4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ

Σχετικά έγγραφα
Να αναγνωρίζουμε τις σχετικές θέσεις ευθειών και επιπέδων στον χώρο. Να υπολογίζουμε το εμβαδόν και τον όγκο ορθού πρίσματος.

ΣΤΕΡΕΟΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ - ΘΕΩΡΙΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΑΝΑΛΗΨΗ Β ΓΥΜΝΑΣΙΟΥ ΑΛΓΕΒΡΑ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

2 Ο ΓΥΜΝΑΣΙΟ ΚΕΡΚΥΡΑΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΙΟΥ-ΙΟΥΝΙΟΥ 2010 ΤΑΞΗ: Β ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

4.4 Η ΠΥΡΑΜΙ Α ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

5. Τα μήκη των βάσεων ενός τραπεζίου είναι 8 cm και 12 cm και το ύψος του είναι 7. Να βρείτε το εμβαδό του.

ΓΕΩΜΕΤΡΙΑ Β ΓΥΜΝΑΣΙΟΥ

39 40'13.8"N 20 51'27.4"E ή , καταχωρουνται στο gps ως

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 4 η ΕΚΑ Α

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 5 η ΕΚΑ Α

MATHematics.mousoulides.com

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΆΛΓΕΒΡΑ - ΓΕΩΜΕΤΡΙΑ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ

Μαθηματικά Β Γυμνασίου. Επανάληψη στη Θεωρία

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ B ΓΥΜΝΑΣΙΟΥ. 1 ο δείγμα

Συνοπτική θεωρία. Οι σημαντικότερες αποδείξεις. Ερωτήσεις αντικειμενικού τύπου. Ασκήσεις. Διαγωνίσματα

β) Να αποδείξετε ότι τα τρίγωνα ΑΒΓ και ΚΛΓ είναι όμοια και στη συνέχεια να συμπληρώσετε

Σε τρίγωνο ΑΒΓ το τετράγωνο πλευράς απέναντι από οξεία γωνία ισούται με το άθροισμα των τετραγώνων των άλλων δύο πλευρών ελαττωμένο κατά το διπλάσιο τ

Β Γυμνασίου. Θέματα Εξετάσεων

Ε Ρ Ω Τ Η Σ Ε Ι Σ Θ Ε Ω Ρ Ι Α Σ.

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

Γ Ε Ω Μ Ε Τ Ρ Ι Α - Κ Ε Φ Α Λ Α Ι Ο 1

Βασικές Γεωμετρικές έννοιες

1. ** Σε ορθό τριγωνικό πρίσµα µε βάση ορθογώνιο τρίγωνο ΑΒΓ (A = 90 ) και πλευρές ΑΓ = 3 cm, ΒΓ = 5 cm, η παράπλευρη ακµή του είναι 7 cm.

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2016 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. ΗΜΕΡΟΜΗΝΙΑ: Παρασκευή, 10 Ιουνίου 2016

ΕΠΑΝΑΛΗΨΗ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ( α μέρος )

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΩΝ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 2ο «ΓΕΩΜΕΤΡΙΑ»

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

4.5 Ο ΚΩΝΟΣ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥ

1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΑΝΔΡΕΣΑΚΗΣ ΔΗΜΗΤΡΗΣ ΠΑΡΑΓΡΑΦΟΣ Β.1.4 ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ ΑΣΚΗΣΕΙΣ

4.6 Η ΣΦΑΙΡΑ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΗΣ

ΠΑΝΑΓΟΠΟΥΛΟΣ ΑΝΤΩΝΗΣ ΜΑΘΗΜΑΤΙΚΟΣ Β ΛΥΚΕΙΟΥ ΓΕΩΜΕΤΡΙΑ Σελίδα 1

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ ΘΕΜΑΤΑ ΓΙΑ ΕΡΓΑΣΙΑ

ΓΕΩΜΕΤΡΙΚΑ ΣΤΕΡΕΑ. Κεφάλαιο 13: Ερωτήσεις του τύπου «Σωστό-Λάθος»

1 ΘΕΩΡΙΑΣ...με απάντηση

ΚΕΦΑΛΑΙΟ 9 ο ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ ΣΕ ΟΡΘΟΓΩΝΙΟ ΤΡΙΓΩΝΟ

ΓΥΜΝΑΣΙΟ ΑΓΛΑΝΤΖΙΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2018 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

ΑΣΚΗΣΕΙΣ ΥΠΟΛΟΓΙΣΜΟΥ ΜΑΖΑΣ ΘΕΣΗΣ ΚΕΝΤΡΟΥ ΜΑΖΑΣ ΡΟΠΗΣ ΑΔΡΑΝΕΙΑΣ ΣΩΜΑΤΩΝ

Αναλογίες. ΘΕΜΑ 2ο. (Μονάδες 5) β) Να υπολογίσετε το ΓΒ συναρτήσει του κ. (Μονάδες 5) ΑΒ από το σημείο Γ ; (Μονάδες 15)

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

Επαναληπτικές ασκήσεις για το Πάσχα.

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

Ορισμός Το εμβαδόν κυκλικού δίσκου ακτίνας ρ, ισούται µε. Ε = πρ 2.

ΚΕΦΑΛΑΙΟ 11 Ο ΜΕΤΡΗΣΗ ΚΥΚΛΟΥ 11.3 ΕΓΓΡΑΦΗ ΒΑΣΙΚΩΝ ΚΑΝΟΝΙΚΩΝ ΠΟΛΥΓΩΝΩΝ ΣΕ ΚΥΚΛΟ ΚΑΙ ΤΑ ΣΤΟΙΧΕΙΑ ΤΟΥΣ

ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ ΙΟΥΝΙΟΥ 2017

Κεφάλαιο 1 o Εμβαδά επιπέδων σχημάτων

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Μαθηματικά προσανατολισμού Β Λυκείου

Προσομοίωση προαγωγικών εξετάσεων Β Γυμνασίου ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΑΝΣΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ Α.

3.6 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΤΟΜΕΑ

Ασκήσεις για τις εξετάσεις Μάη Ιούνη στη Γεωμετρία Β Λυκείου του ΜΑΝΩΛΗ ΨΑΡΡΑ

1. 3 3cm 2. E( ) 24 3cm 3. E( ) 12 3cm ) 1. 8cm 2. 18cm 3. E 56 3 cm 4. E 20 3 cm. 6cm, cm, 3 6 cm, E cm )

τ και τ' οι ημιπερίμετροι των βάσεων, Β και β τα εμβαδά των βάσεων, υ το ύψος και υ' το παράπλευρο ύψος της πυραμίδας.

ΕΝΟΤΗΤΑ Β.3.1. Στοιχεία τριγώνου - Είδη τριγώνων


ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΤΥΡΩΝ 11/6/2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ

1. ** Σε κύκλο ακτίνας R = 3 cm είναι περιγεγραµµένο ισόπλευρο τρίγωνο. Να υπολογίσετε: α) Την πλευρά του. β) Το εµβαδόν του.

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΓΕΩΜΕΤΡΙΑΣ Β ΛΥΚΕΙΟΥ ΤΩΝ ΕΠΑΛ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

ΤΑΞΗ Β ΜΑΘΗΜΑΤΙΚΑ ΚΕΦΑΛΑΙΟ 0 ΟΔΗΓΟΣ ΕΠΑΝΑΛΗΨΗΣ α α (ii)

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΟΙΝΟΥ ΚΟΡΜΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΤΡΙΓΩΝΟΜΕΤΡΙΑ

2 Β Βάσεις παραλληλογράµµου Βαρύκεντρο Γ Γεωµετρική κατασκευή Γεωµετρικός τόπος (ς) Γωνία Οι απέναντι πλευρές του. Κέντρο βάρους τριγώνου, δηλ. το σηµ

ΓΥΜΝΑΣΙΟ ΑΠΟΣΤΟΛΟΥ ΑΝΔΡΕΑ ΕΜΠΑΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΕΞΕΤΑΣΤΙΚΟ ΔΟΚΙΜΙΟ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΙΟΥΝΙΟΥ ΧΡΟΝΟΣ : 2 Ώρες Υπογραφή :

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΔΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2015

Τι ονομάζουμε εμβαδόν μιας επίπεδης επιφάνειας; Αναφέρετε ονομαστικά τις μονάδες μέτρησης επιφανειών.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΧ. ΧΡ Ενότητα 2: Αξιοσημείωτες Ταυτότητες 1. Να βρείτε τα αναπτύγματα: (α) 2

ΚΕΦΑΛΑΙΟ 9 ο ΓΕΝΙΚΕΥΣΗ ΠΥΘΑΓΟΡΕΙΟΥ ΘΕΩΡΗΜΑΤΟΣ

, όταν f είναι μια συνάρτηση παραγωγίσιμη στο x. 0, τότε ονομάζουμε ρυθμό μεταβολής του y ως προς το x στο σημείο x. 0 την παράγωγο f ( x 0

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ Γ ΓΥΜΝΑΣΙΟΥ 4) Να κάνετε τις πράξεις και μετά να βρείτε την αριθμητική τιμή του

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ ΜΑΘΗΜΑΤΙΚΑ

0. Η ) λέγεται επιτάχυνση του κινητού τη χρονική στιγμή t 0 και συμβολίζεται με t ). Είναι δηλαδή : t ) v t ) S t ).

1. * Η κάθετη τοµή ορθού κανονικού τριγωνικού πρίσµατος είναι τρίγωνο Α. ισοσκελές. Β. ισόπλευρο. Γ. ορθογώνιο.. αµβλυγώνιο. Ε. τυχόν.

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Επαναληπτικές Ασκήσεις

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ

Β.1.8. Παραπληρωματικές και Συμπληρωματικές γωνίες Κατά κορυφήν γωνίες

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΗΣ Β ΓΥΜΝΑΣΙΟΥ. 1. 2( x 1) 3(2 x) 5( x 3) 2. 4x 2( x 3) 6 2x 3. 2x 3(4 x) x 5( x 1)

ΥΠΟΥΡΓΕΙΟ ΠΑΙ ΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΙΕΥΘΥΝΣΗ ΑΝΩΤΕΡΗΣ ΚΑΙ ΑΝΩΤΑΤΗΣ ΕΚΠΑΙ ΕΥΣΗΣ ΥΠΗΡΕΣΙΑ ΕΞΕΤΑΣΕΩΝ ΠΑΓΚΥΠΡΙΕΣ ΕΞΕΤΑΣΕΙΣ 2013

ΑΣΚΗΣΗ 1 Ποιο από τα δύο σχήματα Α, Β έχει το μεγαλύτερο εμβαδόν;

MATHematics.mousoulides.com

ΤΟ ΣΧΗΜΑ ΚΑΙ ΤΟ ΜΕΓΕΘΟΣ ΤΗΣ ΓΗΣ

ΑΣΚΗΣΕΙΣ ΕΠΑΝΑΛΗΨΗΣ 2 η ΕΚΑ Α

Ερωτήσεις ανάπτυξης. β) Το Ε ΑΒΓ = 3Ε ΒΟΓ = 3 ΒΓ ΟΗ = = 2. Η κεντρική γωνία ω του κανονικού ν-γώνου δίδεται από τον τύπο:

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός

2. 3 ΠΡΟΒΛΗΜΑΤΑ ΕΞΙΣΩΣΕΩΝ ΔΕΥΤΕΡΟΥ ΒΑΘΜΟΥ

ΘΕΜΑΤΑ ΣΤΗΝ ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ

Θέματα ενδοσχολικών εξετάσεων Γεωμετρίας Β Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΓΥΜΝΑΣΙΟ ΚΑΘΟΛΙΚΗΣ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ ΓΡΑΠΤΕΣ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ ΙΟΥΝΙΟΥ 2015 ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ. Ονοματεπώνυμο :.. Τμήμα:.Αρ.

3.5 ΕΜΒΑ ΟΝ ΚΥΚΛΙΚΟΥ ΙΣΚΟΥ

Transcript:

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 47 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Η Γη είναι σφαίρα και την ονοµάζουµε γήινη σφαίρα ή υδρόγειο σφαίρα. Ο νοητός άξονας γύρω από τον οποίο στρέφεται η γήινη σφαίρα ονοµάζεται άξονας περιστροφής της Γης. Ο µέγιστος κύκλος της γήινης σφαίρας, ο οποίος είναι κάθετος στον άξονα περιστροφής, ονοµάζεται ισηµερινός. Βόρειος πόλος Παράλληλος κύκλος Βόρειο ημισφαίριο Παράλληλος κύκλος Νότιο ημισφαίριο Νότιος πόλος Ο ισηµερινός χωρίζει τη Γη σε δύο ηµισφαίρια, το βόρειο (συµβολίζεται µε το γράµµα Ν από την αγγλική λέξη North που σηµαίνει Βορράς) και το νότιο (συµβολίζεται µε το γράµµα S από την αγγλική λέξη South που σηµαίνει Νότος). Το βόρειο και το νότιο ηµισφαίριο χωρίζονται από παράλληλους προς τον ισηµερινό κύκλους, µε αποτέλεσµα από κάθε τόπο, πάνω

48 ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ στην επιφάνεια της Γης, να περνά ένας παράλληλος κύκλος, ο οποίος ονοµάζεται παράλληλος του τόπου. Δυτικό ημισφαίριο Βόρειος πόλος Ανατολικό ημισφαίριο Πρώτος μεσημβρινός Νότιος πόλος Το ηµικύκλιο το οποίο περνά από το αστεροσκοπείο Γκρήνουϊτς της Μ. Βρεττανίας, ονοµάζεται πρώτος µεσηµβρινός.ο πρώτος µεσηµβρινός χωρίζει τη γήινη σφαίρα σε δύο ηµισφαίρια, το ανατολικό (συµβολίζεται µε το γράµµα Ε από την αγγλική λέξη East που σηµαίνει ανατολή) και το δυτικό (συµβολίζεται µε το γράµµα W από την αγγλική λέξη West που σηµαίνει δύση).από κάθε τόπο περνά ένα ηµικύκλιο. Το ηµικύκλιο αυτό ονοµάζεται µεσηµβρινός του τόπου. Κάθε τόπος χαρακτηρίζεται από δύο διαφορετικές επίκεντρες γωνίες. Όπως φαίνεται στο διπλανό σχήμα η επίκεντρη γωνία λ ονοµάζεται γεωγραφικό µήκος του τόπου και η ω γεωγραφικό πλάτος του τόπου. Ανάλογα µε τη θέση του τόπου, το γεωγραφικό µήκος Ανατολή χαρακτηρίζεταιως δυτικό (W) ή (W) ως ανατολικό (Ε), (αν ο τόπος βρίσκεται στο ανατολικό ή στο δυτικό ηµισφαίριο αντίστοιχα). Επίσης, το γεωγραφικό πλάτος χαρακτηρίζεται ως βόρειο (Ν) ή νότιο (S), αν ο τόπος βρίσκεται στο βόρειο ή στο νότιο ηµισφαίριο αντίστοιχα. Π Βοράς (Ν) ω Δύση (Ε)

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 49 ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ 4 ου ΚΕΦΑΛΑΙΟΥ Β ΜΕΡΟΥΣ. Το σχήμα της Γης είναι περίπου σφαιρικό με ακτίνα περίπου 6.400 km. Η ατμόσφαιρα καλύπτει γύρω-γύρω τη Γη σε ένα μέσο ύψος 400 km. Να υπολογίσετε τον όγκο του αέρα που βρίσκεται γύρω από τη Γη. Γνωρίζοντας ότι η μέση μάζα του αέρα ενός λίτρου είναι γραμμάριο, να εκφράσετε σε τόννους τη συνολική μάζα της ατμόσφαιρας. αέρα 4 4. π.6800. π.6400 4 4.,4..44 0 -.,4..644 0,6.0-0,98.0,8.0 km,8.0 Τα,8.0 ατμόσφ dm σφαιρ,8.0 lt είναι,8.0 lt. gr ή,8.0 6 tn Ό όγκος του αέρα γύρω από την γη προκύπτει αν από το όγκο της ατμόσφαιρας ως σφαίρας με κέντρο το κέντρο της γης αφαιρέσουμε τον όγκο της γης. Μετατρέπουμε τα κυβικά χιλιόμετρα σε λίτρα και κατόπιν σύμφωνα με την εκφώνηση της άσκησης σε γραμμάρια και τόνους.. Σε ένα κυλινδρικό ποτήρι με ακτίνα βάσης ρ cm βυθίζουμε μια σφαίρα που έχει ακριβώς την ίδια ακτίνα. Στη συνέχεια ρίχνουμε νερό στο ποτήρι μέχρι να καλύψουμε ακριβώς τη σφαίρα. α) Να υπολογίσετε τον όγκο της σφαίρας. β) Να υπολογίσετε το ύψος του νερού στον κύλινδρο όταν υπάρχει η σφαίρα. γ) Να υπολογίσετε τον όγκο της σφαίρας μαζί με το νερό. δ) Να υπολογίσετε τον όγκο του νερού που θα μείνει στο ποτήρι, όταν βγάλουμε τη σφαίρα. ε) Να υπολογίσετε το ύψος του νερού που θα μείνει στο ποτήρι, όταν βγάλουμε τη σφαίρα.

40 ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ α) β) υ γ) δ) 69,56,04 56,5 ε) νερού 4. πρ ρ - 4.,4.,04 cm. 6 cm σφαίρας πρ. υ,4..6 69,56 cm πρ. υ υ π. ρ cm 56,5 8,6 cm α) Ο όγκος της σφαίρας δίνεται από τον τύπο 4 σφαίρας πρ β) Το ύψος του νερού στον κύλινδρο όταν υπάρχει η σφαίρα είναι ίσο με το μήκος δύο ακτίνων της σφαίρας. γ) κυλίνδρ πρ. υ. δ) Ο όγκος του νερού που θα μείνει θα είναι ίσος με την διαφορά των όγκων,. ε) Το ύψος ο βρίσκουμε από τον τύπο του όγκου του κυλίνδρου. Ένα δοχείο είναι κατασκευασμένο από ένα κύλινδρο και ένα κώνο με διαστάσεις σε cm που φαίνονται στο διπλανό σχήμα. α) Να υπολογίσετε τον όγκο του δοχείου. β) Αν το δοχείο είναι ανοικτό από πάνω και το υλικό κατασκευής του κοστίζει 0, το κάθε cm, να υπολογίσετε το συνολικό κόστος του υ- λικού που θα χρειαστεί για την κατασκευή δοχείων. α) δοχείου κυλίνδρου + Ε β. υ +. πρ. υ πρ. υ +. π. ρ. υ,4.4.4 +.,4.4.6 0,44 cm β) λ υ + ρ λ Ε 4 παράπλευρης + 6 π. υ + π. λ λ Ε πα κυλόνδρου 5 λ 7,cm + Ε πα.,4.4.4 +,4.4.7, 9,04 cm Κ ό στος ενός δοχείου 9,04.0, 8,08 Κ ό στος δοχείων.8,08 458,496 α) Ο όγκος του δοχείου είναι ίσος με τον όγκο του κυλίνδρου συν τον όγκο του. Χρησιμοποιούμε τους τύπους κυλίνδρου πρ. υ και κ ώ νου πρ. υ. β) Χρησιμοποιώντας το πυθαγόρειο θεώρημα βρίσκουμε την γενέτειρα λ του. Χρησιμοποιούμε τους τύπους Ε πα κυλόνδρου π. υ Ε πα π. λ

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4 4. Στο διπλανό σχέδιο φαίνεται η στέγη μιας αγροικίας που έχει το σχήμα πυραμίδας. Η βάση της πυραμίδας είναι το τετράγωνο ΒΓΔΕ πλευράς 0m ενώ τα τρίγωνα με κορυφή το Α είναι ισόπλευρα. α) Να υπολογίσετε τις αποστάσεις υ ΑΚ, λ ΑΛ και δ ΚΛ. β) Να υπολογίσετε τον όγκο της πυραμίδας. γ) Τα δοκάρια ΑΒ, ΑΓ, ΑΔ, ΑΕ, ΒΓ, ΓΔ, ΔΕ και ΕΒ κοστίζουν 0 το μέτρο ενώ τα δοκάρια ΕΓ και ΒΔ κοστίζουν 0 το μέτρο. Το υλικό με το οποίο έχουν καλυφθεί οι τριγωνικές έδρες της πυραμίδας κοστίζει 5 το τετραγωνικό μέτρο. Πόσο κοστίζουν συνολικά τα υλικά αυτά για τη συγκεκριμένη στέγη; α) δ λ 0 0 5 m 5 λ 75 λ 75 λ 8,66 m υ λ δ υ 8,66 5 υ 50 υ 50 7,07 m β) πυρ Ε β. υ.0.7,07 5,67 m γ ) 8.0m 80m 80m.0 800. ΕΓ 0 + 0 ΕΓ 00 ΕΓ 00 4,0 m.4, 8,m.0 564 E π. Π β άσης. απόστημα.4.0.8,66 7, m 7,m.5 598 598 + 800 + 564 96 α) Το δ είναι ίσο με το μισό ης πλευράς του τετραγώνου. β) βρίσκουμε το απόστημα με την βοήθεια του πυθαγορείου θεωρήματος στο ορθογώνιο τρίγωνο ΑΒΛ. Επίσης βρίσκουμε το ύψος με την βοήθεια του πυθαγορείου θεωρήματος στο ορθογώνιο τρίγωνο ΑΚΛ. β) Ο όγκος της πυραμίδας δίνεται από τον τύπο ι πυρ Ε. υ. β γ) Υπολογίζουμε πόσο κοστίζουν τα πρώτα δοκάρια που το καθένα έχει μήκος 0 m. Κατόπιν χρησιμοποιώντας το πυθαγόρειο θεώρημα βρίσκουμε την ΕΓ άρα και την ΔΒ και υπολογίζουμε πόσο θα κοστίσουν. Βρίσκουμε τέλος την παράπλευρη επιφάνεια της πυραμίδας και υπολογίζουμε το κόστος της. Στο τέλος προσθέτουμε όλα τα έξοδα και βρίσκουμε το συνολικό κόστος.

4 ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 5. Το πάνω μέρος ενός ποτηριού του λικέρ έχει σχήμα του οποίου οι διαστάσεις (σε cm) φαίνονται στο διπλανό σχήμα. Βάζουμε μέσα στο ποτήρι τέσσερα σφαιρικά παγάκια ακτίνας cm και στη συνέχεια γεμίζουμε τελείως το ποτήρι με ποτό. α) Να υπολογίσετε τον όγκο που καταλαμβάνουν τα παγάκια. β) Να υπολογίσετε τον όγκο του ποτού που βρίσκεται μέσα στο ποτήρι. γ) Όταν λιώνουν τα παγάκια και γίνονται νερό, ο όγκος του νερού που προκύπτει είναι το 90% του όγκου του πάγου. Να υπολογίσετε τον όγκο του υγρού που βρίσκεται μέσα στο ποτήρι, όταν λιώσουν τελείως τα παγάκια. α) β) παγ.ολικό ποτού γ) παγ,96 υγρού 49,044 4 4. πρ.,4. 4.4,9 6,76 cm πρ.υ.,4.6.4 50,7 cm 50,7 6,76 cm cm ποτού παγ.ολικό + 0,9.4. παγ 4,9 cm,96 + 5,084 α) Ο όγκος της σφαίρας δίνεται από τον τύπο 4 σφαίρας πρ β) Ο όγκος του δίνεται από τον τύπο κ ώ νου πρ. υ γ) Ο όγκος του υγρού που θα προκύψει είναι το άθροισμα των όγκων του ποτού και του 90% από τέσσερα παγάκια. 6. Θέλουμε να κατασκευάσουμε από μέταλλο ένα «παξιμάδι»,δηλαδή ένα ορθό εξαγωνικό πρίσμα με βάση κανονικό ε- ξάγωνο πλευράς α 5 mmκαι ύψους β mm με κυλινδρική οπή στο κέντρο διαμέτρου d 8 mm. α) Να υπολογίσετε τον όγκο του ορθού εξαγωνικού πρίσματος, τον όγκο της κυλινδρικής οπής και τον όγκο του «παξιμαδιού». β) Αν το μέταλλο κοστίζει 8.000 ανά κυβικό μέτρο και η εργασία κατασκευής του παξιμαδιού είναι 0 ανά χιλιάδα, να υπολογίσετε το κόστος για την κατασκευή 0.000 τέτοιων «παξιμαδιών».

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 4 α 5. α) Eβ. υ 6.. υ 6.. 94,65 m 4 4 E. υ πρ. υ,4.4. 50,7 mm β 94,65 50,7 4,905 mm 4,905 mm 0,00000004905 m 0,00000004905.8000 0,00044 0,00044.0000 6,88 Eυρώ 6,88+0.06,88+46004606,88 Eυρώ 7. Η σκηνή του ινδιάνου έχει το σχήμα, με ύψος,4 m και όγκο, m. Πόσο ύφασμα χρειάστηκε ο ινδιάνος για να φτιάξει τη σκηνή του; Χρησιμοποιούμε τον τύπο πρ σματος Ε. υ ί β. κυλ ί νδρου Ε. υ πρ. υ β Μετατρέπουμε τα mm se m Υπολογίζουμε το κόστος σύμφωνα με την εκφώνηση της άσκησης.,. πρ. υ,.,4. ρ.,4,,5. ρ. ρ 0,4896 ρ 0,7m λ υ + ρ λ,4 Ε παράπλευρης + 0,7 λ 6,5 λ,5 m π. λ,4.0,7.,5 5,495 m 8. Μία ράβδος χρυσού ΑΒΓΔΕΖΗΘ είναι ένα στερεό πρίσμα με βάση ένα ισοσκελές τραπέζιο ΑΒΓΔ και διαστάσεις που φαίνονται στο διπλανό σχήμα. Να υπολογίσετε τον ό- γκο της πυραμίδας ΔΕΘΓ. Χρησιμοποιούμε τον τύπο κ ώνου πρ. υ.για να βρούμε την ακτίνα του και την χρησιμοποιούμε για να βρούμε την παράπλευρη επιφάνεια του Ε πα π. λ Θ 6 cm

44 ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ πυραμίδας Ε β. υ ( Β + β).. πρίσματος πρίσματος ( 5 + 8 ).,6 υ πρίσματος τραπεζίου. υ.6,8 cm Η βάση του πρίσματος 5 cm φαίνεται στο διπλανό σχήμα. Υπολογίζουμε cm υ τρα. το ύψος του τραπεζίου με την βοήθεια του,5 cm πυθαγορείου θεωρήματος. 8 cm υ,5 υ 6,75 υ,6 cm cm,5 cm 9. Να υπολογίσετε το ολικό εμβαδόν και τον όγκο της πυραμίδας ΚΛΕΖ, αν γνωρίζετε ότι το ΑΒΓΔΕΖΗΘ είναι κύβος ακμής 5 cm και τα Κ, Λ μέσα των πλευρών ΑΔ και ΕΘ αντίστοιχα. E Ε ολ ( ΚΛΕ) + ( ΚΛΖ) + ( ΚΕΖ) + ( ΖΕΛ) 5.,5 5.5,59 5.5,59 + + +,5 + 7,95 40,45 cm πυραμίδας π 6,5.5 + Ε β. πρίσματος 0,4 cm Ε 5.,5 β. υ πρίσματος Η βάση της πυραμίδας είναι ορθογώνιο τρίγωνο όπως φαίνεται στο παραπάνω σχήμα. Υπολογίζουμε το τμήμα ΛΖ με την βοήθεια του πυθαγορείου θεωρήματος. ΛΖ ΕΛ + ΕΖ ΛΖ,5 + 5 ΛΖ,5 ΛΖ 5,59 cm Το ύψος της πυραμίδας είναι είναι το ΚΛ 5 cm

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 45 o ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ 4 ου ΚΕΦΑΛΑΙΟΥ ΜΕΡΟΥΣ Β. Το πρίσμα του παρακάτω σχήματος έχει βάση τετράγωνο πλευράς α και ύψος υ. Αν Ε είναι το ολικό εμβαδόν του πρίσματος και ο όγκος του, να συμπληρώσετε τα κενά στις στήλες του παρακάτω πίνακα: α 4 υ 5 4 Ε 64 80 00. Να υπολογίσετε το ολικό εμβαδόν και τον όγκο των παρακάτω στερεών σωμάτων:. Το πρίσμα του παρακάτω σχήματος έχει ύψος υ και βάση ορθογώνιο τρίγωνο με κάθετες πλευρές β, γ και υποτείνουσα α. Αν Ε είναι το ολικό εμβαδόν του πρίσματος και ο όγκος του, να συμπληρώσετε τα κενά στις στήλες του παρακάτω πίνακα: α 0 β 4 6 8 γ 5 5 υ 4 Ε 0 4. Να υπολογίσετε το ολικό εμβαδόν και τον όγκο των παρακάτω στερεών σωμάτων:

46 ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ Στο Βόρειο πόλο Είναι το σφαιρικό τρίγωνο που σχηματίζεται αν θεωρήσουμε το Βόρειο πόλο και δύο σημεία του ισημερινού έτσι ώστε να απέχουν ένα τεταρτοκύκλιο της περιφέρειας της γής. Α Β O Γ

ΜΕΡΟΣ Β 4.7 ΓΕΩΓΡΑΦΙΚΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ 47 γης γης Αν υποθέσουμε ότι η διαδρομή που διέσχισε ο ταξιδιώτης ήταν ευθεία τότε το κεφάλι θα διένυε απόσταση ίση με το μήκος της διαδρομής. Στην περίπτωσή μας όμως διένυσε,56 m περισσότερα από τα πόδια του, επομένως η διαδρομή είναι καμπύλη. ΕΞΗΓΗΣΗ Αν υποθέσουμε ότι ο ταξιδιώτης διατρέχει τον ισημερινό, τότε η διαδρομή έχει μήκος L πρr γής. Αν η απόσταση του κεφαλιού από τα πόδια είναι s, δηλαδή το ύψος του ταξιδιώτη είναι s τότε η διαδρομή που διένυσε το κεφάλι είναι L π( R γής + s).επίσης L L,56 οπότε έχουμε,56 πr + πs - πr,56 πs,56 s και κατά συ- π νέπεια το κεφάλι του ταξιδιώτη βρίσκεται m από το έδαφος, οπότε η ακτίνα του κύκλου που διέγραψε το κεφάλι του είναι μέτρα μεγαλύτερη από την ακτίνα του κύκλου που διέγραψαν τα πόδια του. Άρα το κεφάλι διένυσε παραπάνω π.4π,56 m. Για να γίνει αυτό η αρκούδα πρέπει να ξεκίνησε από το βόρειο πόλο άρα το χρώμα της είναι άσπρο, γιατί το σφαιρικό τρίγωνο που διαγράφεται σε αυτή την περίπτωση την επαναφέρει στην ίδια θέση σε αντίθεση με τον ισημερινό και τον νότιο πόλο km km km