeshc thc t xhc tou.4 èwc.6. Me autì to dedomèno, eðnai profanèc ìti gia uyhloôc lìgouc pðeshc eðnai aparaðthto na qrhsimopoihjoôn pollèc diadoqikèc bajmðdec, pou ja diamorf soun èna polub jmio axonikì sumpiest. Se antðjesh me to strìbilo, ìpou h ro stic pterug seic eðnai epitaqunìmenh mia bajmðda axonikoô sumpiest dðnei polô mikrìterouc lìgouc pðeshc. Kat sunèpeia, gia ton Ðdio lìgo pðeshc, ènac polub jmioc strìbiloc èqei p nta ligìterec bajmðdec apì èna sumpiest. Autì sunant tai l.q. stouc biomhqanikoôc aeriostrobðlouc kai touc aeroporikoôc kinht rec. Mia deôterh sunèpeia thcepibradunìmenhcro c, eðnai h meg lh euaisjhsða twn sumpiest n se allagèctwn sunjhk n leitourgðactouc. H emf nish apokìllhshcthcro cmporeð na odhg sei se fainìmena astajoôc leitourgðac tou sumpiest ta opoða eðnai katastreptik gi autìn. Ta fainìmena aut periorðzoun thn perioq asfaloôc leitourgðac twn sumpiest n. Apì thn llh pleur, epeid h epibr dunsh eunoeð thn an ptuxh oriak n strwm twn kai sunep caôxhsh apwlei n, k je allag tou shmeðou leitourgðac enìc sumpiest sunodeôetai apì allag thcapìdos ctouc. Etsi èqoume sun jwcsqetik stenècperioqèc leitourgðac tou sumpiest pou antistoiqoôn sth mègisth apìdos tou. Apì th sqèsh pou prohgoumènwc diatup jhke gia mia pterôgwsh sumpiest, me tic paradoqèc stajer c U kai V a, h t h t = UV a tanα tanα ) anagnwrðzoume touckôrioucpar gontecme toucopoðoucmporeð na megistopoihjeð h aôxhsh enjalpðac kai, sunep clìgou pðeshc, se mia bajmðda axonikoô sumpiest. Aut eðnai h Me aôxhsh thctaqôthtac peristrof c U, pou mporeð na prokôyei apì aôxhsh thcaktðnac twn strof n. H taqôthta peristrof cde mporeð ìmwcna aux netai aperiìrista giatð ephre - zei mesa tict seicpou anaptôssontai sta pterôgia kai toucdðskouclìgw thcfugokèntrou dun mewc pou askeðtai se aut. Oi t seic autèc den prèpei na xepernoôn ta ìria antoq c pou kajorðzontai apì ta ulik twn tmhm twn aut n. Shmei netai ìti to perissìtero fortismèno shmeðo enìc pterugðou eðnai to pìdi, ìpou sumbaðnei h mègisth efelkustik t sh lìgw fugokentrik c fìrtishc tou pterugðou, 8

Me aôxhsh thcaxonik ctaqôthtac V a. HepijumÐa gia aôxhsh thcaxonik ctaqôthtacse mia bajmðda upagoreôetai ìqi mìno apì thn epijumða aôxhshctou lìgoucpðeshcall kai apì thn epijumða aôxhshc thc sugkèntrwshc isqôoc, pou epitugq netai me thn aôxhsh thc paroq c pou anarrof h sugkekrimènh mhqan. H aôxhsh thc axonik c taqôthtac periorðzetai ìmwc apì aerodunamikoôc lìgouckai eidikìtera apì to gegonìcìti o arijmìc Mach sqetik me ta pterôgia den prèpei na xepern orismèna ìria giatð alli caux nontai upèrmetra oi ap leiec, me antðstoiqh pt sh tou bajmoô apìdoshc. EÔkola mporeð na dei kaneðc ìti sthn eðsodo miac bajmðdac sumpiest o mègistoc arijmìc Mach sqetik me ta peristrefìmena pterôgia sumbaðnei sthn kefal touc, ìpou antistoiqeð kai hmègisth aktðna. Me aôxhsh thc strof c thc ro c tanα tanα ). mègisthc epibr dunshc krit rio de Haller). Aut fr ssetai apì to krit rio thc 5. Suntelest c Paroq c: To diastatikì) mègejoc thc paroq c m zac pou anarrof mia bajmðda qarakthrðzetai apì to suntelest paroq c flow coefficient, adi statoc) Φ pou orðzetai apì th sqèsh Φ= V a U An U =staj. kai V a =staj. se k je jèsh i =,, 3 eðnai Φ= V a,i U i = 5.3 Suntelest c Fìrtishc: V a,i V u,i W u,i = tanα i tanβ i To mègejoc thc enjalpik c diafor c pou dhmiourgeð h bajmðda ekfr zetai apì ton adi stato) suntelest fìrtishc thc bajmðdac stage loading coefficient) Ψ pou orðzetai apì th sqèsh Ψ= h t U = h t h t U An U =staj. kai V a =staj. me to je rhma tou Euler prokôptei ìti EpÐshc, eðnai Ψ = h t h t U = UV u V u ) = V a U U V u V u ) V a = Φ W u + U V u ) V a = +Φtanβ tanα ) Ψ=Φtanβ tanβ ) 9

5.4 Isentropikìc Suntelest c Fìrtishc: Ψ is = h t,is U = η is,c Ψ 5.5 Bajmìc AntÐdrashc: Oi par metroi Φ kai Ψ dðnoun mia eikìna thc leitourgðac thc bajmðdac all den parèqoun kanèna stoiqeðo gia thn eswterik dom thc. Tètoia plhroforða parèqei mia trðth par metroc, o bajmìc antðdrashc thc bajmðdac reaction) r, pouorðzetai wc r = h h h 3 h, r = T T T 3 T C p = const.) kai ekfr zei to posostì thc aôxhshc thc statik c enjalpðac pou pragmatopoieðtai mèsa sthn kinht pterôgwsh, se sqèsh me th sunolik aôxhsh statik c enjalpðac se olìklhrh th bajmðda tou sumpiest. An U =staj. kai V a =staj. kai epanalhptik bajmðda r = W W UV u V u ) = V u + V u U = Φ tanα + tanα ) = Φ tanα + tanβ ) 5.6 Jewrhtikìc Bajmìc AntÐdrashc: OrÐzetai se mia opoiad pote bajmðda sqetametoanisqôoun oi paradoqèc U =staj. kai V a =staj., wc r th = V u + V u U 5.7 EpÐlush Trig nwn Taqut twn AxonikoÔ Sumpiest : An U =staj. kai V a =staj. kai epanalhptik bajmðda isqôoun oi sqèseic V u U = r Ψ W u U = r Ψ,, V u U = r + Ψ, W u U = r + Ψ V U = V 3 U = V U = W U = W U = Φ + r Ψ ), Φ + r + Ψ ), Φ + r Ψ ), Φ + r + Ψ ) 0

5.8 GwnÐec Apìklishc thc Ro c: tanα = tanα 3 = Φ r Ψ ), tanα = Φ r + Ψ ), tanβ = Φ r Ψ ), tanβ = Φ r + Ψ ) ) β β = tan ΨΦ Φ + r Ψ 4 ) α α 3 = tan ΨΦ Φ + r) Ψ 4 5.9 Jewrhtik Adi stath Qarakthristik AxonikoÔ Sumpiest : Sticsunj kecleitourgðacgia ticopoðecsqedi sjhke mia bajmðda, oi gwnðecthcro cèqoun mègejoc polô kont sticantðstoiqectimèctwn gewmetrik n gwni n twn pterugðwn, sq ma 0. 'Etsi, h gwnða eisìdou thc ro c β sthn peristrefìmenh pterôgwsh eðnai polô kont sth proseggistik isoôtai me th) gwnða met llou β / sthn akm prosbol c tou antðstoiqou pterugðou. Ta pterôgia odhgoôn polô ikanopoihtik th ro ra h h gwnða exìdou thc ro c β apì thn peristrefìmenh pterôgwsh eðnai polô kont sth gwnða met llou β / sthn akm ekfug ctou antðstoiqou pterugðou kai h gwnða exìdou thcro cα 3 apì th stajer pterôgwsh eðnai polô kont sth gwnða met llou α / 3 sthn akm ekfug c tou stajeroô pterugðou. ΛΕΙΤΟΥΡΓΙΑ ΣΤΟ ΣΗΜΕΙΟ ΣΧΕ ΙΑΣΗΣ ΛΕΙΤΟΥΡΓΙΑ ΕΚΤΟΣ ΣΗΜΕΙΟΥ ΣΧΕ ΙΑΣΗΣ W W W Sq ma 0: LeitourgÐa pterôgwshc sumpiest sto shmeðo sqedðashc design point) kaileitourgða ektìc shmeðou sqedðashc off design). Me thn teleutaða parat rhsh, hsqèsh Ψ=+Φtanβ tanα )

sto shmeðo sqedðashckai gia logikècallagècshmeðou leitourgðacgôrw apì autì) gr fetai apl wc Ψ= Φt ìpou t eðnai mia stajer gia touc parap nw lìgouc), jetik deðte to prìshmo k je gwnðac) posìthta. H sqèsh metaxô Φ kai Ψ eðnai tìte grammik bl. genik grafik par stash tou sq matoc ), me sugkekrimènh klðsh ta Φ kai Ψ metab llontai me trìpo antistrìfwc an logo), ìpwc apeikonðzei kai h jewrhtik qarakthristik tou sq matoc. H susqètish Φ kai Ψ eðnai monadik gia mia sugkekrimènh bajmðda kai den exart tai apì ton arijmì Mach thc ro c, ton arijmì Reynolds thcro cdhlad metabolècsto mègejoctou montèlou allagècsto ergazìmeno mèso) kai ticstrofèc. To Ðdio isqôei kai gia th monadikìthta thckampôlhcpou susqetðzei to η is,c kai to Φ. EÐnai polô shmantikì ìti oi monadikèc kampôlec tou sq matoc den sunart ntai twn strof n. t= 0.5 Ψ.0 t=0 0.5 t=.0 t=0.5 0.5.0 Φ Sq ma : Genik parametrik susqètish Φ kai Ψ, me eleôjerh par metro thn ousiastik gewmetrik upologizìmenh posìthta) t. ShmasÐa èqei h katanìhsh tou poi apì tic parousiazìmenec eujeðec antistoiqeð se sumpiest. An d) sumbolðzei leitourgða sto shmeðo sqedðashc en oi qwrðc deðkth posìthtec aforoôn k poio llo shmeðo leitourgðac, isqôei Ψ = +Φt Ψ d = +Φ d t opìte, apaleðfontac to t, prokôptei h sqèsh Ψ Ψ d = Ψ d + Φ Φ d Ψ d ) an kai mìno an tanα tanβ = stajerì gia fllogikècfl allagèctou shmeðou leitourgðac, sq ma 3. H shmasða thc tim ctou suntelest fìrtishc Φ d faðnetai sto sq ma 4.

Ψ ΑΠΛΟΠΟΙΗΜΕΝΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΠΡΑΓΜΑΤΙΚΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ η ΚΑΜΠΥΛΗ ΒΑΘΜΟΥ ΑΠΟ ΟΣΗΣ Φ d Φ Sq ma : Aplopoihmènh eujeða) kai pragmatik kampôlh) qarakthristik sto epðpedo Φ, Ψ) miac bajmðdac axonikoô sumpiest. Sto Ðdio sq ma apeikonðzetai kai h kampôlh tou isentropikoô bajmoô apìdoshc. Ψ Ψ d 3.0.0 Ψ =/3 d.0 =.0 Ψ d Ψ =/ d.0.5.0 ΦΦ d Sq ma 3: EpÐdrash thc tim c tou suntelest fìrtishc sto shmeðo sqedðashc Ψ d sthn aplopoihmènh qarakthristik bajmðdac axonikoô sumpiest. 5.0 LeitourgÐa se flsunj kec Anafor c fl: H leitourgða thc bajmðdac se sunj kec anafor c shmaðnei ìti ergazìmeno mèso eðnai o aèrac jewreðtai tèleio aèrio stouc upologismoôc, γ =, 4, C p = 004, 6m /s KR= 87, 03m /s K) 3

W V β α U W β α V U W β α V U ΜΙΚΡΟ Φ ΜΕΤΡΙΟ Φ ΜΕΓΑΛΟ Φ d d d Sq ma 4: H shmasða thc tim c tou suntelest fìrtishc Φ d sto shmeðo sqedðashc kai h antðstoiqh morf twn pterugðwn. kai ìti autì brðsketai stic olikèc sunj kec p t =, 033 0 5 Pa, T t = 88K. Stic sunj kec autèc, h taqôthta tou qou gia kat stash anakop cupologismìcme olik jermodunamik meg jh) eðnai γrt t = 340m/s. 'Otan mia bajmðda leitourgeð se llecsunj kec llo set tim n T t kai p t ), oi nèecsunj kec leitourgðac sqetðzontai me autèc twn sunjhk n anafor c mèsw twn posot twn ϑ aki δ: γrtt ϑ = 340m/s p t δ =, 033 0 5 Pa 5. Qarakthristikèc LeitourgÐac: Gia lìgouc bolikìthtac, orðzetai enallaktik o adi statoc suntelest c paroq c Φ o deðkthc apl sumbolðzei th jèsh sth bajmðda ìpou orðzetai o suntelest cautìc) wc ṁ Φ = ρ A U Ston parap nw orismì, antikajðstatai h statik me thn olik puknìthta paradoq!!!) kai prokôptei Φ = ṁ ρ t A U Me peraitèrw an ptuxh katastik exðswsh) prokôptei ìti γrtt U ṁ = γφ A p t γrtt H teleutaða sqèsh parousi zei th grammik susqètish thcposìthtac ṁ T t p t anhgmènh paroq ) me to suntelest paroq c Φ. O suntelest cthcgrammik caut csqèshcsunart tai twn stajer n tou aerðou γ, R), gewmetrik n megej n aktðneckai diatomèc) kai twn strof n. Gia th susqètish, N ja qrhsimopoioôntai oi anhgmènec strofèc Tt U, posìthta pou eðnai fikrummènhfl ston ìro γrtt. Qrhsimopoi ntac thn isentropik sqèsh, apodeiknôetai eôkola ìti ) p t3 γ )U γ γ = +Ψ is, p t a t 4

ìpou a t = γrt t eðnai h taqôthtatou qou sticsunj kecanakop c, Ψ is, = h t,is. H sqèsh aut U sundèei to lìgo pðeshc π C tou sumpiest me ticstajerèctou aerðou, ta gewmetrik qarakthristik N Tt. thc bajmðdac, ton isentropikì suntelest fìrtishc Ψ is, kai tic anhgmènec strofèc Se antðjesh me th sqèsh thc paroq c, h sqèsh aut thcfìrtishc eðnai mh grammik. Apì ticparap nw sqèseicgia thn anhgmènh paroq kai th fìrtish, an to ergazìmeno mèso kai oi gewmetrða jewrhjoôn gnwst kai dedomèna, prokôptei mia dipl susqètish thcmorf c ṁ Tt p t = F m N Tt, Φ ) π C = F p N Tt, Ψ is, ) H monadikìthta thc kampôlhc Φ, Ψ) èqei parousiasjeð, sq ma. Autì shmaðnei ìti, dðnontac timècsthn eleôjerh par metro N Tt, prokôptei to pedðo qarakthristik n enìcaxonikoô sumpiest, sq ma 5. Mia leptomèreia kampôlhcstajer n anhgmènwn strof n apì to q rth leitourgðacenìc axonikoô sumpiest faðnetai sto sq ma 6. Sq ma 5: PedÐo qarakthristik n enìc axonikoô sumpiest. DiakrÐnontai kampôlec stajer n anhgmènwn strof n, kampôlec stajeroô isentropikoô bajmoô apìdoshc kai h gramm p lmwshc pou oriojeteð thn perioq eustajoôc leitourgðac tou sumpiest. Arister kai dexi parousi zontai dôo dunatoð trìpoi parousðashc. Dedomènou tou ìti up rqei monos manth susqètish isentropikoô bajmoô apìdoshc η is,c kai tim n twn Φ kai Ψ, to Ðdio, Ψ is, ), basik parat rhsh eðnai ìti se k je allag shmeðou leitourgðac thcbajmðdac, lìgw allag cstrof n, pou diathreð stajerì η is,c, diathroôntai stajerèc 5

W π c V U W U Β V Α W Γ V U N θ =σταθερο Sq ma 6: Leptomèreia miac kampôlhc stajer n anhgmènwn strof n apì to q rth leitourgðac enìc axonikoô sumpiest. kai oi timèc twn Φ kai Ψ Ψ is, ). H basikìtath aut parat rhsh dièpei thn omoiìthta sth leitourgða stic strobilomhqanèc. 5. LeitourgÐa se TuqaÐo ShmeÐo kai stic Sunj kec Anafor c me Ðdio Isentropikì Bajmì Apìdoshc: Dièpetai apì th diat rhsh tou Φ, dhlad ṁ ϑ δ γ ϑ N = ṁ ref, 4 N ref m θ δ kai th diat rhsh tou Ψ, dhlad ) ) N γ γ γ ) πc ) = Nref, 4 ) ) π 3,5 C,ref ϑ ) ste na diathreðtai kai o isentropikìc bajmìc apìdoshc. Oi dôo teleutaðec sqèseic deðqnoun ìti up rqei eleujerða sth susqètish tim n tou zeôgouc ṁ ϑ,π δ C ) kai tou zeôgouc ṁ ref,π C,ref ) me par metro th sqèsh strof n N ϑ kai N ref. 5.3 AntÐstoiqa ShmeÐa LeitourgÐac : HleitourgÐa se antðstoiqa shmeða metaxô dôo katast sewn proôpojètei to fikleðsimofl thcparap nw apeirðac, desmeôontac tic strofèc ste N ref = N/ ϑ 6

opìte kai π C,ref = ṁ ref = ṁ ϑ δ, 4 γ + 0, 4 γ γ π γ C ) ) 3,5 Sthn perðptwsh pou kai sto deôtero plhn twn sunjhk n anafor c) shmeðo leitourgðac to ergazìmeno mèso eðnai aèrac, oi parap nw sqèseic aplopoioôntai sth morf kai ṁ ref = ṁ ϑ δ π C,ref = π C 5.4 PerÐ AstajoÔc LeitourgÐac Sumpiest : Ta fainìmena pou emfanðzontai ìtan to shmeðo leitourgðac tou sumpiest ft sei sta ìria thc gramm c p lmwshc surge line) eðnai dôo eid n: peristrofik apokìllhsh rotating stall) kai p lmwsh surge). Sthn peristrofik apokìllhsh èqoume an ptuxh kuyel n apokollhmènhc ro c pou peristrèfontai perifereiak me taqôthta mikrìterh thctaqôthtacperistrof ctou xona sun jwcmetaxô 0.3U kai 0.5U kai me thn Ðdia for peristrof c. Kaj coi apokollhmèneckuyèlecden katalamb - noun ìlh th daktulioeid diatom all kinoôntai me èna posostì mìno thctaqôthtac peristrof c tou xona, thn perifereiak touckðnhsh antilamb nontai kai h stajer kai h kinht pterôgwsh tou sumpiest, o kajènac sto dikì tou sôsthma anafor c. Gia to lìgo autì, h peristrofik apokìllhsh prokaleð talant seickai sticdôo autècpterug seic, pou se mhqanèc uyhl c taqôthtaceðnai katastreptikèc. En mporoôme na èqoume topik antistrof thcro cse èna mèrocthcperifèreiac tou sumpiest, h sunolik paroq paramènei jetik. Elatt nontacthn paroq m zacpou diarrèei to sumpiest se timèc qamhlìterec tou shmeðou sqedðashc, h peristrofik apokìllhsh emfanðzetai arqik sun jwc wc fimerik apokìllhshfl, dhmiourg ntac èna polô mikrì arijmì kuyel n pou katalamb noun mikrì tm ma thc diatom c. K je epiplèon el ttwsh thc paroq c m zac, prokaleð aôxhsh tou arijmoô twn peristrefìmenwn kuyel n, en mei netai o lìgoc pðeshc tou sumpiest. Gia mia sugkekrimènh qamhl tim tou suntelest paroq csumbaðnei h met bash se fipl rh apokìllhshfl, kat thn opoða h ro sta pterôgia eðnai apokollhmènh se ìlo toucto Ôyoc, en tautìqrona elatt netai akìma perissìtero o lìgoc pðeshc. An epiqeirhjeð h aôxhsh xan thc paroq c tou sumpiest, h kat stash thc fimerik c apokìllhshc fl mporeð na epanèljei, all autì ja sumbeð se uyhlìterh paroq apì aut sthn opoða ègine prohgoômena h met bash se fipl rh apokìllhshfl. Sto sq ma 7 sqedi zetai h epanafor aut sth morf enìc brìqou ustèrhshc. O arijmìc twn kuyel n apokìllhshc mporeð na diafèrei an loga me to sumpiest, ìmwc se polub jmiouc sumpiestèc uyhl n taqut twn sun jwcemfanðzetai mia mìno kuyèlh. Mia fusik ermhneða thc emf nishc tou fainomènou thc peristrofik c apokìllhshc faðnetai sto sq ma 8. To sq ma autì deðqnei ìti an emfanisjeð apokìllhsh se èna memonwmèno pterôgio 7

A, h apokìllhsh aut ja ephre sei ta geitonik pterôgia. To pterôgio B pou brðsketai sthn amèswc epìmenh jèsh apì thn pleur upopðeshc ja deqjeð th ro me megalôterh gwnða prìsptwshc. AntÐjeta, to geitonikì pterôgio Γ proc thn pleur uperpðeshcja leitourg sei me mikrìterh gwnða prìsptwshc. H aôxhsh thc gwnðac prìsptwshc sto pterôgio B prokaleð se autì apokìllhsh. H apokìllhsh aut èqei wc apotèlesma th meðwsh thc gwnða prìsptwshc sto A ìpwc sunèbaine to pterôgio Γ lìgw thc apokìllhshc tou A). H meðwsh thc gwnðac prìsptwshc odhgeð se epanakìllhsh thc ro c sto pterôgio A. Blèpoume loipìn ìti h apokìllhsh sto pterôgio A ousiastik metakin jhke sto pterôgio B apì ìpou ja suneqðsei th metakðnhsh me ton Ðdio trìpo. Autì shmaðnei ìti anaptôssetai mia peristrefìmenh apokìllhsh, ìtan h pterôgwsh eðnai diatetagmènh se mia kulindrik epif neia, dhlad eðnai perifereiak. Ψ Α) Α) ΚΥΨΕΛΕΣ ΑΠΟΚΟΛΛΗΣΗΣ ΜΕΡΙΚΟΥ ΥΨΟΥΣ Φ Ψ Β) Β) ΚΥΨΕΛΗ ΑΠΟΚΟΛΛΗΣΗΣ ΠΛΗΡΟΥΣ ΥΨΟΥΣ Φ Sq ma 7: Sqhmatik par stash thc peristrofik c apokìllhshc kai antðstoiqh morf twn qarakthristik n Φ, Ψ). Sthn p lmwsh èqoume sunolikèc talant seic thc ro c dia mèsou tou daktulioeidoôc agwgoô tou sumpiest ìpwc faðnetai sto sq ma 9. Parìla aut, h ro mporeð na paramènei summetrik gôrw apì thn perifèreia tou sumpiest. Etsi èqoume gia mèroc tou qrìnou ro apì thn eðsodo procthn èxodo tou sumpiest kai gia mèroctou qrìnou to antðstrofo. H periodik aut metabol èqei suqnìthtec polô mikrìterec apì autèc thc peristrofik c apokìllhshc. Oi suqnìthtec autèc de sqetðzontai mìno me ta qarakthristik tou Ðdiou tou sumpiest all kai tou kukl matoc me to opoðo eðnai sundedemènoc. Kai oi duo tôpoi astajoôc leitourgðac eðnai anepijômhtoi, giatð sundèontai me mia shmantik pt sh tou bajmoô apìdoshckai emf nish periodik n fainomènwn pou prokaloôn kataskeuastikèc talant seic. H pt sh thcapìdoshcsthn peristrofik apokìllhsh se sumpiestècuyhl ctaqôthtacsunodeôetai apì meg lecaux seicjermokrasðac, pou sunduazìmenecme tic talant seicmporeð na odhg soun se olosqer katastrof tou sumpiest. Apì thn llh meri, h anastrof thcro c pou parathreðtai sthn p lmwsh, ìtan o sumpiest c akoloujeðtai apì j lamo kaôsewc se mikr apìstash, mporeð na odhg sei se anarrìfhsh thc flìgac me pijanì apotèlesma thn katastrof tou sumpiest. Tèloc, se fusht rec me mikroôc lìgoucpðeshckai arijmoôcstrof n, eðnai dunat h leitourgða touc sthn perioq astajoôc leitourgðac, me meiwmènec bèbaia epidìseic, all qwrðc kðnduno katastrof c. 8

Β ΠΤΕΡΥΓΙΟ ΜΕ ΜΕΓΑΛΥΤΕΡΗ ΓΩΝΙΑ ΠΡΟΣΠΤ Α ΠΤΕΡΥΓΙΟ ΜΕ ΑΠΟΚΟΛΛΗΣΗ Γ ΠΤΕΡΥΓΙΟ ΜΕ ΜΙΚΡΟΤΕΡΗ ΓΩΝΙΑ ΠΡΟΣΠΤ Sq ma 8: Fusik ermhneða thc emf nishc tou fainomènou thc peristrofik c apokìllhshc. ΑΞΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΤΗΣ ΡΟΗΣ Sq ma 9: Axonik tal ntwsh thc ro c lìgw p lmwshc. EÐnai dunatì na problefjeð h sumperifor enìcsumpiest apì th stigm pou to shmeðo leitourgðactou diasqðsei to ìrio eustajoôcleitourgðacprocthn perioq thcastajoôcleitourgðac), kai m lista na brejeð kat pìso ja èqoume p lmwsh peristrofik apokìllhsh. To poiì apì ta duo fainìmena ja sumbeð kajorðzetai apì thn tim miacparamètrou B, pou lègetai par metroctou 9

Greitzer. H par metroc aut orðzetai wc ex c ìpou ω H = a A L C V B = U ω H L C U = perifereiak taqôthta sth mèsh gramm, a = taqôthta qou, A = diatom agwgoô, L C = m koc agwgoô, V = ìgkoc trofodotoômenou jal mou). An B>0, 7 tìte èqoume p lmwsh, alloi c peristrofik apokìllhsh. 6 Axonikìc Strìbiloc O rìloctou strobðlou sunðstatai sthn afaðresh enèrgeiacpou metafèrei to ergazìmeno mèso, thn opoða kai metafèrei wcenèrgeia peristrof cston xona thcmhqan c. O strìbiloc, wc mia apì tic sunist secmiacjermik cstrobilomhqan c, ekmetalleôetai thn uyhl jermokrasða kai pðesh me thn opoða eisèrqetai to ergazìmeno mèso ston aeriostrìbilo l.q., o strìbiloc dèqetai ta kausaèria pou exèrqontai apì to j lamo kaôshc se epðpeda jermokrasi n perðpou 850 o C me 700 o C) to opoðo apoton nei se qamhlìterh pðesh kai jermokrasða. Sunèpeia twn uyhl n jermokrasi n me tic opoðec eisèrqetai to ergazìmeno mèso eðnai h an ptuxh isqur n jermik n t sewn sta pterôgia tou strobðlou. H apìdosh mèrouc) thc enèrgeiac tou ergazìmenou mèsou ston xona tou strobðlou pragmatopoieðtai endeqìmena me perissìterecapì mia bajmðdeckai sthn perðptwsh aut prìkeitai gia ènan polub jmio strìbilo multistage turbine). K je bajmðda apoteleðtai apì mia stajer pterôgwsh, thn opoða akoloujeð h peristrefìmenh pterôgwsh. Ta pterôgia thc stajer c pterôgwshc enìc strobðlou qarakthrðzontai sun jwc wc akrofôsia nozzles). O arijmìc twn bajmðdwn pou ja èqei ènac axonikìc strìbiloc apofasðzetai apì to sqediast tou lamb nontac upìyh di forouc par gontec, ìpwc l.q. thn isqô pou ja aporrof tai apì to ergazìmeno mèso, thn taqôthta peristrof c kai thn epijumht di metro tou strobðlou. O sqediasmìcthcstajer ckai peristrefìmenhcpterôgwshcenìcstrobðlou sthrðzetai kurðwc sthn aerojermodunamik an lush thcro ckai gia to lìgo autì ta pterôgi toucèqoun th basik morf aerotom c, ste na exasfalðzetai h bèltisth apìdosh tou strobðlou. Me krit rio to bajmì antðdrashcmiacbajmðdacstrobðlou, diakrðnoume dôo kurðwctôpoucbajmðdwn axonikoô strobðlou. Prìkeitai gia tic bajmðdec dr shc impulse stage) kai tic bajmðdec antðdrashc reaction stage). Sth bajmðda dr shc, h pt sh thc olik c pðeshc sth bajmðda pragmatopoieðtai ex olokl rou sth stajer pterôgwsh. H morf twn pterugðwn thc stajer c pterôgwshc eðnai tètoia ste na dhmiourgoôntai sugklðnonta akrofôsia me skopì na epitaqônoun th dierqìmenh ro, elatt nontac sugqrìnwcthn pðesh. H ro h opoða exèrqetai apì ta akrofôsia odhgeðtai sthn kinht pterôgwsh kai wjeð ta pterôgi thc me th dônamh pou askeð se aut lìgw thc prìsptws c thc sthn pleur uperpðes c touc. Ta pterôgia thc kinht c pterôgwshc eðnai ètsi sqediasmèna ste na all zoun thn kateôjunsh thcro ch jetik sqetik gwnða eisìdou thcro ckatal gei se arnhtik sqetik gwnða exìdou, Ðdiac apìluthc tim c) qwrðc ìmwc na metab lloun thn pðesh thcro c. 6. Suntelest c Paroq c: Φ= Va U an ptuxh sqèsewn ìpwc sto sumpiest ). 30

6. Suntelest c Fìrtishc: An U =staj. kai V a =staj. Ψ= h t U = h t h t3 U 6.3 Bajmìc AntÐdrashc: Ψ=Φtanα tanβ 3 ) r = h 3 h h 3 h, r = T 3 T T 3 T An U =staj. kai V a =staj. kai epanalhptik bajmðda r = Φ tanβ 3 + tanβ ) C p = const.) = Φ tanβ 3 + tanα ) = V u + V u3 U 6.4 EpÐlush Trig nwn Taqut twn AxonikoÔ Strìbilou: An U =staj. kai V a =staj. kai epanalhptik bajmðda V u U = r + Ψ W u U = r + Ψ V U = V 3 U = V U = W 3 U = W U =,, V u3 U = r Ψ, W u3 U = r Ψ Φ + r Ψ ), Φ + r + Ψ ), Φ +r + Ψ ), Φ +r Ψ ) tanα = tanα 3 = Φ r Ψ ), tanα = Φ r + Ψ ), tanβ = Φ r + Ψ ), tanβ 3 = Φ r Ψ ) 3

6.5 GwnÐec Apìklishc thc Ro c: ) α α = tan ΨΦ Φ + r) Ψ 4 ) β β 3 = tan ΨΦ Φ + r Ψ 4 6.6 Jewrhtik Adi stath Qarakthristik AxonikoÔ Strìbilou: Ψ An d) sumbolðzei leitourgða sto shmeðo sqedðashc, isqôei Ψ d = Φ Φ d + Ψ d ) tanα tanβ 3 = stajerì gia fllogikèsfl allagèc tou shmeðou leitourgðac. 6.7 Anhgmènec Par metroi Paroq c kai Fìrtishc: Anhgmènh Par metroc Paroq c = Vα Tt,me Φ= V α γr Tt M u Ψ d an kai mìno an ìpou M u = U γrt t Anhgmènh Par metroc Fìrtishc = Tt T t,me 6.8 Anhgmènh Qarakthristik : Ψ= T t T t γ γrt t U T t T t = γ Ψ d M u + ) Vα ) γr Φ d Ψ d Tt γ )M u 6.9 Qarakthristik Polub jmiou Strìbilou: H èlleiyh tou Stodola: 7 Ask seic ṁ T t p t = k Pt,out P t,in ) ) /. Se aeriostrìbilo apl c atr ktou kai gia sugkekrimènec strofèc leitourgðac metr me kai pistopoioôme apì tic diajèsimec qarakthristikèc ta ex c stoiqeða: 3