Το μοντέλο DeGroot και το Παίγνιο Επιρροής

Σχετικά έγγραφα
The DeGroot model for Social Influence and Opinions

POSITIVE AND NEGATIVE RELATIONSHIPS

Βασικές Έννοιες Θεωρίας Παιγνίων

Θεωρία Παιγνίων Δρ. Τασσόπουλος Ιωάννης

Monitor Games BOWLING

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 8: Παίγνια πλήρους και ελλιπούς πληροφόρησης

Ορισμένες Κατηγορίες Αλγορίθμων

Κεφάλαιο 1. Πέντε Αντιπροσωπευτικά Προβλήματα. Έκδοση 1.4, 30/10/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.

Web Mining. Χριστίνα Αραβαντινού Ιούνιος 2014

(elementary graph algorithms)

Ασκήσεις μελέτης της 6 ης διάλεξης

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Τσάπελη Φανή ΑΜ: Ενισχυτική Μάθηση για το παιχνίδι dots. Τελική Αναφορά

Παραδείγματα Παιγνίων

παίγνια και δίκτυα Παύλος Στ. Εφραιµίδης Τοµέας Λογισµικού και Ανάπτυξης Εφαρµογών Τµήµα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αλγόριθμοι και Πολυπλοκότητα

(elementary graph algorithms)

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Συστήματα Markov Ένα σύστημα Markov διαγράμματος μετάβασης καταστάσεων

B A B A A 1 A 2 A N = A i, i=1. i=1

Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.

Σκοπός του παιχνιδιού Σκοπός του παιχνιδιού είναι να τοποθετήσει πρώτος ο παίκτης όλα τα πλακίδιά του στο τραπέζι.

Αρχιτεκτονική Νευρωνικών Δικτύων

2 ) d i = 2e 28, i=1. a b c

Εθνικό Μετσόβιο Πολυτεχνείο. Ταχύτητα Σύγκλισης εναντίον Μνήμης στη Διαμόρφωση Απόψεων

Πρόβλεψη αποτελεσμάτων ποδοσφαιρικών αγώνων βάσει του ιστορικού των αναμετρήσεων


Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Κεφάλαιο 8. NP και Υπολογιστική Δυσεπιλυσιμότητα. Παύλος Εφραιμίδης V1.1,

Δημοπρασίες (Auctions)

Μεγάλος τελικός Γαλλία Κροατία για το Μουντιάλ 2018

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Να απαντήσετε τα θέματα 1 και 2 αιτιολογώντας πλήρως τις απαντήσεις σας. Το κάθε θέμα είναι 10 μονάδες.

d(v) = 3 S. q(g \ S) S

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

ΠΛΗ 513-Αυτόνομοι Πράκτορες Χειμερινό εξάμηνο 2012 Εφαρμογή αλγορίθμων ενισχυτικής μάθησης στο παιχνίδι Βlackjack. Χλης Νικόλαος-Κοσμάς

Το πιο απλό δίκτυο είναι η δυάδα ή το ζευγάρι. Οι δυάδες συνδέονται μεταξύ τους για να δημιουργήσουν μεγαλύτερα δίκτυα

Προγνωστικά: Για την πρόκριση η ΑΕΚ στην Βιέννη

Γρηγόρης Θ. Παπανίκος Αντιπρόεδρος του ΠΣΑΟΣ & Επίτιμος Καθηγητής Οικονομικών Επιστημών Πανεπιστήμιο Στέρλιγκ (University of Stirling), Η.Β.

q(g \ S ) = q(g \ S) S + d = S.

Πιθανότητες. Κεφάλαιο Δειγματικός χώρος - Ενδεχόμενα Κατανόηση εννοιών - Θεωρία

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Θεωρία Λήψης Αποφάσεων

GAMESPACE - INSPOT. League of Legends 5on5 Tournament

ΜΥΕ003: Ανάκτηση Πληροφορίας. Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 21: Ανάλυση Συνδέσμων.

Περιεχόμενα 1 Scriptorium (Ταμπλό Αξίας Κατηγορίας) 5 εξάπλευρα ζάρια 87 κάρτες

Σχέδιο μαθήματος στα μαθηματικά

Πρότυπο Πειραματικό Δημοτικό Σχολείο Πανεπιστημίου Πατρών. Όμιλος Αριστείας

Ασκήσεις μελέτης της 19 ης διάλεξης

Κεφάλαιο 29 Θεωρία παιγνίων

Τα πάντα ανοικτά στο Τότεναμ Γιουβέντους

ΑΥΤΟΝΟΜΟΙ ΠΡΑΚΤΟΡΕΣ. ΑΝΑΦΟΡΑ ΕΡΓΑΣΙΑΣ Othello-TD Learning. Βόλτσης Βαγγέλης Α.Μ

Ε Π Ι Χ Ε Ι Ρ Η Σ Ι Α Κ Η Ε Ρ Ε Υ Ν Α

Τυχαίοι αριθμοί ρίξε μια «ζαριά»

Κοινωνικά Δίκτυα Αναζήτηση Πληροφοριών σε Δίκτυα

ΠΕΡΙΕΧΟΜΕΝΑ ΤΟΥ ΠΑΙΧΝΙΔΙΟΥ 10 ζάρια με 6 σύμβολα το κάθε ένα. 1 διπλής όψεως κεντρικό ταμπλό με 3 ή 4 φορτηγά. 1 μολύβι

ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΕΤΟΙΜΑΣΙΑ. 15 Δείκτες Δημάρχου. 30 Δείκτες Επιρροής. 15 Δείκτες Δωροδοκίας. 1 Πιόνι Εκτελεστή. 21 Κύβοι Αξίας.

EMOJITO! 7 Δίσκοι Ψηφοφορίας. 100 Κάρτες Συναισθημάτων. 1 Ταμπλό. 7 Πιόνια παικτών. 2-7 Παίκτες

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

53 Χρόνια ΦΡΟΝΤΙΣΤΗΡΙΑ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σ Α Β Β Α Ϊ Δ Η Μ Α Ν Ω Λ Α Ρ Α Κ Η

ΜΥΕ003: Ανάκτηση Πληροφορίας. Διδάσκουσα: Ευαγγελία Πιτουρά Κεφάλαιο 21: Ανάλυση Συνδέσμων.

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Συνδυαστικά Παίγνια. ιαµόρφωση Παιγνίων. Θέµατα σε Πάιγνια Μηδενικού Αθροίσµατος

Φαβορί με αξία στις προβλέψεις στοίχημα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

HAL R. VARIAN. Μικροοικονομική. Μια σύγχρονη προσέγγιση. 3 η έκδοση

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

ΠΛΗ20 ΕΝΟΤΗΤΑ 5: ΘΕΩΡΙΑ ΓΡΑΦΗΜΑΤΩΝ/2. Μάθηµα 5.1: Παραστάσεις Γραφηµάτων. ηµήτρης Ψούνης

Ανάκληση Πληροφορίας. Διδάσκων Δημήτριος Κατσαρός

Τα φαβορί ορίζουν το παιχνίδι στα προγνωστικά στοιχήματος

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 3: Παίγνια με περισσότερους παίκτες και μέθοδοι απλοποίησης παιγνίων. Ε. Μαρκάκης. Επικ.

ΤΕΙ ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΞΕΤΑΣΗ ΣΤΟ ΜΑΘΗΜΑ «ΑΝΑΓΝΩΡΙΣΗ ΠΡΟΤΥΠΩΝ ΝΕΥΡΩΝΙΚΑ ΔΙΚΤΥΑ» ΔΕ. 11 ΙΟΥΝΙΟΥ 2012

Κεφ. 9 Ανάλυση αποφάσεων

Πρώτος ημιτελικός Champions League Λίβερπουλ Ρόμα

(Μέρλιν, Δολοφόνος, Πέρσιβαλ, Μόρντρεντ, Μοργκάνα, Όμπερον, 5 Πιστοί Υπηρέτες του Αρθούρου και 3 Βοηθοί του Μόρντρεντ)

Θεωρία Παιγνίων και Αποφάσεων. Ενότητα 4: Μεικτές Στρατηγικές. Ε. Μαρκάκης. Επικ. Καθηγητής

Αλγοριθμική Θεωρία Παιγνίων

9. Συστολικές Συστοιχίες Επεξεργαστών

2. Real Web time personalization

Με στόχο την τρίτη θέση στην Λισσαβώνα ο Ολυμπιακός

ΦΙΛΤΡΟ KALMAN ΔΙΑΚΡΙΤΟΥ ΧΡΟΝΟΥ

Δυναμική Μηχανών I. Ιδιομορφές

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Λύσεις 4ης Ομάδας Ασκήσεων

Με προβάδισμα στους επαναληπτικούς Λίβερπουλ και Ρεάλ

Ιεραρχική αναλυση αποφασεων Analytic hierarchy process (AHP)

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1

ΔΙΑΓΩΝΙΣΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ:- Γ ΛΥΚΕΙΟΥ ΤΜΗΜΑΤΑ: ΓΟ4 ΓΟ7 (ΖΩΓΡΑΦΟΥ) ΓΟ5 ΓΟ6 (ΧΟΛΑΡΓΟΣ) HM/NIA: 15/1/2017

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ ΜΑΘΗΜΑ: ΣΤΑΤΙΣΤΙΚΗ - ΕΞΑΜΗΝΟ: 3 ο ΑΣΚΗΣΕΙΣ: ΠΙΘΑΝΟΤΗΤΕΣ Άσκηση 1.1 Να βρεθούν οι πιθανότητες:

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

Γενική Φυσική. Ο νόμος Coulomb. Το ηλεκτρικό πεδίο. Κωνσταντίνος Χ. Παύλου 1

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Ημέρα φαβορί στην Serie A

ΚϟΎΜϟ Ϟμϔϟ αέ ΪϤϟ Ϧϣ ΎϴϠόϟ ϞΣ ήϥϟ ϲϓ ϥύδϧϲ ϕϯϙσ βϳέϊθϟ ϊθο Ϯϣ ΔϳϮϧΎΜϟ ϭ ΔϳΩ ΪϋϹ αέ ΪϤϟ ϲϓϭ Δϴ ΪΘΑϻ ϊϥθπϥϟ ϲϓ Ωήϔϟ ˬΓΎϴΤϟ ΔϳΎϤΣ

Φαβορί μακριά από την έδρα του με αρκετή τύχη

Εύρεση & ιαχείριση Πληροφορίας στον Παγκόσµιο Ιστό

ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

Οδηγίες σχεδίασης στο περιβάλλον Blender

Transcript:

Το μοντέλο DeGroot και το Παίγνιο Επιρροής Social Influence and Opinion Dynamics Παύλος Εφραιμίδης Επίκ. καθηγητής

An Example

Περιεχόμενα Το βασικό μοντέλο DeGroot Το μοντέλο DeGroot με πεισματάρηδες κόμβους Το παίγνιο επιρροής σε κοινωνικό δίκτυο

Ένα παράδειγμα Έστω ένα κοινωνικό δίκτυο με τρεις κόμβους 1, 2 και 3 (βλ. σχήμα) Ο κόμβος 1 λαμβάνει υπόψη τη δική του γνώμη, τη γνώμη του κόμβου 2 και τη γνώμη του κόμβου 3. Όλες με βαρύτητα 1/3. Αυτό απεικονίζεται στο σχήμα με τις εξερχόμενες ακμές από τον κόμβο 1. Αντίστοιχα ο κόμβος 2 εμπιστεύεται μόνο τον εαυτό του και τον κόμβο 1, ενώ ο κόμβος 3 κυρίως τον εαυτό του και λίγο τον 2. Έστω ότι ο κόμβος 1 έχει αρχική γνώμη 0 και οι κόμβοι 2 και 3 έχουν αρχική γνώμη 1. Τι θα συμβεί εάν αρχίσουν να αλληλεπιδρούν μεταξύ τους οι κόμβοι και να αναθεωρούν ο καθένας τη γνώμη του;

Ενημέρωση γνώμης στο μοντέλο DeGroot Στο μοντέλο DeGroot κάθε κόμβος ενημερώνει τη γνώμη του σε κάθε γύρο υπολογίζοντας το σταθμισμένο μέσο όρο των γνωμών όλων των κόμβων τους οποίους εμπιστεύεται. Με αρχικές γνώμες p(0)=(1, 0, 0) για τους τρεις κόμβους τη χρονική στιγμή 0, η γνώμη του κόμβου 1 τη χρονική στιγμή 1 θα είναι: 1 * 1/3 + 0 * 1/3 + 0* 1/3 = 1/3 Όμοια η γνώμη του κόμβου 2 θα είναι 1/2 * 1 + 1/2 * 0 = 1/2 και του κόμβου 3 1/4 * 0 + 3/4 * 0 = 0 Επομένως τη χρονική στιγμή 1 οι γνώμες θα είναι p(1)=(1/3, 1/2, 0).

Διαμόρφωση Τα διανύσματα με τις γνώμες των κόμβων σε διαδοχικές χρονικές στιγμές θα είναι p(0)=(1, 0, 0) p(1)=(1/3, 1/2, 0) p(2)=(5/18, 5/12, 1/8) p(3)=(59/216, 25/72, 19/96) p(t) (3/11, 3/11, 3/11)

Διαμόρφωση γνώμης Εάν συνεχιστεί η διαδικασία ενημέρωσης της γνώμης οι κόμβοι σταδιακά θα συγκλίνουν σε μια κοινή γνώμη και θα υπάρξει ομοφωνία (consensus). Η τελική γνώμη θα είναι (3/11, 3/11, 3/11). Μια μαθηματική ανάλυση του πίνακα του γραφήματος του κοινωνικού δικτύου δίνει ότι η βαρύτητα κάθε κόμβου στη διαμόρφωση της τελικής κοινής γνώμης είναι (3/11, 4/11, 4/11). Το διάνυσμα (3/11, 4/11, 4/11) ονομάζεται διάνυσμα επιρροής του γραφήματος (influence vector). Επομένως οι κόμβοι 2 και 3 έχουν (λίγο) μεγαλύτερη επιρροή από τον κόμβο 1. Παρόμοια ανάλυση χρησιμοποιείται και από τον αλγόριθμο PageRank της Google για τον υπολογισμό της βαρύτητας (rank) κάθε ιστοσελίδας του παγκόσμιου ιστού.

Πίνακας Τ του γραφήματος Έστω ο πίνακας γειτνίασης Τ του γραφήματος Τότε και p(1) = T p(0) p(2) = T p(1) = T 2 p(0) p(3) = T p(2) = T 3 p(0) p(t) = T p(t-1) = T t p(0) (3/11, 3/11, 3/11)

Δυνάμεις του πίνακα Τ Τ =, T 2 = T 3 = T t Το T t συγκλίνει προς έναν πίνακα που κάθε γραμμή του είναι το διάνυσμα επιρροής του γραφήματος.

Πεισματάρηδες κόμβοι Εάν ένας κόμβος στο μοντέλο DeGroot δεν έχει εξερχόμενες ακμές προς άλλους κόμβους, τότε η γνώμη τους μένει ανεπηρέαστη και επομένως σταθερή. Τέτοιοι κόμβοι ονομάζονται πεισματάρηδες ή απόλυτα πεισματάρηδες (stubborn ή fully stubborn). Για παράδειγμα στο παρακάτω κοινωνικό δίκτυο ο κόμβος 1 είναι απόλυτα πεισματάρης

Μερικώς πεισματάρηδες κόμβοι Ένας κόμβος ο οποίος επηρεάζεται άμεσα από απόλυτα πεισματάρη κόμβο αλλά και από άλλους μη πεισματάρηδες κόμβους, ονομάζεται μερικώς πεισματάρης (partial stubborn). Για παράδειγμα στο παρακάτω κοινωνικό δίκτυο ο κόμβος 2 είναι μερικώς πεισματάρης, εφόσον επηρεάζεται άμεσα από τον κόμβο 1 που είναι απόλυτα πεισματάρης.

Διαμόρφωση γνώμης Όταν σε ένα μοντέλο DeGroot υπάρχει τουλάχιστον ένας πεισματάρης κόμβος (είτε απόλυτα είτε μερικώς) τότε Η αρχική γνώμη των μη πεισματάρηδων κόμβων δεν έχει καμία επιρροή στις τελικές γνώμες Εάν ένας μόνο κόμβος είναι πεισματάρης (είτε απόλυτα είτε μερικώς) τότε η γνώμη του θα επικρατήσει σε όλο το κοινωνικό δίκτυο Εάν δύο ή περισσότεροι κόμβοι είναι πεισματάρηδες τότε το κοινωνικό δίκτυο πιθανότατα πάλι συγκλίνει χωρίς όμως γενικά να καταλήγουν οι κόμβοι σε ομοφωνία οι τελικές γνώμες εξαρτώνται από τις αρχικές γνώμες των πεισματάρηδων κόμβων και την τοπολογία του γραφήματος

Εργασία 3 - Μπόνους Η γνώμη κάθε κόμβου είναι ένας πραγματικός αριθμός στο διάστημα 0 έως 1. Δύο παίκτες θα ανταγωνίζονται πάνω στο κοινωνικό γράφημα ο ένας παίκτης θα προσπαθεί να επηρεάσει το κοινωνικό ώστε οι γνώμες των κόμβων να συγκλίνουν όσο γίνεται προς το 0 ο δεύτερος παίκτης θα προσπαθεί να επηρεάσει τις γνώμες προς το 1 Τελικό αποτέλεσμα: Η μέση τιμή των τελικών γνωμών όλων των κόμβων. Δύο κριτήρια: Εάν η μέση τιμή είναι < 0.5 κέρδισε ο παίκτης του 0, εάν είναι > 0.5 κέρδισε ο παίκτης του 1, εάν είναι 0.5 τότε είναι ισοπαλία. Η απόλυτη τιμή της απόστασης της μέσης τιμής από την τιμή που επιδιώκει ένας παίκτης είναι επίσης ένα μέτρο της επιτυχίας του. Δηλαδή εάν η μέση τιμή είναι 0.6 τότε ο παίκτης του 0 έχει χάσει, αλλά έχει καταφέρει να επηρεάσει κατά 0.4 το σκορ. Εάν η μέση τιμή ήταν 0.8, τότε ο παίκτης 0 θα είχε επηρεάσει μόνο κατά 0.2.

Εργασία 3 - Κινήσεις Κάθε παίκτης έχει το δικαίωμα να κάνει μερικώς πεισματάρηδες μέχρι πέντε κόμβους του κοινωνικού γραφήματος. Ουσιαστικά δηλαδή μπορεί να προσπαθήσει να εξαγοράσει μέχρι πέντε κόμβους του γραφήματος. Πως; Μπορεί να συνδέσει μέχρι πέντε κόμβους με έναν κόμβο απόλυτα πεισματάρη που έχει τη γνώμη που υποστηρίζει ο παίκτης. Κάθε σύνδεση έχει ένα βάρος (το ποσό της δωροδοκίας) Συνολικά κάθε παίκτης μπορεί να επενδύσει μέχρι 200 μονάδες βάρους (πχ. χρήματος).

Εργασία 3 Δωροδοκία κόμβων Ο παίκτης 0 επηρεάζει (δωροδοκεί) με βάρος 150 τον κόμβο και με βάρος 50 τον κόμβο 4. Ο παίκτης 1 επηρεάζει με βάρος 200 τον κόμβο 3. Στο αρχικό γράφημα το συνολικό βάρος των εξερχόμενων ακμών για κάθε κόμβο είναι 100 και μοιράζεται ίσα σε όλες τις ακμές. Μετά τις κινήσεις των παικτών, στους κόμβους που έχουν νέες εξερχόμενες ακμές, κανονικοποιούνται τα βάρη ώστε να έχουν άθροισμα 150 πάλι 100. Οι αναδρομικές ακμές (loops) πάνω στους κόμβους 100 Π 0 και Π 1 τους κάνουν απόλυτα πεισματάρηδες. 100 Π 0 200 2 3 4 1 5 Π 1 50

Το αρχικό κοινωνικό γράφημα 100/3 1 2 50 50 100/3 25 50 3 25 50 100/3 100 5 25 4 25

Οι παρεμβάσεις στο κοινωνικό γράφημα 100 100 150 Π 25 50 0 50 200 2 3 100/3 100/3 50 25 25 50 100/3 4 1 100 25 5 Π 1 50

Το κανονικοποιημένο κοινωνικό γράφημα 100 100 60 Π 50/3 20 0 50/3 200/3 2 3 100/3 100/3 20 50/3 50/3 50/3 100/3 4 1 100 50/3 5 Π 1 100/3

Εργασία 3 Μπόνους - Σκορ Σε κάθε εκτέλεση του GraphSearch καταγράφεται στον server ποιους κόμβους και με πόσο βάρος επιλέγει να εξαγοράσει ο αλγόριθμος Μπόνους Στο μόνους μέρος θα εκτελεστούν όλες οι αναμετρήσεις ανά δύο, των κινήσεων που θα προτείνουν οι φοιτητές. Μετά την παράδοση όλων των εργασιών, για δύο συγκεκριμένα γραφήματα (execution mode 1 και 2) θα γίνει το εξής: Η απάντηση από κάθε εργασία θα παίξει με τις απαντήσεις όλων των άλλων εργασιών, σε παιχνίδι με δύο παίκτες. Το συνολικό σκορ κάθε φοιτητή θα προκύπτει από το πόσες νίκες έχει ο παίκτης του, και τη συνολική επιρροή που άσκησε ο παίκτης του

Εργασία 3 Υπολογισμός Σκορ Μετά την παράδοση όλων των εργασιών για τα δύο συγκεκριμένα γραφήματα των execution mode 1, και execution mode 2. θα γίνει το εξής: Η απάντηση από κάθε εργασία θα παίξει με τις απαντήσεις όλων των άλλων εργασιών, σε παιχνίδια με δύο παίκτες. Το συνολικό σκορ κάθε φοιτητή θα προκύπτει από το πόσες νίκες θα πετύχει ο παίκτης του, και από τη συνολική επιρροή που άσκησε ο παίκτης του. Θα γίνει δηλαδή ένα πρωτάθλημα μεταξύ όλων των απαντήσεων. Αυτό θα γίνει ξεχωριστά για τα δύο γραφήματα των execution modes 1 και 2. Όλη η διαδικασία θα εκτελεστεί αυτόματα στον server χωρίς καμία ανάμειξη των φοιτητών ή των εργασιών τους. θα χρησιμοποιηθούν οι απαντήσεις που θα έχουν καταγραφεί για τα αντίστοιχα PROOF-OF-PARTICIPATION. Το μέρος αυτό της εργασίας 3 έχει χαρακτήρα μπόνους.

References Social Choice and Social Networks (Course: Fall 2010, stat.berkeeley.edu), Elchanan Mossel, UC Berkeley Social and Economic Networks, Matthew O. Jackson, Princeton University Press Networks, Crowds, and Markets: Reasoning about a Highly Connected World, David Easley and Jon Kleinberg, Cambridge University Press Markov Chains and Mixing Times, David A. Levin, Yuval Peres, Elizabeth L. Wilmer