ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

Σχετικά έγγραφα
ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΘΕΜΑΤΑ ΘΕΜΑ 1. α) Να λύσετε την εξίσωση : 2 2 2x. β) Αν α είναι η ϑετική εξίσωσης του ερωτήµατος (α), να λύσετε την ανίσωση : 1 x < α.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 15

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ ΣΥΝΟΛΑ-ΠΙΘΑΝΟΤΗΤΕΣ

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 3. Δίνονται τα σύνολα 2

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ. 1.Δίνεται η εξίσωση f x x 4x. Να βρείτε την τιμή του πραγματικού αριθμού λ για την οποία η

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

Άλγεβρα Α Λυκείου Επαναληπτικές ασκήσεις

(α > β και γ > δ)=> αγ > βδ. τύπο S. άνισες. Δίνεται η συνάρτηση f με τύπο f( χ )= y j x »/ Ç + 3. παρακάτω προτάσεις: ΜΟΝΑΔΕΣ 2x5=10

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

ΓΕ.Λ ΕΞΑΠΛΑΤΑΝΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ : ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ. 1 ) Αν Α και Β είναι δύο ασυμβίβαστα ενδεχόμενα ενός δειγματικού χώρου

ΒΑΣΙΚΑ ΘΕΜΑΤΑ ΑΠΟ ΤΟ ΒΙΒΛΙΟ ΤΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟΥ

ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 Θ ΕΩΡΙA 10

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Γεώργιος Α. Κόλλιας - μαθηματικός. 150 ασκήσεις επανάληψης. και. Θέματα εξετάσεων

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ

1 η δεκάδα θεµάτων επανάληψης

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΑΣΚΗΣΕΙΣ και ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Α ΛΥΚΕΙΟΥ

x y z xy yz zx, να αποδείξετε ότι x=y=z.

Τάξη A Μάθημα: Άλγεβρα

1 ΔΙΑΓΩΝΙΣΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΛΥΚΕΙΩΝ ΤΗΣ ΡΟΔΟΥ ΤΗΣ Α ΤΑΞΗΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΔΙΑΓΩΝΙΣΜΑ 1 Ο

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

Α Λ Γ Ε Β Ρ Α ΤΗΣ Α Λ Υ Κ Ε Ι Ο Υ Α. ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟΥ - ΛΑΘΟΥΣ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.

Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

ΓΕΝΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΔΙΑΓΩΝΙΣΜΑΤΑ ΣΕ ΟΛΗ ΤΗΝ ΔΙΔΑΚΤΕΑ ΥΛΗ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

Α Λυκείου. Άλγεβρα Μίλτος Παπαγρηγοράκης Χανιά

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

1, 2, Β 3, 2,λ. 7, να 2 βρείτε την τιμή του k. x x y y Α)Να βρείτε τις τιμές των x,y για τις οποίες ορίζεται η παράσταση. Β)Να αποδείξετε ότι Α=-1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 1 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

4 η δεκάδα θεµάτων επανάληψης

4 η δεκάδα θεµάτων επανάληψης

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

ΠΡΟΤΕΙΝΟΜΕΝΟΣ ΣΧΕΔΙΑΣΜΟΣ ΕΠΑΝΑΛΗΨΗΣ ΜΑΘΗΜΑΤΙΚΩΝ Γ ΓΥΜΝΑΣΙΟΥ

Άλγεβρα 1 ο Κεφάλαιο ... ν παράγοντες

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ. και 25x i). Να κάνετε τις πράξεις στο πολυώνυμο.

ΜΑΘΗΜΑΤΙΚΑ Γ Γυμνασίου

3 η δεκάδα θεµάτων επανάληψης

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι < α

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ Γ ΛΥΚΕΙΟΥ - ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ~ ΣΥΝΔΥΑΣΤΙΚΑ

1 ΘΕΩΡΙΑΣ...με απάντηση

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

AΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ ΤΗΣ Α

f (x) = x2 5x + 6 x 3 S 2 P 2 0

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ A ΛΥΚΕΙΟΥ ΕΠΑΛ

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ. Ηµεροµηνία: Κυριακή 17 Απριλίου 2016 ιάρκεια Εξέτασης: 2 ώρες ΕΚΦΩΝΗΣΕΙΣ

Θέματα Εξετάσεων ΕΠΑ.Λ. Ορισμένα από τα θέματα συντάχθηκαν πριν την αναδιάταξη της διδακτέας ύλης μεταξύ Α και Β Λυκείου

παράσταση της f τέμνει τον άξονα ψ ψ στο σημείο με τεταγμένη 3 και διέρχεται από το σημείο

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ στα ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ. Α. Άλγεβρα

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ 3ο: ΠΙΘΑΝΟΤΗΤΕΣ ΘΕΜΑ Α. α) Τι λέγεται δειγματικός χώρος και τι ενδεχόμενο ενός πειράματος τύχης;

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

ΑΣΚΗΣΕΙΣ - ΠΙΘΑΝΟΤΗΤΕΣ

ΦΥΛΛΑΔΙΟ ΑΣΚΗΣΕΩΝ ΤΗΣ ΑΛΓΕΒΡΑΣ Β ΛΥΚΕΙΟΥ

Ιωάννης Σ. Μιχέλης Μαθηματικός

-1- ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Ορισμένες σελίδες του βιβλίου

ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ. ΘΕΜΑ 2ο

1.1 ΠΡΑΞΕΙΣ ΜΕ ΠΡΑΓΜΑΤΙΚΟΥΣ ΑΡΙΘΜΟΥΣ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους ( ) ( ) ( ) ( ) ( ) ( ) είναι πραγματικός, γ) Το 3 είναι άρρητος,

i) Αν (,, ) είναι μια πυθαγόρεια τριάδα και είναι ένας θετικός ακέραιος, να αποδείξετε ότι και η τριάδα (,,

ΘΕΩΡΙΑ ΑΛΓΕΒΡΑΣ της Α ΛΥΚΕΙΟΥ

Θέματα απολυτήριων εξετάσεων ΑΣΚΗΣΕΙΣ

25 Λυμένα 2 α θέματα Άλγεβρας από την Τράπεζα Θεμάτων. 1 ο GI_A_ALG_2_999

ΔΕΙΓΜΑΤΑ ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. 1 ο δείγμα

1ο τεταρτημόριο x>0,y>0 Ν Β

Transcript:

ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών της Γ τάξης i Την πιθανότητα ώστε ο μαθητής να είναι της Α τάξης Το πλήθος των μαθητών της Β τάξης ΘΕΜΑ Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3(), Να βρείτε τις πιθανότητες: (),(),(),() ΘΕΜΑ 3 Έστω Α, Β ενδεχόμενα ενός δειγματικού χώρου Ω, όπου Ρ(Α) είναι ρίζα της εξίσωσης x - 5x + = 0 και Ρ(Β) η πιθανότητα στη ρίψη ενός ζαριού να φέρουμε ένδειξη μικρότερη του 5 i Να βρείτε τις πιθανότητες Ρ(Α) και Ρ(Β) i Να αποδείξετε ότι τα Α, Β δεν είναι ασυμβίβαστα Αν επί πλέον γνωρίζουμε ότι το ενδεχόμενο είναι βέβαιο, να βρείτε τις πιθανότητες: (),(),(()()) ΘΕΜΑ 4 Δίνονται τα σύνολα: {x N / x 7}, {x N / x 6 0 3x 14 0} {x Z /(3x )(x 4x) 0} i Να βρείτε με αναγραφή τα παραπάνω σύνολα Να βρείτε τα σύνολα Β ως προς το Ω, ΑΒ, ΑΒ, Α Β, Β Α i Αν Ω είναι ο δειγματικός χώρος ενός πειράματος τύχης που αποτελείται από ισοπίθανα απλά ενδεχόμενα και τα Α, Β ενδεχόμενα του Ω, να βρείτε τις πιθανότητες των ενδεχομένων: Α, Β, Α Β, A B,

ΘΕΜΑ 5 Έστω Α, Β ενδεχόμενα δειγματικού χώρου Ω με Ρ( ) = λ - 5λ +, Ρ(Α) = λ και Ρ(Β) = λ - 1/4, λ R i Να βρείτε το λ ώστε τα Α, Β να είναι ξένα μεταξύ τους Για την τιμή του λ που βρήκατε να υπολογίσετε τις πιθανότητες (), Ρ(Α-Β), Ρ(Β-Α) ΘΕΜΑ 6 i Οι αριθμοί α, β είναι μη μηδενικοί και διάφοροι μεταξύ τους και ισχύει α β +1 = +1 α β Να αποδείξετε ότι οι αριθμοί α και β είναι αντίστροφοι Να υπολογίσετε την τιμή της παράστασης () K 000 4 504 5 19 4 8 ΘΕΜΑ 7 i Να συγκρίνετε τους αριθμούς α + β + 9 και α(3 - β) Να εξετάσετε πότε ισχύει η ισότητα α + β + 9 = α(3 - β) ΘΕΜΑ 8 Για τους πραγματικούς αριθμούς x, y ισχύει: d(x, 3y) = 3y x i Να αποδείξετε ότι x y 3 Να υπολογίσετε τα x, y, αν επιπλέον ισχύει 3y x και x 5 = - 43 ΘΕΜΑ 9 Δίνονται οι αριθμοί α, β και γ i Να αποδείξετε ότι Να αποδείξετε ότι α β γ α β γ α β γ i Να αποδείξετε ότι ο 1 είναι η τετραγωνική ρίζα του α - 1

ΘΕΜΑ 10 Για τον αριθμό x ισχύει: (x + 1)(x 1)(x + 11) 0 i Να συγκρίνετε τους αριθμούς x 1, x + 1 Να βρείτε το πρόσημο των αριθμών x 1 και x + 1 i Να βρείτε το διάστημα μέσα στο οποίο παίρνει τιμές ο αριθμός x iv Να γράψετε χωρίς απόλυτη τιμή την παράσταση Α = x 1 + 5 ΘΕΜΑ 11 Δίνεται την εξίσωση ταυτότητα i Να προσδιορίσετε την τιμή του Αν, να λύσετε την εξίσωση 4 x 6 8 0 (1), η οποία είναι x 3 1 x 6 3 i Αν να λύσετε την ανίσωση x x 3 1 ΘΕΜΑ 1 i Να βρείτε το πρόσημο του τριωνύμου Για τις διάφορες τιμές του R εξίσωσης x x 6 0, (1) f() 6 να βρείτε το πλήθος των ριζών της i Αν η εξίσωση (1) έχει δύο ρίζες άνισες, να βρείτε το R να είναι αντίστροφες ώστε οι ρίζες iv Αν η εξίσωση (1) έχει δύο άνισες πραγματικές ρίζες με x 1, x 0, να βρείτε το 1 1 x 1x R ώστε x x x x 1 1

ΘΕΜΑ 13 Δίνεται η εξίσωση x x 1 0,(1) R i Να βρείτε το R, ώστε η εξίσωση (1) να έχει πραγματικές ρίζες Να βρείτε το R, ώστε η (1) να έχει δύο ίσες πραγματικές ρίζες i Να βρείτε το R, ώστε η εξίσωση (1) να μην έχει πραγματικές ρίζες iv Να βρείτε τον αριθμό R ώστε όπου x 1, x είναι οι άνισες ρίζες της εξίσωσης (1) 3x x 3x x x x x x 0, 1 1 1 1 ΘΕΜΑ 14 Δίνεται η εξίσωση x x 0, R,(1) 4 i Να βρείτε το R, ώστε η (1) να έχει μία διπλή πραγματική ρίζα Να βρείτε το R, ώστε η (1) να έχει δύο πραγματικές και άνισες ρίζες i Να βρείτε το R, ώστε η εξίσωση (1) να είναι αδύνατη στο R iv Να βρείτε το R ριζών της εξίσωσης (1) ώστε 7P 0, όπου P το γινόμενο των 1 ΘΕΜΑ 15 Δίνεται η εξίσωση x x 0, 0 (1) με 8 16 0, όπου Δ η διακρίνουσα της i Να αποδείξετε ότι η (1) έχει δυο άνισες πραγματικές ρίζες για κάθε α, β Έστω α β Α Να αποδείξετε ότι Β Αν S P = α, όπου S, P το άθροισμα και το γινόμενο αντίστοιχα των ριζών της εξίσωσης (1), να βρείτε τους πραγματικούς αριθμούς α και β

ΘΕΜΑ 16 i Να βρείτε τους 4 πρώτους όρους της ακολουθίας με γενικό όρο 1 1 Να εξετάσετε αν αυτοί οι όροι σχηματίζουν αριθμητική πρόοδο i Να αποδείξετε ότι γν > γν+1 ΘΕΜΑ 17 Έστω η ακολουθία με γενικό όρο 3 i Να βρείτε τους 3 πρώτους όρους της Να εξετάσετε αν οι αριθμοί: 14, 8, 95 είναι όροι της ακολουθίας αυτής i Να βρείτε τον όρο αν+1 και να αποδείξετε ότι η ακολουθία αν είναι iv αριθμητική πρόοδος με διαφορά ω = 3 Να βρείτε τον πραγματικό αριθμό x, ώστε ο ένατος όρος της να ισούται με 3 x ΘΕΜΑ 18 Έστω η ακολουθία με γενικό όρο 3 i Να εξετάσετε αν οι αριθμοί 3, 48, 013 είναι όροι της 8 Να βρείτε τον πρώτο όρο της και τον όρο α ν + 1 i Να αποδείξετε ότι είναι γεωμετρική πρόοδος και να βρείτε τον λόγο της λ ΘΕΜΑ 19 i Να βρείτε το x ώστε οι αριθμοί x + 6, 3 x, 9 x να είναι διαδοχικοί όροι γεωμετρικής προόδου Αν x = 3 και ο 9 x είναι ο τέταρτος όρος της παραπάνω γεωμετρικής προόδου να βρείτε τον λόγο λ και τον έβδομο όρος της

ΘΕΜΑ 0 i Να αποδείξετε ότι ( 1) 1 3, για κάθε Να γράψετε το γινόμενο: 4 816 104, σαν μια δύναμη του i Να αποδείξετε ότι 4816, για κάθε ΘΕΜΑ 1 i Να αποδείξετε ότι οι αριθμοί 3, 6, 1 αποτελούν διαδοχικούς όρους γεωμετρικής προόδου της οποίας να βρείτε το λόγο λ Να βρείτε τον 1 ο όρο και το άθροισμα των 10 πρώτων όρων αν i 1 3 Να γράψετε την παράσταση 1 7 8 με ρητό παρονομαστή ΘΕΜΑ Δίνεται το ορθογώνιο παραλληλόγραμμο ΚΛΜΝ του σχήματος με διαστάσεις x + και x i Να εκφράσετε την περίμετρο του ορθογωνίου σαν συνάρτηση του x Λ Μ x Κ x + Ν Να εκφράσετε το εμβαδόν του ορθογωνίου σαν συνάρτηση του x i Αν το εμβαδόν του ορθογωνίου είναι 63 cm, να υπολογίσετε την περίμετρό του ΘΕΜΑ 3 Έστω το σημείο Μ(λ - 7λ + 6, λ - 1-3), όπου λr i Ποιο το λr, ώστε το σημείο Μ να ανήκει στον θετικό ημιάξονα Οy Ποιο το λr, ώστε το σημείο Μ να βρίσκεται στο ο τεταρτημόριο i Αν λ = να βρεθούν τα συμμετρικά του Μ ως προς τον άξονα y y και ως προς την διχοτόμο 1 ης - 3 ης γωνίας

ΘΕΜΑ 4 i Να βρείτε το πεδίο ορισμού της συνάρτησης τον τύπο της χωρίς ριζικό στον παρονομαστή f(x) Να υπολογίσετε την παράσταση K f() f(7) x x και να γράψετε i Να αποδείξετε ότι ο αριθμός [f(5) f(3)] [f(5) f(3)] f(f(65)) είναι ακέραιος ΘΕΜΑ 5 i Να λυθεί η εξίσωση x 5x 6 0 x Να βρείτε το πεδίο ορισμού της συνάρτησης f(x) x 5x 6 i Να απλοποιήσετε τον τύπο της συνάρτησης f ΘΕΜΑ 6 i Να λυθεί η ανίσωση x 3x 4 0 Να βρείτε το πεδίο ορισμού της συνάρτησης f(x) x 3x 4 i Να βρείτε το συμμετρικό του σημείου M(,f( )) ως προς τους άξονες x x και y y, την αρχή των αξόνων O(0,0) και την διχοτόμο y x της 1 ης - 3 ης γωνίας των αξόνων ΘΕΜΑ 7 Έστω η συνάρτηση f(x) αx 4 αν x 0 x β 1 α x αν x 0 Η γραφική της παράσταση τέμνει τον x x στο (-, 0) και τον y y στο (0, 3) i Να βρείτε τα α και β Να βρείτε το λ, ώστε το σημείο Μ(λ, -) να ανήκει στην Cf

ΘΕΜΑ 8 Έστω οι συναρτήσεις f,g, με 3 f(x) x x και i Να βρείτε τα σημεία τομής της Cf με τον άξονα x x g(x) x 1 με x R Να βρείτε τα σημεία τομής της Cf με την C g i Να βρείτε τις τετμημένες των σημείων της Cg που βρίσκονται κάτω από τον άξονα y y ΘΕΜΑ 9 Έστω ευθεία (ε) με εξίσωση y = α x + β, τέτοια ώστε να σχηματίζει γωνία ω = 60 0 με τον άξονα x x και να διέρχεται από το σημείο M( 48, ) i Να βρείτε την εξίσωση της ευθείας (ε) Να εξετάσετε αν διέρχεται από το σημείο N( 300, 16) i Να αποδείξετε ότι κανένα σημείο της δεν βρίσκεται στο ο τεταρτημόριο ΘΕΜΑ 30 Στο διπλανό σχήμα δίνεται η γραφική παράσταση μιας συνάρτησης f(x) και μιας ευθείας (ε) i Nα αποδείξετε ότι η εξίσωση της ευθείας (ε) είναι η y = x + Να βρείτε τα f(-3), f(-), f(0), f(1) i Nα λύσετε την εξίσωση f(x) = 0 iv Να λύσετε την ανίσωση f(x) < x + v Να βρείτε το πλήθος των λύσεων της εξίσωσης f(x) = -

ΘΕΜΑ 31 (ΝΕΟ) Σε μία κάλπη υπάρχουν κόκκινες, πράσινες και άσπρες σφαίρες οι οποίες είναι όμοιες μεταξύ τους Αν οι κόκκινες είναι 5 και η πιθανότητα να επιλέξουμε στην τύχη μία κόκκινη είναι 5%, ενώ η πιθανότητα τυχαίας επιλογής μίας πράσινης είναι 40%, να βρείτε: i Το πλήθος των σφαιρών που υπάρχουν στην κάλπη Το πλήθος των πράσινων σφαιρών i Την πιθανότητα να επιλέξουμε μία άσπρη σφαίρα ΘΕΜΑ 3 (ΝΕΟ) Έστω Ρ(Α) η πιθανότητα ενός ενδεχομένου Α το οποίο δεν είναι ούτε αδύνατο ούτε βέβαιο i Να διατάξετε σε αύξουσα σειρά τους αριθμούς 1 P(A) 1,, 0, P(A) 1, 1, P(A) P(A) Να βρείτε από την διατεταγμένη σειρά, μια τριάδα αριθμών που να αποτελούν διαδοχικούς όρους αριθμητικής προόδου και μια τριάδα αριθμών που να αποτελούν διαδοχικούς όρους γεωμετρικής προόδου ΘΕΜΑ 33 (ΝΕΟ) Για τους πραγματικούς αριθμούς x, y ισχύουν: x και y 3 i Να αποδείξετε ότι: 3x + 7y + 1 8 Να βρείτε τα x, y αν ισχύει επιπλέον x + y = 5 ΘΕΜΑ 34 (ΝΕΟ) Έστω x 1, x οι ρίζες της εξίσωσης x 3x γ 0,με γ R, x1 0 και x x 1 1 i Να βρείτε τις ρίζες της, x1, x Να βρείτε τον πραγματικό αριθμό γ

ΘΕΜΑ 35 (ΝΕΟ) i Έστω (αν) μια αριθμητική πρόοδος με πρώτο όρο α1 και διαφορά ω Να γράψετε τις παραστάσεις K 3 5 και 1 7 σε συνάρτηση με το α1 και το ω Να βρείτε τον πρώτο όρο και τη διαφορά ω της αριθμητικής προόδου (αν), αν και 3 ΘΕΜΑ 36 (ΝΕΟ) Σε μια αριθμητική πρόοδο (α ν) ο δέκατος όρος της ισούται με 69 και ο εικοστός πρώτος με 10 i Να βρείτε τα α1, ω Να βρείτε τον τριακοστό πρώτο όρο της i Να βρείτε το άθροισμα των όρων μεταξύ του δέκατου και του πεντηκοστού όρου ΘΕΜΑ 37 (ΝΕΟ) Δίνονται οι πραγματικοί αριθμοί α, β, γ, διαφορετικοί μεταξύ τους Αν οι α, β, γ είναι οι τρεις πρώτοι όροι αριθμητικής προόδου με διαφορά ω και οι α, α + β, 3γ + α είναι οι τρεις πρώτοι όροι γεωμετρικής προόδου, τότε: i Να εκφράσετε τους β, γ ως συνάρτηση του α και του ω Να εκφράσετε τους α, α + β, 3γ + α ως συνάρτηση του α και του ω και να υπολογίσετε το ω i Να βρείτε τον 15 ο όρο της αριθμητικής προόδου και τον 8 ο της γεωμετρικής προόδου, το άθροισμα των 15 πρώτων όρων της αριθμητικής προόδου και των 8 της γεωμετρικής προόδου iv Να βρείτε ποιοι όροι της αριθμητικής προόδου βρίσκονται ανάμεσα στον 4 ο και 5 ο όρο της γεωμετρικής προόδου

ΘΕΜΑ 38 (ΝΕΟ) 1 Δίνονται οι αριθμοί 1 και 1 i Να βρείτε τον γεωμετρικό μέσο β των α και γ Να βρείτε τον 5 ο όρο της γεωμετρικής προόδου που έχει τρεις πρώτους όρους τους αριθμούς α, β, γ, i Να βρείτε το άθροισμα των 4 πρώτων όρων αυτής της γεωμετρικής προόδου ΘΕΜΑ 39 (ΝΕΟ) Έστω η συνάρτηση f(x) x, α, β 0, που έχει γραφική παράσταση ευθεία η οποία τέμνει τον άξονα y y στο σημείο Β(0, 4) και τον άξονα x x στο σημείο Α, έτσι ώστε το εμβαδόν του τριγώνου ΟΑΒ (Ο η αρχή των αξόνων) να ισούται με 8 τετραγωνικές μονάδες i Ποιος μπορεί να είναι ο τύπος της συνάρτησης f ; Ποια είναι η συνάρτηση f αν γνωρίζουμε ότι η γραφική της παράσταση σχηματίζει αμβλεία γωνία ω με τον άξονα x x και ποια είναι η γωνία ω ; ΘΕΜΑ 40 (ΝΕΟ) i Να αποδείξετε ότι α β(α β) αβ Να αποδείξετε ότι (α β) αβ Πότε i ισχύει η ισότητα; Έστω το παρακάτω οικόπεδο που αποτελείται από δύο τετράγωνα με πλευρές α και β Είναι γνωστό ότι τα α, β είναι οι ρίζες της εξίσωσης x 49x 550 0, (α, β σε μέτρα) Α) Να βρείτε το εμβαδόν του οικοπέδου χωρίς να υπολογίσετε τα α, β Β) Να υπολογίσετε την τιμή της παράστασης α β Κ = 550 β α β α 3 β + 550 α 49 3

ΘΕΜΑ 41 (ΝΕΟ) Έστω η συνάρτηση f(x) 6 x με πεδίο ορισμού το R i Να γράψετε σαν μια δύναμη με βάση το την παράσταση f(4) f(8) K f() Να παραγοντοποιήσετε την παράσταση 3 f(x) x, ώστε να έχει i παράγοντα 1 ου βαθμού ως προς x Να βρείτε το πεδίο ορισμού και να απλοποιήσετε τον τύπο της 14f(x) 14x g(x) x x συνάρτησης 7 ΘΕΜΑ 4 (ΝΕΟ) Δίνεται η συνάρτηση f () x x x i Να βρείτε το πεδίο ορισμού της f Να αποδείξετε ότι (( f 1) 3(0)) f 3 56(1) f i Να βρείτε την εξίσωση ου βαθμού η οποία έχει ρίζες τους αριθμούς 1 f (0) και 8 f (1) ΘΕΜΑ 43 (ΝΕΟ) Δίνεται η συνάρτηση f με τύπο f () x 9 x, R i Να βρείτε το πεδίο ορισμού της f Αν η γραφική παράσταση της f διέρχεται από το σημείο ( 5,8), να i υπολογίσετε τις τιμές του πραγματικού αριθμού κ Για κ = να βρείτε τα σημεία τομής της γραφικής παράστασης της f με τους άξονες x x και y y

ΘΕΜΑ 44 (ΝΕΟ) 10 Δίνεται η συνάρτηση f(x) x 3x 10 i Να βρείτε το πεδίο ορισμού της 9 Να αποδείξετε ότι f(0) 1 10 1 i Να λύσετε την εξίσωση (x 5) [f(x)] 100 ΘΕΜΑ 45 (ΝΕΟ) Έστω η συνάρτηση f(x)( 3)x, που έχει γραφική παράσταση ευθεία, η οποία τέμνει τον άξονα y y στο σημείο Β(0, 6) και είναι παράλληλη στην διχοτόμο 1 ης 3 ης γωνίας των αξόνων i Να βρείτε τα λ και β Να βρείτε το πεδίο ορισμού της συνάρτησης g(x) f(x) x i Να συγκρίνετε τους αριθμούς g(3) g( ) και ΘΕΜΑ 46 (ΝΕΟ) Έστω η συνάρτηση f () x x 1 με x R i Να παραγοντοποιήσετε την παράσταση Να λύσετε την εξίσωση ΘΕΜΑ 47 (ΝΕΟ) Έστω η συνάρτηση f ()(3)() x f x f 3 f () x x με 5 x R i Να γράψετε σαν μια δύναμη την παράσταση Να αποδείξετε ότι οι τιμές 1 1 g(0) K f ()(3)() x f x f 5 (4)(8) K f f f (1) 3 f (),(),( f ),() f f, με τη σειρά που 3 δίνονται είναι διαδοχικοί όροι γεωμετρικής προόδου i Να λύσετε την εξίσωση f () x 18

ΘΕΜΑ 48 (ΝΕΟ) Έστω η συνάρτηση f(x) λ x, λ 0, που έχει γραφική παράσταση ευθεία i Ποια τα σημεία τομής Μ, Ν της ευθείας με τους άξονες x x και y y i αντίστοιχα; Ποιο το εμβαδόν του τριγώνου ΟΜΝ σαν συνάρτηση του λ, όπου Ο η αρχή των αξόνων; Ποιο το λ ώστε το εμβαδόν (ΟΜΝ) να ισούται με 4 τ μον; ΘΕΜΑ 49 (ΝΕΟ) Έστω οι ευθείες ε1, ε με εξισώσεις : y = 4x 1 και y = (λ 5-30)x + 67 i Να βρείτε τα σημεία τομής της ε1 με τους άξονες x x και y y Να βρείτε το R ώστε ε1 // ε i Να εξετάσετε αν η ε1 διέρχεται από το σημείο Μ(μ + 3, μ) iv Αν μ = - να βρείτε το συμμετρικό του Μ ως προς τον y y και την y = x ΘΕΜΑ 50 (ΝΕΟ) i Ποια τα α, β, γ αν ισχύει 1 1 1 0 ; Αν P(A) 1 3P() 1 6P(A B) 1 0, να υπολογίσετε την πιθανότητα να πραγματοποιηθεί: Α Ένα τουλάχιστον από τα Α, Β Β Κανένα από τα Α, Β Γ Μόνο το Β ΘΕΜΑ 51 (ΝΕΟ) Αν ισχύει α < β και γ < δ να αποδείξετε ότι: i α + 3γ < β + 3δ 6α δ < 6β γ

ΘΕΜΑ 5 (ΝΕΟ) Δίνονται οι παραστάσεις : Α x 1 x 3 i Να βρείτε το πρόσημο των παραστάσεων x 1, x + 3 για τις διάφορες τιμές του x Να γράψετε την παράσταση Π = Α Β + x χωρίς απόλυτη τιμή ΘΕΜΑ 53 (ΝΕΟ) Έστω η συνάρτηση f(x) x 14 x 14 i Να βρείτε το πεδίο ορισμού της f Να βρείτε το σύνολο τιμών της f ΘΕΜΑ 54 (ΝΕΟ) Θεωρούμε την εξίσωση x 11x 0, (1), R η οποία έχει δύο x1 x πραγματικές ρίζες x1 και x με 3 3 4 i Να προσδιορίσετε τις ρίζες της εξίσωσης (1), καθώς και την τιμή του Να λύσετε την εξίσωση dx,x dx, x 1 ΘΕΜΑ 55 (ΝΕΟ) i Να βρείτε τους 4 πρώτους όρους της ακολουθίας με γενικό όρο 1 Να εξετάσετε αν αυτοί οι όροι σχηματίζουν αριθμητική πρόοδο i Να υπολογίσετε την τιμή της παράστασης Α = β1 β β β3 + β4 β3 β5 β4 ΘΕΜΑ 56 (ΝΕΟ) Ένας μαθητής αποφάσισε να διαβάσει ένα βιβλίο με 1000 σελίδες Την πρώτη ημέρα διάβασε 64 σελίδες και στη συνέχεια διάβαζε κάθε μέρα τις μισές σελίδες από ότι διάβασε την προηγούμενη Αφού διάβασε συνολικά 6 ημέρες ξεκουράστηκε για μία εβδομάδα Την 14 η μέρα διάβασε 5 σελίδες και συνέχισε

να διαβάζει κάθε μέρα 3 σελίδες περισσότερες από την προηγούμενη Την τελευταία ημέρα διάβασε 65 σελίδες i Πόσες σελίδες διάβασε τις πρώτες 6 ημέρες; Πόσες ημέρες διάβασε μετά τη 13 η ημέρα; i Πόσες σελίδες χρειάζεται ακόμα για να το τελειώσει; ΘΕΜΑ 57 (ΝΕΟ) x 4 Δίνεται η συνάρτηση f(x) x i Να βρείτε το πεδίο ορισμού της Να βρείτε σε ποια σημεία τέμνει τους άξονες x x και y y i Να σχεδιάσετε την γραφική της παράσταση iv Να αποδείξετε ότι οι τιμές f(5), f(9), f(13) με τη σειρά που δίνονται είναι διαδοχικοί όροι μιας αριθμητικής προόδου ΔΗΜΗΤΡΗΣ ΑΡΝΙΚΙΟΥ ΑΡΓΥΡΗΣ ΓΑΜΒΡΕΛΛΗΣ ΧΡΗΣΤΟΣ ΚΑΝΑΒΗΣ ΔΗΜΗΤΡΑ ΚΑΠΟΓΛΗ ΑΧΙΛΛΕΑΣ ΚΑΡΑΣΜΑΝΟΓΛΟΥ ΚΩΣΤΑΣ ΜΑΛΛΙΑΚΑΣ ΜΑΡΤΗΣ ΜΑΡΤΑΚΗΣ ΑΠΟΣΤΟΛΗΣ ΜΠΟΥΡΝΗΣ ΓΙΩΡΓΟΣ ΡΕΝΕΣΗΣ ΒΑΣΙΛΗΣ ΣΕΪΤΗΣ ΓΙΩΡΓΟΣ ΣΤΑΤΙΟΥ ΤΑΣΟΣ ΣΩΤΗΡΑΚΗΣ