ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

Σχετικά έγγραφα
ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 28 η Ελληνική Μαθηματική Ολυμπιάδα. "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 28 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 26 ΦΕΒΡΟΥΑΡΙΟΥ 2011 ( )

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Αρχιμήδης Μεγάλοι Έστω μια ακολουθία θετικών αριθμών για την οποία: i) α ν 2 α ν. για κάθε ν φυσικό διαφορετικό του 0.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Β' ΔΙΑΓΩΝΙΣΜΟΣ ΕΠΙΛΟΓΗΣ ΛΥΚΕΙΟΥ. «Ευκλείδης» Ημερομηνία: 4/03/2017 Ώρα εξέτασης: 10:00-14:30

Β ΓΥΜΝΑΣΙΟΥ ,,,,,,,

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1 Να υπολογίσετε την τιμή των αριθμητικών παραστάσεων: 2 24 : : 2, : και να τις συγκρίνετε.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 34 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 4 Μαρτίου 2017

: :

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΓΕΩΜΕΤΡΙΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

B τάξη Γυμνασίου : : και 4 :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μικρών τάξεων Ενδεικτικές λύσεις

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΥΚΛΕΙΔΕΙΑ ΓΕΩΜΕΤΡΙΑ. Χεμερινό εξάμηνο ΗΜΕΡΟΛΟΓΙΟ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2012

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Β ΛΥΚΕΙΟΥ

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΠΑΓΚΥΠΡΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΔΕΚΕΜΒΡΙΟΣ 2017

1 Ο ΚΕΦΑΛΑΙΟ Ενότητα 1.

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

Β τάξη Λυκείου. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Μαθηματικά προσανατολισμού Β Λυκείου

: :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 21 ΙΑΝΟΥΑΡΙΟΥ 2012

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 29 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2012

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

Πολλαπλασιάζοντας και τα δύο μέλη της σχέσης (1) επί 2, λαμβάνουμε = k+ ), (2) οπότε με αφαίρεση της (1) από τη (2) κατά μέλη, λαμβάνουμε:

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

Β ΓΥΜΝΑΣΙΟΥ. Πρόβλημα 1. (α) Να βρεθούν όλα τα μη μηδενικά κλάσματα α β, με αβ, μη αρνητικούς ακέραιους και

ΜΑΘΗΜΑΤΙΚΑ B ΛΥΚΕΙΟΥ

Ιωάννης Σ. Μιχέλης Μαθηματικός

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

1 ΘΕΩΡΙΑΣ...με απάντηση

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΘΕΩΡΗΤΙΚΗ ΓΕΩΜΕΤΡΙΑ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

ΘΕΩΡΙΑ Α ΓΥΜΝΑΣΙΟΥ. Η διαίρεση καλείται Ευκλείδεια και είναι τέλεια όταν το υπόλοιπο είναι μηδέν.

ΘΕΩΡΙΑ ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΣΑΞΗ: ΘΕΜΑ 1 ο. A. Τι ονομάζουμε τετραγωνική ρίζα θετικού αριθμού α ;

ΜΑΘΗΜΑΤΙΚΑ Α' ΓΥΜΝΑΣΙΟΥ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ σε word! ΕΠΙΜΕΛΕΙΑ: ΚΩΝΣΤΑΝΤΙΝΟΣ ΤΣΟΛΚΑΣ

: :

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

Γραμμή. Σημείο. κεφαλαίο γράμμα. Κάθε γραμμή. αποτελείται. Ευθεία κι αν αρχή και χωρίς. τέλος! x x

2 η εκάδα θεµάτων επανάληψης

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

Τράπεζα συναρτήσει των διανυσμάτων α,β,γ. Μονάδες 13 β) να αποδείξετε ότι τα σημεία Α, Β, Γ είναι συνευθειακά. Μονάδες 12

Για το Διοικητικό Συμβούλιο της Ελληνικής Μαθηματικής Εταιρείας

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

Μαθηματικά A Γυμνασίου

Μαθηματικά Α Γυμνασίου. Επαναληπτικές ερωτήσεις θεωρίας

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΚΕΦΑΛΑΙΟ 1ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΝΟΤΗΤΑ 3: ΓΕΩΜΕΤΡΙΚΗ ΕΡΜΗΝΕΙΑ ΤΟΥ ΜΕΤΡΟΥ - ΤΡΙΓΩΝΙΚΗ ΑΝΙΣΟΤΗΤΑ

Θέματα μεγάλων τάξεων

Αγαπητοί μαθητές, Κάθε κεφάλαιο περιέχει :

Α Τάξη Γυμνασίου Μ Α Θ Η Μ Α Τ Ι Κ Α. Ι. Διδακτέα ύλη

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 35 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 3 Μαρτίου 2018 Θέματα μεγάλων τάξεων Ενδεικτικές λύσεις

Μαθηματικά Προσανατολισμού Β Λυκείου Ασκήσεις από την Τράπεζα θεμάτων Ευθεία Εξίσωση ευθείας

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

1 x και y = - λx είναι κάθετες

ΚΕΦΑΛΑΙΟ 1 ο ΔΙΑΝΥΣΜΑΤΑ

Transcript:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ ΕΜΕ 8 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ 6 ΦΕΒΡΟΥΑΡΙΟΥ 0 Ενδεικτικές Λύσεις θεμάτων μεγάλων τάξεων ΠΡΟΒΛΗΜΑ Να λύσετε στους ακέραιους την εξίσωση 4 xy y x = xy 6. Λύση Μετά τις πράξεις διαπιστώνουμε ότι η δεδομένη εξίσωση είναι ισοδύναμη με την εξίσωση xy x y 6 = 0 xy xy ( x y) xy ( x y) + = x y Από τη μορφή των () και () προκύπτει ότι αν ( ) 6 6 0 xy x y = 6 x y ή xy x y = 6 x y. xy x y = 6 x y () ή xy y x = 6 x y. () x0 y 0 είναι λύση της () τότε το ζευγάρι ( y 0 x 0 ) είναι λύση της () και αντιστρόφως. Επομένως αρκεί να λύσουμε μόνον την εξίσωση (). Επειδή xy η εξίσωση () είναι ισοδύναμη με : { xy = 6 x y = }( Σ ) ή { xy = 6 x y = }( Σ) ή{ xy = x y = }( Σ ) ή { xy = x y = }( Σ4) ή{ xy = x y = 6}( Σ 5) ή { xy = x y = 6}( Σ6) ή{ xy = x y = }( Σ 7) ή { xy = x y = }( Σ8). Από τα 8 συστήματα μόνον τα ( Σ) ( Σ) ( Σ 8) δίνουν τις ακέραιες λύσεις: ( xy ) = ( )( xy ) = ( ) ( xy ) = ( ) ( xy ) = ( ) ( xy ) = ( ) και ( xy ) = ( ).. Σύμφωνα με όσα είπαμε παραπάνω η εξίσωση () έχει στους ακέραιους τις λύσεις ( xy ) = ( )( xy ) = ( )( xy ) = ( ) xy = xy = και xy = ).. ( ΠΡΟΒΛΗΜΑ Στο καρτεσιανό επίπεδο Oxy θεωρούμε τα σημεία A(40) A(40) A 40(4040) καθώς και τα ευθύγραμμα τμήματα OA OA OA 40. Ένα σημείο του καρτεσιανού επιπέδου Oxy θα το ονομάζουμε καλό όταν οι συντεταγμένες του είναι ακέραιοι αριθμοί και βρίσκεται στο εσωτερικό (δηλαδή δεν ταυτίζεται με κάποιο από τα άκρα του) ενός ευθυγράμμου τμήματος ΟΑ i i = 40. Επίσης ένα από τα ευθύγραμμα τμήματα OA OA OA 40 θα το ονομάζουμε καλό όταν περιέχει ένα τουλάχιστον καλό σημείο. Να υπολογισθεί το πλήθος των καλών σημείων και το πλήθος των καλών ευθυγράμμων τμημάτων.

Λύση. Στη λύση που ακολουθεί θα συμβολίζουμε με MK Δ ( kl ) το μέγιστο κοινό διαιρέτη των ακεραίων αριθμών kl. Σχήμα Ένα σημείο M( kl ) θα ανήκει στο εσωτερικό του ευθυγράμμου τμήματος OA i αν και μόνο αν τα διανύσματα OM και OA i έχουν τον ίδιο συντελεστή διεύθυνσης i l (με kl ακέραιους αριθμούς και 0< k 40) δηλαδή πρέπει να ισχύει = (με kl 40 k ακέραιους αριθμούς και 0< k 40). i Για να είναι τώρα το ευθύγραμμο τμήμα OA i καλό θα πρέπει το κλάσμα να 40 μην είναι ανάγωγο (ώστε να δημιουργούνται ισοδύναμα με το ακέραιους όρους που θα δημιουργούν το συντελεστή διεύθυνσης k l i 40 κλάσματα με και τις αντίστοιχες συντεταγμένες του καλού σημείου M( kl ) ). Επομένως για να υπάρχει καλό σημείο στο ευθύγραμμο τμήμα OA i (ώστε να χαρακτηριστεί και το ίδιο ως καλό ) θα πρέπει MK Δ (40 i) >. Αν τώρα MK Δ (40 i) > τότε θα υπάρχουν MK Δ (40 i) καλά σημεία στο ευθύγραμμο τμήμα OAi. Στο σημείο A (40) αντιστοιχεί το καλό ευθύγραμμο τμήμα OA στο οποίο ανήκει το καλό σημείο (0). Στο σημείο A 4(404) αντιστοιχεί το καλό ευθύγραμμο τμήμα OA στο οποίο ανήκουν τα καλά σημεία (0) (0) (0). Με αυτό τον τρόπο δημιουργούμε τον πίνακα: 4 A(40) ΜΚΔ(40)= A40(4040) ΜΚΔ(4040)=40 9 A4(404) ΜΚΔ(404)=4 A8(408) ΜΚΔ(408)= A5(405) ΜΚΔ(405)=5 4 A6(406) ΜΚΔ(406)=4 A6(406) ΜΚΔ(406)= A5(405) ΜΚΔ(405)=5 4 A8(408) ΜΚΔ(408)=8 7 A4(404) ΜΚΔ(404)= A0(400) ΜΚΔ(400)=0 9 A(40) ΜΚΔ(40)=8 7 A(40) ΜΚΔ(40)=4 A0(400) ΜΚΔ(400)=0 9 A4(404) ΜΚΔ(404)= A8(408) ΜΚΔ(408)=4 A5(405) ΜΚΔ(405)=5 4 A6(406) ΜΚΔ(406)= A6(406) ΜΚΔ(406)=8 7 A5(405) ΜΚΔ(405)=5 4

A8(408) ΜΚΔ(408)= A4(404) ΜΚΔ(404)=8 7 A0(400) ΜΚΔ(400)=0 9 A(40) ΜΚΔ(40)= 60 80 Από τον παραπάνω πίνακα συμπεραίνουμε ότι το πλήθος των καλών τμημάτων είναι 4 και το πλήθος των καλών σημείων 40. Παρατηρήσεις. Ο παραπάνω πίνακας έχει ευρεία ανάπτυξη για διδακτικούς λόγους.. Ο υπολογισμός του πίνακα διευκολύνεται σημαντικά με τη χρησιμοποίηση των ιδιοτήτων του μέγιστου κοινού διαιρέτη: MK Δ ( kl ) = MK Δ ( lk ) = MK Δ ( l k k) = MK Δ( l k k).. Το πλήθος των καλών ευθυγράμμων τμημάτων μπορεί να υπολογιστεί με τη βοήθεια της συνάρτησης φ του Euler. Είναι γνωστό ότι n φ( n) παριστά το πλήθος των θετικών ακεραίων που είναι μικρότεροι ή ίσοι με τον n και δεν είναι πρώτοι προς αυτόν. Επειδή όμως 40 = 5 έχουμε: 4 φ(40) = 40 = 40 = 6. 5 5 Άρα το πλήθος των καλών ευθυγράμμων τμημάτων είναι 40 φ(40) = 4. ΠΡΟΒΛΗΜΑ Αν abc είναι θετικοί πραγματικοί αριθμοί με άθροισμα 6 να προσδιορίσετε τη μέγιστη τιμή της παράστασης: S = a + bc + b + ca + c +ab.. Λύση. Χρησιμοποιούμε την ανισότητα αριθμητικού γεωμετρικού μέσου ως εξής: a + bc+ + a + bc = ( a + bc) = ( a + bc+4 ) b + ca+ + b + ca = ( b + ca) = ( b + ca+ 4 ) c + ab+ + c + ab = ( c + ab) = ( c + ab+4 ) από τις οποίες με πρόσθεση κατά μέλη λαμβάνουμε S = a + bc + b + ca + c + ab ( a + b + c + ab + bc + ca + 7) 6 ( a b c) 7 8 = + + + = = =. 8 Η ισότητα ισχύει όταν

( a b)( a+ b c) = ( b c)( b+ c a) = c + ab= ( a b)( 6 c) = 0 ( b c)( 6 a) = 0 c + ab= a = b= c=. Επομένως η μέγιστη τιμή της παράστασης είναι a= b= c=. a + bc= b + ca = c + ab= 0 0 και λαμβάνεται όταν είναι Παρατήρηση. Η επιλογή του αριθμού ως δεύτερου και τρίτου όρου για την εφαρμογή της ανισότητας αριθμητικού γεωμετρικού μέσου οφείλεται στο ότι μόνον για αυτόν είναι δυνατόν να αληθεύει η ισότητα και στις τρεις επιμέρους ανισότητες. Αυτό είναι αναγκαίο για είναι δυνατόν η παράσταση να πάρει την τιμή που εμφανίζεται ως ένα πάνω φράγμα της. Για παράδειγμα αν είχαμε χρησιμοποιήσει τις ανισότητες a + bc+ a + bc = ( a + bc ) b + ca+ b + ca = ( b + ca ) c + ab+ c + ab = ( c + ab ) τότε με πρόσθεση κατά μέλη θα βρίσκαμε a + b + c + ab + bc + ca +6 S = a + bc + b + ca + c + ab ( a+ b+ c) + 6 4 = = = 4. Η ισότητα στην τελευταία σχέση δεν μπορεί να αληθεύει όπως προκύπτει από το σύστημα a + bc= b + ca= c + ab= ( a b c) + + = άτοπο.. Εναλλακτικά θα μπορούσαμε να χρησιμοποιήσουμε τον μετασχηματισμό x = a + bc y = b + ca z = c + ab μέσω του οποίου η συνάρτηση γίνεται S( x y z) = x+ y+ z της οποίας ζητάμε τη μέγιστη τιμή υπό τη συνθήκη x + y + z = a+ b+ c = 6. Στη συνέχεια θα μπορούσε κανείς να χρησιμοποιήσει τη μέθοδο των πολλαπλασιαστών του Lagrange χωρίς σοβαρό πρόβλημα στις πράξεις. Επίσης θα μπορούσε κάποιος να εργαστεί χρησιμοποιώντας και άλλες κλασικές ανισότητες όπως η ανισότητα του Hlder ή την ανισότητα των δυνάμεων. ΠΡΟΒΛΗΜΑ 4 Δίνεται οξυγώνιο τρίγωνο ABC ( με AB < AC ) εγγεγραμμένο σε κύκλο cor ( ) (με κέντρο το σημείο O και ακτίνα R ). Η προέκταση του ύψους AD τέμνει τον περιγεγραμμένο κύκλο στο σημείο E και η μεσοκάθετη ( μ ) της πλευράς AB τέμνει την AD στο σημείο L. Η BL τέμνει την AC στο σημείο M και τον περιγεγραμμένο κύκλο cor ( ) στο σημείο N. Τέλος η EN τέμνει τη μεσοκάθετη ( μ ) στο σημείο Z.

Να αποδείξετε ότι: MZ BC ( CA = CB ή Ζ Ο ) δηλαδή ότι η MZ είναι κάθετη στην BC αν και μόνο αν το τρίγωνο ABC είναι ισοσκελές με CA = CB ή το σημείο Z ταυτίζεται με το κέντρο O του περιγεγραμμένου κύκλου cor ( ). Λύση Επειδή το σημείο L ανήκει στη μεσοκάθετη του AB θα ισχύει: Â = = Bˆ ωˆ και κατά συνέπεια AN = BE. Άρα το τετράπλευρο ABEN είναι ισοσκελές τραπέζιο με AB // EN οπότε η ευθεία ( μ ) είναι μεσοκάθετος της EN και = Nˆ ωˆ. Ê = Σχήμα Έστω ότι το σημείο Z ταυτίζεται με το σημείο O (Σχήμα ). Τότε η EN γίνεται διάμετρος του κύκλου οπότε E Bˆ N = Bˆ + Bˆ = 90. Αν Ĉ = ϕˆ τότε από το εγγεγραμμένο τετράπλευρο ABEC έχουμε: Bˆ = Â = 90 ϕˆ. Από τη τελευταία ισότητα (σε συνδυασμό με την ισότητα Bˆ Bˆ = 90 + ) έχουμε: Bˆ = ϕˆ. Άρα το M ανήκει στη μεσοκάθετη του BC ( MB = MC ). Το σημείο ανήκει επίσης στη μεσοκάθετη του BC και επειδή ταυτίζεται με το σημείο Z συμπεραίνουμε ότι η MZ είναι μεσοκάθετος της BC. Έστω ότι το τρίγωνο ABC είναι ισοσκελές ( CA = CB ). Τότε η μεσοκάθετος ( μ ) της AB είναι ύψος του τριγώνου ABC (Σχήμα ) δηλαδή το L είναι το ορθόκεντρο του τριγώνου ABC και κατά συνέπεια το σημείο M είναι το μέσο του τμήματος LN (η BM είναι ύψος και το σημείο N είναι το συμμετρικό του ορθοκέντρου L ως προς την AC ). O

Σχήμα Το σημείο Z είναι το μέσο του τμήματος EN (διότι η ευθεία ( μ ) είναι μεσοκάθετος της EN ). Άρα η MZ είναι παράλληλη με την AD. Στη συνέχεια θα υποθέσουμε ότι η MZ είναι κάθετη στην BC και θα αποδείξουμε ότι το τρίγωνο ABC είναι ισοσκελές ( CA = CB ) ή το σημείο Z ταυτίζεται με το κέντρο O του περιγεγραμμένου κύκλου (Σχήμα 4). Έστω λοιπόν ότι η MZ είναι κάθετη στην BC. Τότε η MZ θα είναι παράλληλη με την AE ( MZ // AE ). Αν T είναι η τομή της MZ με την AN τότε το T είναι το μέσο AN (διότι Z είναι το μέσο της NE και MZ // AE ). Άρα τα τρίγωνα MTA και MTN έχουν το ίδιο εμβαδό ( E = ( MTA) = ( MTN ) = ). E Σχήμα 4 Από την παραλληλία MZ // AE προκύπτει η μεταφορά γωνιών στο τρίγωνο AMN στο οποίο η MT είναι διάμεσος. Σημειώνουμε ότι:

B Lˆ D = ωˆ (διότι η B Lˆ D είναι εξωτερική γωνία του ισοσκελούς τριγώνου LEN ). L Mˆ Z = ωˆ (διότι LD // MZ οπότε BLˆ D = L Mˆ Z = ωˆ ). Χρησιμοποιώντας τώρα το γνωστό τύπο E = βγ ημa για το εμβαδό τριγώνου έχουμε: E = mnημ( 90 ϕ ) = mxημ( 90 ω ) E = knημω = kxημϕ Διαιρώντας κατά μέλη τις παραπάνω σχέσεις έχουμε: συν ϕ συν ω = ημ ϕ = ημ 4ω. ημ ω ημ ϕ Από τη τελευταία ισότητα ημιτόνων (και με δεδομένο ότι οι γωνίες ω ϕ είναι γωνίες τριγώνου) καταλήγουμε στις ισότητες: π ϕ = 4ω ϕ = ω ( A ) ή ϕ = π 4ω ϕ + ω = ( B ). Από την ισότητα ( A ) συμπεραίνουμε ότι το τρίγωνο MTN είναι ισοσκελές ( TM = TN ) και κατά συνέπεια το τρίγωνο AMN είναι ορθογώνιο στο M ( A Mˆ N = 90 ). Άρα η BM είναι ύψος του τριγώνου ABC και επομένως το L ορθόκεντρο δηλαδή το τρίγωνο ABC είναι ισοσκελές ( CA = CB ) διότι η μεσοκάθετος KZ είναι και ύψος. Από την ισότητα ( B ) συμπεραίνουμε ότι το τρίγωνο MTN είναι ορθογώνιο στο T δηλαδή η MT είναι μεσοκάθετος της AN. Άρα η MT θα διέρχεται από το O (οπότε Z O ). Παρατήρηση Σχήμα 5 Σχήμα 6 Αν το τρίγωνο ABC είναι ισοσκελές με CA = CB και Ĉ = ˆ ϕ = 45 τότε τα τρίγωνα TMN TMA και AMN είναι ορθογώνια και ισοσκελή. Το τετράπλευρο ABCN είναι ισοσκελές τραπέζιο. Άρα η TM είναι μεσοκάθετη της BC.

Στη περίπτωση αυτή και το σημείο Z ταυτίζεται με το σημείο O οπότε η διάζευξη των προτάσεων CA = CB ή Ζ Ο είναι εγκλειστική.