Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

Σχετικά έγγραφα
HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Space-Time Symmetries

4.6 Autoregressive Moving Average Model ARMA(1,1)

Πανεπιστήμιο Κρήτης, Τμήμα Επιστήμης Υπολογιστών Άνοιξη HΥ463 - Συστήματα Ανάκτησης Πληροφοριών Information Retrieval (IR) Systems

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

ST5224: Advanced Statistical Theory II

From the finite to the transfinite: Λµ-terms and streams

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

GEEPLUS VM1614. Force (N) vs Displacement (mm) Peak. Max 'ON' time. Force. Model No. VM

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Finite Field Problems: Solutions

Part 4 RAYLEIGH AND LAMB WAVES

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Latent variable models Variational approximations.

Capacitors - Capacitance, Charge and Potential Difference

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Homomorphism of Intuitionistic Fuzzy Groups

EE512: Error Control Coding

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

Lecture 21: Scattering and FGR

CSR series. Thick Film Chip Resistor Current Sensing Type FEATURE PART NUMBERING SYSTEM ELECTRICAL CHARACTERISTICS

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

Fractional Colorings and Zykov Products of graphs

AdS black disk model for small-x DIS

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 10 - Representation Theory III: Theory of Weights

ΖΩΝΟΠΟΙΗΣΗ ΤΗΣ ΚΑΤΟΛΙΣΘΗΤΙΚΗΣ ΕΠΙΚΙΝΔΥΝΟΤΗΤΑΣ ΣΤΟ ΟΡΟΣ ΠΗΛΙΟ ΜΕ ΤΗ ΣΥΜΒΟΛΗ ΔΕΔΟΜΕΝΩΝ ΣΥΜΒΟΛΟΜΕΤΡΙΑΣ ΜΟΝΙΜΩΝ ΣΚΕΔΑΣΤΩΝ

Partial Trace and Partial Transpose

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Other Test Constructions: Likelihood Ratio & Bayes Tests

Summary of the model specified

Tridiagonal matrices. Gérard MEURANT. October, 2008

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Latent variable models Variational approximations.

Elements of Information Theory

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Σχεδίαση και Ανάπτυξη Παιχνιδιού για την Εκμάθηση των Βασικών Στοιχείων ενός Υπολογιστή με Χρήση του Περιβάλλοντος GameMaker

K r i t i k i P u b l i s h i n g - d r a f t

Supplementary Material For Testing Homogeneity of. High-dimensional Covariance Matrices

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

TMA4115 Matematikk 3

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΣΤΗΝ ΟΛΟΚΛΗΡΩΜΕΝΗ ΙΑΧΕΙΡΙΣΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΜΗ ΚΥΒΕΡΝΗΤΙΚΕΣ ΟΡΓΑΝΩΣΕΙΣ ΠΟΣΟ «ΠΡΑΣΙΝΕΣ ΕΙΝΑΙ»;

l.i τ.ε. '. Π Ε:ΙΡΑ Α f Χ oif \(t ~ ε R<tιδ Ut\Kό 'Jδρuμn «Βιομηχανικοί Εναλλάκτες Θερμότητας Αυλών Σπουδαστής: Κοπελιά ρης Χρήστος ΑΜ: 32044

Jordan Form of a Square Matrix

Mellin transforms and asymptotics: Harmonic sums

Numerical Analysis FMN011

Eulerian Simulation of Large Deformations

Exercises to Statistics of Material Fatigue No. 5

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

( y) Partial Differential Equations

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Andreas Peters Regensburg Universtity

«ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΔΙΟΙΚΗΣΗ» ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΗΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΗΣ ΣΤΑΘΕΡΟΤΗΤΑΣ

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Statistical Inference I Locally most powerful tests

Metal thin film chip resistor networks

Verification. Lecture 12. Martin Zimmermann

Section 8.2 Graphs of Polar Equations

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 9η: Basics of Game Theory Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Η ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΟΡΦΟΛΟΓΙΚΩΝ ΔΙΑΔΙΚΑΣΙΩΝ ΤΗΣ ΠΑΡΑΓΩΓΗΣ ΚΑΙ ΤΗΣ ΣΥΝΘΕΣΗΣ ΥΠΟ ΤΟ ΠΡΙΣΜΑ ΤΩΝ ΑΠΣ: ΜΙΑ ΚΡΙΤΙΚΗ ΘΕΩΡΗΣΗ

Distances in Sierpiński Triangle Graphs

LAD Estimation for Time Series Models With Finite and Infinite Variance

On the Galois Group of Linear Difference-Differential Equations

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΙΗ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Example Sheet 3 Solutions


ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Congruence Classes of Invertible Matrices of Order 3 over F 2

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Εκπαιδευτικές πολιτιστικές πρακτικές των γονέων και κοινωνική προέλευση

Iterative Monte Carlo analysis of spin-dependent parton distributions

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Notes on the Open Economy

Επιτυχόντες

Approximation of distance between locations on earth given by latitude and longitude

ΑΥΤΟΜΑΤΟΠΟΙΗΣΗ ΜΟΝΑΔΑΣ ΘΡΑΥΣΤΗΡΑ ΜΕ ΧΡΗΣΗ P.L.C. AUTOMATION OF A CRUSHER MODULE USING P.L.C.

6.4 Superposition of Linear Plane Progressive Waves

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Dark matter from Dark Energy-Baryonic Matter Couplings

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.

Transcript:

Kaon Weak Matrix Element in 2 Flavor DWF QCD Renormalization an Phyical Vale Sh Li (for the RBC an UKQCD Collaboration) The XXV International Sympoim on Lattice Fiel Theory Regenbrg 7/27 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 1 / 13

Otline 1 Phyical Parameter 2 Weak Matrix Element for (8,1) Operator Definition of operator Raw matrix element an btraction PQS v. PQN 3 Non-pertrbative Renormalization Mixing with Lower Dimenional Operator Calclation of Fll Mixing Matrix 4 Smmary Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 2 / 13

Phyical Parameter Phyical Parameter of the Lattice Configration Gage action Iwaaki, β = 2.13 Fermion action DWF, L = 16 Lattice ize 24 3 64 (for NPR: 16 3 32) a 1 1.72(3) GeV m re.38(4) Sea qark ma.5,.1 Valence qark ma.1,.5,.1,.2,.3,.4 Configration nmber 76, 74 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 3 / 13

Weak Matrix Element for (8,1) Operator Definition of (8,1) Operator Definition of operator Pre (8,1) I = 1/2 Operator Q 3 ( α α ) L,, ( q β q β ) L Q 4 ( α β ) L,, ( q β q α ) L Q 5 ( α α ) L,, ( q β q β ) R Q 6 ( α β ) L,, ( q β q α ) R Operator that have (8,1)(1/2) an (27,1)(1/2) Part Q 1 ( α α ) L (ū β β ) L Q 2 ( α β ) L (ū β α ) L Q 9 3 2 ( α α ) L,, e q ( q β q β ) L Q 1 3 2 ( α β ) L,, e q ( q β q α ) L Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 4 / 13

Weak Matrix Element for (8,1) Operator Platea for (8,1) Operator Raw matrix element an btraction K + π + Platea (Q 6 ) t K = 5, t π = 59 ranom orce t rn = 12 51.3.25 m =.1 m =.1.11 m =.1 m =.2 π + (1/2) O 6 K +.2.15.1 π + (1/2) O 6 K +.1.9.5.8 1 2 3 4 5 t 1 2 3 4 5 t Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 5 / 13

Weak Matrix Element for (8,1) Operator Sbtraction for (8,1) Operator Raw matrix element an btraction (8,1) K π weak matrix element have qaratic ivergent part In PQχPT, the power ivergent part can be written a Θ (3, 3) (1 γ5 ) time a momentm-inepenent coefficient Fitting D Θ (8,1) E K D Θ (3, 3) E = 2 α (8,1) 2 K α (3, 3) Fitting mixing coefficient for Q 1 an Q 6 m 2 K m2 π + 2 α(8,1) 1 α (3, 3) m 2 K m2 π (chiral log) + (higher orer) m =.5 m =.5 K / γ 5 K e-4 -.2 m =.1 m =.2 m =.3 m average K / γ 5 K -.2 -.4 m =.1 m =.2 m =.3 m average O 1 (1/2) -.3 O 6 (1/2) -.6 -.4 -.8.1.2.3.4 m - m.1.2.3.4 m - m Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 6 / 13

Weak Matrix Element for (8,1) Operator Raw matrix element an btraction Sbtracte Matrix Element Sbtracte Dπ + Θ + (8,1) E K Dπ = + Θ + (8,1) E K + 2 α(8,1) 2 b α (3, 3) m2 K Dπ + Θ + (3, 3) E K = 4α(8,1) 1 f 2 m K m π + (chiral log) +... Sbtraction for Q 6 with m ea =.5 O 6.3.2.1 nbtracte ivergence term btracte.1.2.3.4 m = m K + b π + O 6 (1/2).1 -.1 -.2 -.3 -.4 -.5.5.1.15.2 m K m π with m re m =.1 m =.5 m =.1 m =.2 m =.3 m no m re m =.1 m =.5 m =.1 m =.2 m =.3 m Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 7 / 13

Weak Matrix Element for (8,1) Operator Raw matrix element an btraction Fitting Sbtracte (8,1) Amplite K + b π + O 6 (1/2).1 -.1 -.2 -.3 -.4 -.5.5.1.15.2 m K m π with m re m =.1 m =.5 m =.1 m =.2 m =.3 m no m re m =.1 m =.5 m =.1 m =.2 m =.3 m K + b π + O 6 (1/2).1 -.1 -.2 -.3 -.4 -.5.5.1.15.2 m K m π with m re m =.1 m =.5 m =.1 m =.2 m =.3 m no m re m =.1 m =.5 m =.1 m =.2 m =.3 m Slope of btracte K π matrix element m ea =.5 m ea =.1 with m re no m re with m re no m re Q 1 1.68(12) 1 2 1.68(12) 1 2 1.59(11) 1 2 1.59(11) 1 2 Q 6 1.71(14) 1 1 1.66(17) 1 1 1.76(13) 1 1 1.78(17) 1 1 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 8 / 13

PQS v. PQN Weak Matrix Element for (8,1) Operator PQS v. PQN Smmation part i inglet in fll QCD, non-inglet in partially qenche K pi X Q 3 ( α α) L ` qβ q β L,, Q 4 ` X α β ` qβ q L α L,, X Q 5 ( α α) L ` qβ q β R,, Q 6 ` X α β ` qβ q L α R,, K K q q pi pi Comparion of PQS v. PQN (m ea =.5, btraction with m re) D lope of π + Q i K +E b 3 4 5 6 PQS.9(3.7) 1 3 3.84(27) 1 2 6.39(54) 1 2 1.89(13) 1 1 PQN 4.1(3.8) 1 3 3.75(35) 1 2 6.5(56) 1 2 1.71(14) 1 1 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 9 / 13

Non-pertrbative Renormalization Non-Pertrbative Renormalization Mixing with Lower-Dimenional Operator O cont,ren i = [ j Z ij (µ) Oj lat + k cj k Mixing with: Mixing with Lower Dimenional Operator (µ) Blat k 1 : m/a 2 2 /D + D + m + m : 1/a 2 ] + O (a) Conition: [ Ob ] Tr = amp Tr [i /p ] O b = amp γ 5 γ 5 Fit mixing coefficient to ma epenence an (ap) 2 epenence Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 1 / 13

γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ5 γ5 γ5 γ5 γ5 γ 5 γ 5 γ5 γ5 γ 5 γ 5 γ5 γ 5 γ 5 γ5 γ 5 γ 5 γ5 γ 5 γ 5 +9-4 γ5-9 +4 γ5 +9-4 γ5 γ 5 γ 5 γ 5 γ 5-9 +4 γ5 γ 5 γ 5 γ 5 γ 5 +9-4 -9 +4 +9-4 γ 5 γ 5 γ 5 γ 5-9 +4 γ 5 γ 5 γ 5 γ 5 Non-pertrbative Renormalization Non-Pertrbative Renormalization Mixing between For-Qark Operator Calclation of Fll Mixing Matrix Work in the bai that ha efinite SU(3) L SU(3) R propertie. Zq 2 Z ki P j { Ob i E j} = F kj To calclate P j { O i b E j} : (eg. Q 1 with Q 1 ) γ 5 γ γ ν 5 1 2 3 4 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 11 / 13 γ 5

NPR Coefficient Non-pertrbative Renormalization Calclation of Fll Mixing Matrix Extrapolate to chiral limit Removing mixing with atomatically Manally btract mixing with /D Z 1,1 /Z 2 q at ifferent momentm cale.95.9 Z q Z1,1.9 Z q Z1,1.8.85.7 nbtrate, linear fit btrate, linear fit nbtrate, qaratic fit btrate, qaratic fit -.1.1.2.3.4.5 m yn +m re.5 1 1.5 2 2.5 (ap) 2 Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 12 / 13

Smmary Smmary 1 We have analyze K π an K weak matrix element on 2 flavor DWF lattice 2 Sbtraction of power ivergence work for (8,1) operator 3 PQS an PQN metho have cloe relt on 2 partially qenche lattice 4 Non-pertrbative Renormalization finihe 5 Work till in progre: Better chiral fit, Wilon coefficient, phyical meaning... Sh Li (for RBC an UKQCD) () Kaon WME in 2 Flavor DWF (II) Lattice 27 13 / 13