Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Σχετικά έγγραφα
PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

Mègisth ro - elˆqisth tom

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

GENIKEUMENA OLOKLHRWMATA

Θεωρία Πιθανοτήτων και Στατιστική

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

SofÐa ZafeirÐdou: GewmetrÐec

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Ανάλυση ις. συστήματα

Στατιστική για Χημικούς Μηχανικούς

Eisagwg sthn KosmologÐa

Shmei seic Sunarthsiak c Anˆlushc

JEMATA EXETASEWN Pragmatik Anˆlush I

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

Κλασσική Ηλεκτροδυναμική II

Στατιστική για Χημικούς Μηχανικούς

t t j=1 span(x) = { 1-1

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Ask seic me ton Metasqhmatismì Laplace


Εφαρμοσμένα Μαθηματικά για Μηχανικούς

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

HU215 - Frontist rio : Seirèc Fourier

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

στο Αριστοτέλειο υλικού.

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

Ανάλυση ασκήσεις. συστήματα


Eukleideiec Gewmetriec

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

στο Αριστοτέλειο υλικού.

Θεωρία Πιθανοτήτων και Στατιστική

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

Shmei seic sto mˆjhma Analutik GewmetrÐa

Ergasthriak 'Askhsh 2

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA


Shmei seic sto mˆjhma Analutik GewmetrÐa

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac

N.Σ. Μαυρογιάννης 2010

Tm ma Fusik c Mˆjhma: Pijanìthtec -Sfˆlmata-Statistik PerÐodoc: Febrouˆrioc 2008

APEIROSTIKOS LOGISMOS I

Ανάλυση. σήματα και συστήματα

2

Ergasthriak 'Askhsh 3

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

BeltistopoÐhsh. Dr. Dhm trhc Swthrìpouloc. Tm ma Thlepikoinwniak Susthmˆtwn kai DiktÔwn. Tetˆrth, 7 OktwbrÐou 2009

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

EfarmogËc twn markobian n alus dwn

Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn

9.2 Μελετώντας τρισδιάστατα γραφικά στο επίπεδο Oi sunartήseiv Contour Plot kai DensityPlot


YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO

Sunarthsiakèc anisìthtec kai sugkèntrwsh tou mètrou. Prìqeirec Shmei seic

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61)

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015


ΜΑΘΗΜΑ 2, Έλεγχος ροής προγράμματος ΒΑΣΙΚΗ ΣΥΝΤΑΞΗ:

I

Transcript:

Kefˆlaio 1 DiaqwrÐzon UperepÐpedo L mma Farkas 1.1 Kurtˆ SÔnola 'Ena uposônolo C tou R n onomˆzetai kurtì an, gia kˆje x,y C kai kˆje λ [0,1], αx+(1 α)y C. An a i, i = 1,2,...,m eðnai dianôsmata ston R n, to diˆnusma m i=1 λ ia i onomˆzetai kurtìc sunduasmìc twn a i an λ i 0 kai m i=1 λ i = 1. An {A i ;i I} eðnai mia oikogèneia apì kurtˆ sônola, tìte i I A i eðnai epðshc kurtì sônolo. Autì eðnai eôkolo na to diapist sei kaneðc afoô gia x,y i I A i ja èqoume x,y A i gia kˆje i I kai afoô ta A i eðnai kurtˆ λx+(1 λ)y A i gia kˆje i ˆra λx+(1 λ)y i I A i. H kurt j kh tou sunìlou A R n thn opoða sumbolðzoume wc conva eðnai to mikrìtero kurtì sônolo pou perièqei to A dhlad h tom ìlwn twn kurt n sunìlwn pou perièqoun to A. (H tom aut eðnai kurt me bˆsh thn prohgoômenh parat rhsh.) Kˆje kurtìc sunduasmìc stoiqeðwn enìc kurtoô sunìlou A an kei sto sônolo A. Autì mporoôme na to diatup soume wc ex c: Je rhma 1. 'Estw a 1,...,a m shmeða enìc kurtoô sunìlou A R n. λ 1,...,λ m 0 me λ 1 + +λ m = m 1. Tìte i=1 λ ia i A. 'Estw epðshc Apìdeixh Me epagwg wc proc m. To je rhma isqôei tetrimèna gia m = 1 kai apì ton orismì thc kurtìthtac gia m = 2. Upojètoume ìti isqôei gia m = k 2 kai ja deðxoume ìti isqôei gia m = k + 1, dhlad ìti x = k+1 j=1 λ ja j A. An µ := λ 1 + + λ k = 0 tìte asfal c x = a k+1 A. 'Estw loipìn µ > 0. OrÐzoume y = λ 1 µ a 1 + + λ k µ a k. Ja 3

Sq ma 1.1: H kurt j kh isqôei ìti y A apì thn epagwgik upìjesh. Allˆ x = µy +(1 µ)a k+1 A apì thn kurtìthta tou A. Je rhma 2. 'Estw A èna uposônolo tou R n. kurt n sunduasm n twn shmeðwn tou A. Tìte conv A eðnai to sônolo ìlwn twn Apìdeixh 'Estw B to sônolo ìlwn twn kurt n sunduasm n twn shmeðwn tou A dhlad B = { m i=1 λ ia i ;m N,a i A,λ i 0, m i=1 λ i = 1}. EÐnai polô eôkolo na diapist sei kaneðc ìti to sônolo B eðnai kurtì. Prˆgmati, an x = m i=1 λ ia i, y = m i=1 λ ia i eðnai dôo kurtoð sunduasmoð stoiqeðwn tou A kai µ [0,1], µ := 1 µ, tìte µx + µ y = µλ 1 a 1 + +µλ m a m +µ λ 1a 1+ +µ λ m a m eðnai epðshc kurtìc sunduasmìc stoiqeðwn tou A kai epomènwc an kei sto B. EpÐshc isqôei profan c ìti A B. Sunep c afoô conva eðnai to mikrìtero kurtì sônolo pou perièqei to A isqôei ìti conva B. AntÐstrofa, kˆje stoiqeðo tou B eðnai kurtìc sunduasmìc stoiqeðwn tou A kai epomènwc an kei se kˆje kurtì sônolo pou perièqei to A, epomènwc kai sthn tom touc, dhlad to conva. Apì to parapˆnw èqoume kai ta ex c profan porðsmata: Pìrisma 1. An èna shmeðo x an kei sthn kurt j kh tou A tìte upˆrqei m N kai shmeða a 1,...,a m tou A tètoia ste x = m i=1 λ ia i, dhlad to x mporeð na grafeð wc kurtìc sunduasmìc stoiqeðwn tou A. Pìrisma 2. H kurt j kh tou sunìloua = {a 1,...,a m } eðnai to sônolo{ m i=1 λ ia i,λ i 0, m i=1 λ i = 1}. 1.2 To je rhma tou diaqwrðzontoc uperepipèdou L mma 1. 'Estw x,y R n. An gia kˆpoio α > 0, x+λy x gia kˆje 0 < λ < α, tìte x T y 0. 4

Sq ma 1.2: H kurt j kh tou sunìlou {a 1,a 2,a 3,a 4,a 5,a 6 } Apìdeixh IsqÔei ìti x 2 x+λy 2 = x 2 +2λx T y +λ 2 y 2 kai sunep c, afoô λ > 0, x T y + 1 2 λ y 2 0. Af nontac to λ 0 sumperaðnoume ìti x T y 0. Je rhma 3. 'Estw A R n mh kenì, kurtì, kleistì sônolo kai x shmeðo tou R n. Tìte upˆrqei èna monadikì shmeðo a 0 A tètoio ste x a 0 = inf{ x z : z A}. Epiplèon, (x a 0 ) T (a a 0 ) 0 gia kˆje a A. Apìdeixh Apì prohgoômena apotelèsmata gia kleistˆ sônola xèroume ìti upˆrqei a 0 A tètoio ste x a 0 = inf{ x z : z A}. 'Estw a A kai 0 λ 1. H kurtìthc tou A èqei wc sunèpeia ìti (1 λ)a 0 +λa A. IsqÔei ìti x ((1 λ)a 0 +λa) = (x a 0 )+λ(a 0 a) 2 x a 0, ìpou, h teleutaða anisìthta ofeðletai ston orismì tou a 0 wc tou eggôterou shmeðou tou A sto x. Apì to prohgoômeno l mma sumperaðnoume ìti (x a 0 ) T (a a 0 ) 0. Gia na apodeðxoume thn monadikìthta tou a 0 èstw a 1 A èna ˆllo shmeðo tètoio ste x a 1 = inf{ x z : z A}. Efarmìzontac ton Ðdio sullogismì èqoume (x a 1 ) T (a a 1 ) 0. Dedomènou ìti to a eðnai opoiod pote shmeðo tou A, jètontac a = a 0 paðrnoume (x a 1 ) T (a 0 a 1 ) 0. (1.1) Apì thn summetrða, enallˆssontac ton rìlo twn a 0 kai a 1 èqoume (x a 0 ) T (a 1 a 0 ) 0. (1.2) 5

Prosjètontac katˆ mèlh tic anisìthtec (1.1), (1.2), paðrnoume (a 1 a 0 ) T (a 1 a 0 ) = a 1 a 0 2 0 ap' ìpou prokôptei ìti a 1 = a 0. 'Ena uperepðpedoα T z+β = 0 stonr n diaqwrðzei dôo uposônola tour n anα T z+β 0 gia kˆjez A kaiα T z+β 0 gia kˆjez B. An oi parapˆnw anisìthtec eðnai austhrèc tìte to uperepðpedo diaqwrðzei austhrˆ ta dôo sônola. Je rhma 4. 'Estw A, B, xèna, mh kenˆ, kurtˆ sônola ston R n ìpou A kleistì kai B sumpagèc. Tìte ta A kai B diaqwrðzontai austhrˆ apì èna uperepðpedo sto R n. Apìdeixh 'Estw a A, b B tètoia ste to a na eðnai to eggôtero shmeðo tou A sto B kai to b to eggôtero shmeðo tou B sto A. Autì eðnai sunèpeia twn prohgoumènwn jewrhmˆtwn. AfoÔ A B =, a b. An x A, y B, tìte apì to prohgoômeno je rhma (b a) T (x a) 0 kai (a b) T (y b) 0. Sunep c (a b) T x (a b) T a = 1 ( a 2 b 2 + a b 2) > 1 ( a 2 b 2) 2 2 > 1 ( a 2 b 2 a b 2) = (a b) T b (a b) T y. 2 Jètoume θ = a b kai γ = 1 2 ( a 2 b 2 ). Tìte h parapˆnw sqèseic mac dðnoun θ T x+γ > 0 > θ T y +γ. Sunep c to diaqwrðzon uperepðpedo eðnai to θ T z +γ = 0. 1.3 To L mma tou Farkas Je rhma 5 (L mma tou Farkas). An A eðnai ènac pðnakac m n kai b èna diˆnusma ston R m tìte akrib c mða apì tic akìloujec dôo enallaktikèc protˆseic isqôei (i) Upˆrqei x R n, x 0 tètoio ste Ax = b. (ii) Upˆrqei y R m tètoio ste y T A 0 kai y T b < 0. Apìdeixh Pr ta ap' ìla diapist noume ìti den mporoun an isqôsoun ta (i) kai (ii) tautìqrona. Prˆgmati, s' aut thn perðptwsh, gia kˆpoio x 0 Ax = b en tautìqrona upˆrqei y pou na ikanopoieð thn (ii). Gi' autì to y èqoume y T Ax = y T b. To dexð mèloc aut c thc teleutaðac sqèshc eðnai apì thn (ii) austhrˆ arnhtikì en to aristerì eðnai to eswterikì ginìmeno dôo mh arnhtik n dianusmˆtwn, tou A T y kai tou x. Gia na apodeðxoume to je rhma arkeð na deðxoume ìti an den isqôei h (i) tìte ja isqôei upoqrewtikˆ h(ii). An den isqôei h(i) tìte tobbrðsketai èxw apì ton kurtì kleistì k no 6

Sq ma 1.3: Sto aristerì sq ma blèpoume thn pr th perðptwsh tou l mmatoc tou Farkas. To diˆnusma b an kei ston k no pou sqhmatðzoun ta a 1,a 2,a 3. Sto dexiì sq ma blèpoume thn deôterh perðptwsh tou l mmatoc. Ta b 1,b 2 den an koun ston k no twn a 1,a 2,a 3 kai epomènwc upˆrqoun y 1, y 2 tètoia ste y T a i 0 kai y T b < 0. C := {Ax : x 0}. γ T z +β = 0 ìpou γ R m kai β R tètoio ste Sunep c upˆrqei diaqwrðzon uperepðpedo dhlad èna uperepðpedo γ T z +β > 0 z C, (1.3) γ T b+β < 0. (1.4) An z C kai r > 0 tìte kai rz C, sunep c apì thn (1.3) rγ T z+β > 0 gia kˆje z C kai r > 0 γ T z +β/r > 0. Af nontac r blèpoume ìti γ T z 0 gia ìla ta z C. Autì isqôei en prokeimènw kai gia tic st lec a 1,...,a n tou pðnaka A. Sunep c γ T a i kai mporoôme na dialèxoume to diˆnusma y pou prèpei na broôme gia na ikanopoi soume thn (ii) Ðso me to γ. Akìmh, jètwntac z = 0 sthn (1.3) blèpoume ìti β > 0. Sunep c apì thn (1.4) èqoume y T b = β < 0. Oi efarmogèc tou l mmatoc tou Farkas eðnai pˆra pollèc. Ja d soume merikèc ˆmesa en ˆllec ja doôme sthn sunèqeia. Je rhma 6 (Je rhma enallaktik n tou Fredholm). An A eðnai ènac pðnakac m n kai b R m tìte akrib c mða apì tic dôo enallaktikèc protˆseic isqôei (i) Upˆrqei x R n tètoio ste Ax = b. (ii) Upˆrqei y R m tètoio ste y T A = 0 kai y T b 0. 7

Apìdeixh Sthn pr th enallaktik prìtash to x mporeð na paðrnei tìso jetikèc ìso kai arnhtikèc timèc. Gia na efarmìsoume to L mma tou Farkas prèpei na metatrèyoume to prìblhma se èna prìblhma anaz thshc jetik n lôsewn. Autì gðnetai eôkola jètontac x = u v ìpou u,v 0. (Autì to tèqnasma èqei eurôtath efarmog ìpwc ja gðnei safèc sth sunèqeia.) H pr th enallaktik prìtash gðnetai tìte [A A][ u ] = b me u,v 0 v kai eðnai sth morf tou L mmatoc tou Farkas. H enallaktik prìtash tou L mmatoc tou Farkas eðnai ìti upˆrqei y R m tètoio ste y T [A A] 0 kai y T b < 0. Allˆ autì shmaðnei y T A 0 kai y T A 0 y T A = 0. H deôterh sunj kh, mporeð aplˆ na grafeð y T b 0. (ParathreÐste ìti an gia kˆpoio y, y T A = 0, tìte kai ( y) T A = 0 kai sunep c to prìshmo den paðzei rìlo.) To akìloujo je rhma exasfalðzei thn Ôparxh stˆsimhc katanom c se mia alusðda Markov me peperasmèno arijmì katastˆsewn. UpenjumÐzoume ìti o pðnakac n n, P, onomˆzetai stoqastikìc an P ij 0 kai n j=1 P ij = 1 gia kˆje i = 1,...,n. Je rhma 7. AnP eðnai stoqastikìc pðnakac upˆrqei diˆnusma gramm cπ = (π 1,...,π n ) tètoio ste π i 0 kai n i=1 π i = 1 to opoðo na ikanopoieð tic exis seic isorropðac π j = n π i P ij, j = 1,...,n. (1.5) i=1 Apìdeixh ArkeÐ na deðxoume ìti upˆrqei diˆnusma x R n me x 0 tètoio ste P T x = x kai u T x = 1 ìpou u T = [1,1,...,1]. IsodÔnama arkei na deðxoume ìti h Ax = b èqei lôsh x 0 me 0 [ ] P T I. A =, u T kai b = 0. 1 Prˆgmati an upˆrqei tètoia lôsh tìte èqoume apl c x T = π. An den upˆrqei tètoia lôsh tìte ja prèpei na isqôei h deôterh enallaktik protash tou Farkas h opoða sthn perðptws mac lèei ìti ja prèpei na upˆrqei y R n+1 tètoio ste y T A 0 kai y T b < 0. ArqÐzontac apì thn deôterh sqèsh grˆfoume y T = [z 1,...,z n, λ] kai parathroôme ìti y T b = λ < 0, sunep c λ > 0. (Autì dikaiologeð kai thn perðergh epilog mac gia ton sumbolismì twn sunistws n tou dianôsmatoc y.) Strèfoume t ra thn prosoq mac sthn y T A 0 h opoða shmaðnei ìti H parapˆnw sqèsh grˆfetai kai wc [ ] P y T T I 0. u T n P ij z j z i λ > 0, i = 1,...,n. (1.6) j=1 8

'Estw m ekeðnoc o deðkthc gia ton opoðo z m = max j=1,...,n z j. Efìson z m z j gia kˆje j ja isqôei kai ìti z m n P mj z j. (1.7) j=1 Efarmìzontac thn (1.6) gia i = m paðrnoume thn n P mj z j > z m +λ > z m. (1.8) j=1 H antðfash metaxô twn (1.7) kai (1.8) deðqnei ìti h deôterh enallaktik prìtash tou Farkas den mporeð na isqôei kai sunep c anagkastikˆ isqôei h pr th. Tèloc ja d soume mia enallaktik diatôpwsh tou L mmatoc tou Farkas. Je rhma 8 (L mma Farkas DeÔterh diatôpwsh). 'Estw A = (a ij ) m n pðnakac. Tìte eðte to i) eðte to ii) allˆ ìqi kai ta dôo isqôoun i) To shmeðo 0 R m perièqetai sthn kurt j kh twn m+n shmeðwn a 1 = a 11. a m1,..., a n = a 1n. a mn, e 1 = (ìpou e i to monadiaðo diˆnusma sthn kateôjunsh i ston R m ). 1 0. 0 0,..., e. m = 0 1 ii) Upˆrqoun arijmoð x 1,...,x m tètoioi ste x i > 0, m i=1 x i = 1 kai m i=1 x ia ij > 0 gia j = 1,2,...,n., Apìdeixh To 0 an kei sthn kurt j kh twn dianusmˆtwn thc (i) an upˆrqoun s j 0 n tètoia ste j=1 s ja j + m i=1 s m+ie i = 0 m+n kai j=1 s j = 1. An A = [a 1 a n ], h pr th prìtash grˆfetai epðshc wc [ A, Im e T 0 ] s =. 0 1 =: b, s 0. (1.9) I m eðnai o m m monadiaðoc pðnakac kai e T = (1,1,...,1) eðnai diˆnusma me m+n stoiqeða Ðsa me thn monˆda. Akìmh, s := (s 1,s 2,...,s m+n ) T en to dexð mèloc thc parapˆnw exðswshc eðnai èna diˆnusma me m+1 stoiqeða, ta pr ta m apì ta opoða eðnai 0. ParathreÐste ìti h sunj kh n+m j=1 s j = 1 exasfalðzetai apo thn teleutaða gramm tou pðnaka thc (1.9). 9

An den isqôei h pr th prìtash tìte apì to l mma tou Farkas upˆrqei y R m+1 tètoio ste [ ] A, y T Im e T 0 (1.10) kai y T b < 0. Jètoume y T := (y 1,...,y m, λ). Dedomènhc thc morf c tou b h sqèsh y T b < 0 sunepˆgetai ìti λ > 0. Sunep c, h (1.10) sunepˆgetai ìti m y i a ij λ 0, j = 1,2,...,n, (1.11) i=1 y i λ 0, i = 1,2,...,m. (1.12) Allˆ aut h teleutaða sqèsh sunepˆgetai ìti m i=1 y ia ij λ > 0 gia kˆje j = 1,...,n, kai y i λ > 0 gia kˆje i = 1,2,...,m. MporoÔme sunep c na jèsoume x i = y i m k=1 y, i = 1,2,...,m. k Sunep c, an den isqôei h prìtash (i) tìte upoqrewtikˆ isqôei h prìtash (ii). 10

Kefˆlaio 2 JewrÐa PaignÐwn 2.1 PaÐgnia mhdenikoô ajroðsmatoc se kanonik morf Sto kefˆlaio autì exetˆzoume paðgnia mhdenikoô ajroðsmatoc se kanonik morf (zero sum games in canonical form). Ta paðgnia autˆ mporoôn na perigrafoôn apì èna pðnaka o opoðoc prosdiorðzei thn amoib pou dðdei o paðkthc II ston paðkth I. Gia parˆdeigma, ston akìloujo pðnaka paðkthc I: MegistopoieÐ paðkthc II: ElaqistopoieÐ 5 1 3 3 2 4 3 0 1 (2.1) o paðkthc I epilègei gramm en o paðkthc II st lh, kai apì ton sunduasmì twn dôo apofˆsewn prokôptei h amoib pou ja prèpei na plhr sei o II ston I (h opoða bebaðwc mporeð na eðnai kai arnhtik ). 'Estw A = [a ij ], i = 1,...,m, j = 1,...,n o pðnakac tou paignðou. An a ij a i j gia kˆje j = 1,...,n tìte h strathgik i kuriarqeðtai apì thn strathgik i gia ton paðkth I afoô o paðkthc autìc den èqei potè lìgo na protim sei thn i se sôgkrish me thn i, asqètwc twn energei n tou paðkth II. Sunep c mporoôme na diagrˆyoume thn gramm i apì ton pðnaka kai na analôsoume èna paðgnio me mikrìtero pðnaka amoib n. Parìmoia, an a ij a ij gia kˆje i = 1,...,m, tìte h strathgik j kuriarqeðtai apì thn j, dhlad o paðkthc II den èqei potè lìgo na protim sei thn j se sôgkrish me thn j. Epomènwc mporoôme s' aut thn perðptwsh na diagrˆyoume th st lh j. Sto parˆdeigma thc (2.1) o paðkthc I, an paðxei pr toc, ja prèpei na epilèxei thn 2h gramm giatð aut èqei to megalôtero elˆqisto. O paðkthc II pou paðzei deôteroc anagkastikˆ ja epilèxei tìte thn deôterh st lh kai ja plhr sei 2 monˆdec ston I. Opoiad pote 11

ˆllh epilog apì thn pleurˆ tou I odhgeð se mikrìterh amoib gia ton I. AntÐstoiqa, an o paðkhc II paðzei pr toc, tìte ja prèpei na epilèxei thn st lh me to mikrìtero mègisto, dhlad thn st lh 2. Tìte o paðkthc I pou paðzei deôteroc ja prèpei anagkastikˆ na epilèxei thn gramm 2 kai ja pˆrei amoib kai pˆli 2 monˆdec. Sthn perðptwsh aut den èqei shmasða poiìc apì touc dôo paðktec paðzei pr toc. Upˆrqoun ìmwc ˆlla paðgnia sta opoða to poiìc paðzei pr toc (dhlad h plhroforða pou mporeð na èqei ènac paðkthc gia tic apofˆseic tou ˆllou) èqei shmasða. Gia parˆdeigma, sthn perðptwsh tou paignðou me ton akìloujo pðnaka paðkthc I: MegistopoieÐ paðkthc II: ElaqistopoieÐ 3 2 4 2 3 1 4 0 2 (2.2) ìtan o paðkthc I paðzei pr toc tìte ja epilèxei thn gramm 2 h opoða èqei to megalôtero elˆqisto pou eðnai Ðso me 1. O paðkthc II dialègei tìte thn st lh 3 kai dðnei amoib 1 ston I. 'Otan o paðkthc II paðzei pr toc tìte ja epilèxei thn st lh me to mikrìtero mègisto, dhlad thn st lh 2, opìte o I dialègei thn gramm 2 kai paðrnei 3 monˆdec apì ton II. L mma 2. An X, Y, dôo sônola kai f : X Y R tìte sup x X inf y Y f(x,y) inf y Y sup x X f(x,y). Apìdeixh IsqÔei ìti inf y Y f(x,y) f(x,y) gia kˆje (x,y) X Y. Sunep c, paðrnwntac supremum wc proc x X, sup x X inf y Y f(x,y) sup x X f(x,y) gia ìla ta y Y. PaÐrnontac t ra to infimum wc proc y Y sthn teleutaða sqèsh sumplhr nei thn apìdeixh. Orismìc 1. An ènac pðnakac A = (a ij ) ikanopoieð thn max i min j a ij = min i max j a ij tìte ja lème ìti èqei sagmatikì shmeðo. An antijètwc max i min j a ij < min i max j a ij tìte o pðnakac den èqei sagmatikì shmeðo. Apì thn parapˆnw suz thsh eðnai safèc ìti, an o pðnakac tou paignðou èqei sagmatikì shmeðo tìte opoiad pote plhroforða èqei ènac paðkthc gia thn apìfash tou ˆllou den ephreˆzei thn dik tou strathgik. S' aut thn perðptwsh to paðgnio èqei lôsh me kajarèc strathgikèc. An o pðnakac den èqei sagmatikì shmeðo tìte h plhroforða pou mporeð na èqei o ènac paðkthc gia thn strathgik tou ˆllou ephreˆzei kai thn dik tou strathgik. To paðgnio den èqei lôsh me kajarèc strathgikèc. 2.2 Meiktèc strathgikèc kai to jemeli dec je rhma Mia meikt strathgik ( tuqaiopoihmènh strathgik ) eðnai mia katanom pijanìthtac pˆnw sto sônolo twn strathgik n enìc paðkth. O paðkthc dhlad apofasðzei ìqi poia 12

strathgik ja epilèxei allˆ poia katanom sto q ro twn strathgik n ja epilèxei. lìgoc gia ton opoðo ènac paðkthc ja mporoôse na apofasðsei na epilèxei mia meikt strathgik eðnai epeid anagkˆzetai na paðxei pr toc. Gia parˆdeigma, ston pðnaka (2.2) o opoðoc den èqei sagmatikì shmeðo ìtan o I paðzei pr toc kerdðzei 1 monˆda en ìtan paðzei deôteroc 3 monˆdec. An o paðkthc I dhl sei ìti ja epilèxei tic treic dunatèc enèrgeièc tou me antðstoiqec pijanìthtec x 1, x 2, x 3, tìte o paðkthc II anagkˆzetai na epilèxei ètsi ste na elaqistopoi sei thn mèsh amoib pou ja d sei ston I dhlad kaleðtai na epilèxei to elˆqisto anˆmesa sta ( 3x 1 +2x 2 +4x 3, 2x 1 +3x 2, 4x 1 +x 2 2x 3 ). Gia parˆdeigma, an x 1 = 1/10, x 2 = 9/10, x 3 = 0 tìte o II èqei na epilèxei to elˆqisto anˆmesa sta (1.5, 2.5, 1.3), sunep c epilègei thn trðth st lh, kai dðnei amoib 1.3 ston I. 'Ara, ìtan o paðkthc I {paðzei pr toc}, ìtan dhlad èqei lìgouc na pisteôei ìti o II gnwrðzei thn strathgik tou ja protim sei mia meikt (tuqaiopoihmènh) strathgik ste na aux sei ta èsodˆ tou. To Ðdio bèbaia isqôei kai gia ton paðkth II pou mporeð na èqei epðshc kðnhtro na uiojet sei mia meikt strathgik. Se èna genikì paðgnio pou perigrˆfetai apì èna pðnaka m n, A = (a ij ), an o paðkthc I uiojet sei thn meikt strathgik x i, i = 1,...,m kai o II thn y j, j = 1,...,n tìte h mèsh tim thc amoib c tou II proc ton I eðnai x T Ay = n j=1 m i=1 x ia ij y j. 'Opwc eðdame max i min j a ij min j max i a ij me isìthta ìtan o pðnakac èqei sagmatikì shmeðo. O q roc ìlwn twn meikt n strathgik n tou I eðnai to simplex X := {(x 1,...,x m ) : x i 0, m i=1 x i = 1}. Parìmoia o q roc twn meikt n strathgik n tou II eðnai o Y := {(y 1,...,y n ) : x i 0, n j=1 y j = 1}. Je rhma 9 (Von Neumann). Kˆje paðgnio thc anwtèrw morf c èqei lôsh me meiktèc strathgikèc, dhlad max min x X y Y xt Ay = min max y Y x X xt Ay. (2.3) O Apìdeixh Jètoume v I = max x X min y Y x T Ay kai v II = min y Y max x X x T Ay me skopì na deðxoume ìti v I = v II. deðxoume ìti h sqèsh aut ikanopoieðtai me isìthta. Apì to l mma 2 isqôei ìti v I v II, sunep c arkeð na 'Estw A = [a 1 a 2 a n ] oi st lec tou pðnaka A. Gia thn apìdeixh tou jewr matoc ja qrhsimopoi soume thn deôterh diatôpwsh tou L mmatoc tou Farkas. An to 0 an kei sthn kurt j kh twn shmeðwn a 1,...,a n,e 1,...,e m ston R m tìte upˆrqoun pragmatikoð s j 0, j = 1,2,...,m+n, tètoioi ste n a ij s j +s n+i = 0, i = 1,2,...,m, j=1 m+n j=1 s j = 1. 13

Allˆ den eðnai dunatìn na èqoume s j = 0 gia kˆje j = 1,...,n giatð tìte ta monadiaða dianôsmata e n i ja tan grammikˆ exarthmèna. Sunep c j=1 s j > 0 kai mporoôme na orðsoume tic posìthtec y j := s j n j=1 s j gia tic opoðec isqôei ìti n j=1 y j = 1. Sunep c, apì ta parapˆnw èqoume ìti 0 n j=1 a ij y j = s n+i n j=1 s j 0 i. 'Ara, gia thn sugkekrimmènh epilog twn y j apì ton paðkth II, x T Ay 0 gia opoiad pote epilog twn x i apì ton I, sunep c max x X x T Ay 0 gia to sugkekrimèno y Y kai v II = min y Y max x X x T Ay 0 katˆ meðzona lìgo. 'Ara èqoume v I v II 0. (2.4) 'Estw t ra ìti h pr th perðptwsh tou l mmatoc tou Farkas den isqôei. Tìte ja isqôei upoqrewtikˆ h deôterh. Autì shmaðnei ìti upˆrqei x = (x 1,...,x m ) tètoio ste x i > 0 gia kˆje i = m 1,...,m, i=1 x i = m 1, kai i=1 x ia ij > 0 gia j = 1,...,n. Sunep c gia to sugkekrimèno x èqoume x T Ay > 0 gia kˆje y kai epomènwc, epanalambˆnontac ton prohgoômeno sullogismì èqoume v I > 0 kai 0 < v I v II. (2.5) Efìson upoqrewtikˆ prèpei na isqôei eðte h (2.4) eðte h (2.5) sumperaðnoume ìti eðnai adônaton na isqôei h v I 0 < v II. 'Estw t ra to paðgnio pou antistoiqeð ston pðnaka B := (b ij ) ìpou b ij = a ij +k i,j. Profan c x T By = x T Ay + k gia kˆje x,y kai sunep c v I (B) = v I (A) + k, v II (B) = v II (A) + k. AfoÔ v I (B) 0 < v II (B) eðnai adônaton, v I (B) k < v II (B) eðnai adônaton gia kˆje k R pou sunepˆgetai ìti v I < v II eðnai adônaton. 'Ara, anagkastikˆ, v I = v II. 2.3 Grafikìc upologismìc thc tim c Gia na katano soume kalôtera merikèc apì tic ènnoiec exetˆzoume peript seic pou o ènac toulˆqiston apì touc dôo paðktec èqei mìno dôo epilogèc. S' aut thn perðptwsh eðnai dunatì na epilôsoume grafikˆ to paðgnio. Ja exetˆsoume to ex c parˆdeigma. O paðkthc II krôbei sto qèri tou èna nìmisma eðte tou enìc eðte twn dôo eur. O paðkthc I manteôei ti nìmisma èqei krôyei o II kai an to petôqei paðrnei to nìmisma alli c plhr nei ston I 1.5 14

eur. To paiqnðdi paðzetai pollèc forèc. Poiˆ eðnai h bèltisth strathgik kˆje paðkth kai poiˆ eðnai h axða tou paiqnidioô? O pðnakac tou paignðou (pou deðqnei ta posˆ pou plhr nei o II ston I) eðnai paðkthc II paðkthc I [ 1 1.5 1.5 2 ] EÐnai safèc ìti o pðnakac tou paignðou autoô den èqei sagmatikì shmeðo. An o paðkthc I dhl sei pr toc ti pisteôei ìti eðnai to nìmisma kai o paðkthc II mporeð na krôyei to nìmisma metˆ thn d lwsh tìte asfal c ja dialèxei to antðjeto kai ja kerdðsei apì ton paðkth I 1.5 eur. An o paðkthc II dhl sei pr toc ti nìmisma èqei krôyei tìte o I ja to pˆrei. O II to gnwrðzei kai giˆutì ja krôyei èna eur. Ac poôme loipìn ìti o II qrhsimopoi sei meiktèc strathgikèc. Dhl nei ìti ja krôyei 1 eur me pijanìthta y 1 kai 2 eur me pijanìthta y 2 = 1 y 1. (Akìmh kai an den to dhl sei, afoô to paiqnðdi paðzetai sunèqeia o I ja to katalˆbei an sullèxei statistikˆ stoiqeða.) An o I mantèyei 1 eur tìte h mèsh tim thc amoib c pou ja pˆrei apì ton II eðnai y 1 1.5(1 y 1 ). An o I mantèyei 2 eur tìte h mèsh amoib pou ja pˆrei apì ton II eðnai 1.5y 1 +2(1 y 1 ). O paðkthc I den xèrei ti nìmisma èqei krôyei o II, mporeð ìmwc na ektim sei thn pijanìthta y 1 sunep c ja pei 1 eur an y 1 1.5(1 y 1 ) > 1.5y 1 +2(1 y 1 ) 2 eur an y 1 1.5(1 y 1 ) 1.5y 1 +2(1 y 1 ) kai h mèsh amoib pou ja pˆrei ja eðnai max(y 1 1.5(1 y 1 ), 1.5y 1 +2(1 y 1 )) (2.6) Autì to gnwrðzei o II (pou elaqistopoieð) sunep c ja epilèxei to y 1 ètsi ste na elaqistopoi sei thn (2.6). H mèsh tim thc amoib c pou plhr nei eðnai min max(y 1 1.5(1 y 1 ), 1.5y 1 +2(1 y 1 )). 0 y 1 1 Epomènwc o II dialègei to y 1 ètsi ste y 1 1.5(1 y 1 ) = 1.5y 1 +2(1 y 1 ) y 1 = 7 12 kai h axða tou paignðou eðnai 2 3.5y 1 = 1/24. Autì shmaðnei ìti o II plhr nei katˆ mèso ìro ston I 1/24 eur. Sunep c to paiqnðdi eðnai epikerdèc gia ton II an paðzetai bèltista kai tou apofèrei mèso kèrdoc 1/24 eur kˆje forˆ. 15

Sq ma 2.1: Sto sq ma blèpoume th mèsh tim thc amoib c pou plhr nei o II ston I ìtan o II qrhsimopoieð meikt strathgik me pijanìthtec y 1 kai y 2 = 1 y 1. H paqeiˆ gramm eðnai h max(y 1 1.5(1 y 1 ), 1.5y 1 +2(1 y 1 )). Sunep c o II dialègei y 1 =to shmeðo tom c kai plhr nei kata mèso ìro 1/24 eur ston I. 16

2.4 EpÐlush me thn bo jeia tou grammikoô programmatismoô 'Estw ènac pðnakac A m n. O paðkthc I, o opoðoc dialègei grammèc megistopoieð kai èqei m epilogèc, en o paðkthc II o opoðoc dialègei st lec elaqistopoieð kai èqei n epilogèc. An o paikthc I dialèxei thn gramm i kai o II thn st lh j tìte o II plhr nei ston I to posì a ij pou dðnei o pðnakac A = a 11 a 12 a 1j a 1n a 21 a 22 a 2j a 2n a i1 a i2 a ij a in a m1 a m2 a mj a mn... Ac upojèsoume ìti o II epilègei thn tuqaiopoihmènh strathgik (y 1,y 2,...,y j,...,y n ) T thn opoða kai anakoin nei ston I. An o I epilèxei thn gramm i tìte to mèso posì pou ja eisprˆxei apì ton II eðnai a i1 y 1 + a i2 y 2 + + a ij y j + + a in y n. Dedomènou ìti jèlei na megistopoi sei ta èsodˆ tou ja dialèxei to i anˆloga. Sunep c h axða tou paiqnidioô eðnai v = max i=1,2,...,m a i1y 1 +a i2 y 2 + +a ij y j + +a in y n O paðkthc II ja dialèxei tic pijanìthtec y j ètsi ste na elaqistopoieð to v. Sunep c h axða tou paiqnidioô dðnetai apì th lôsh tou grammikoô progrˆmmatoc minv u.p. y 1 + +y j + y n = 1 a 11 y 1 +a 12 y 2 +a 1j y j +a 1n y n v a i1 y 1 +a i2 y 2 +a ij y j +a in y n v a m1 y 1 +a m2 y 2 +a mj y j +a mn y n v y j 0, j = 1,2,...,n, v eleôjerh. To sôsthma autì grˆfetai isodônama wc 17

minv u.p. y 1 + +y j + y n = 1 v a 11 y 1 a 12 y 2 a 1j y j a 1n y n 0 v a i1 y 1 a i2 y 2 a ij y j a in y n 0 v a m1 y 1 a m2 y 2 a mj y j a mn y n 0 y j 0, j = 1,2,...,n, v eleôjerh. To duðkì grammikì prìgramma eðnai to maxu u.p. x 1 + +x i + x m = 1 u a 11 x 1 a 21 x 2 +a i1 x i a m1 x m 0 u a 1i x 1 a 2i x 2 +a ii x i a mi x m 0 u a 1n x 1 a 2n x 2 +a in x i +a mn x m 0 x i 0, i = 1,2,...,m, u eleôjerh. H jewrða thc duðkìthtac exasfalðzei ìti h bèltisth tim tou v pou prokôptei apì thn lôsh tou prwteôontoc probl matoc isoôtai me thn bèltisth tim pou prokôptei apì th lôsh tou duðkoô. Aut eðnai h axða tou paignðou. 2.5 Mia enallaktik diatôpwsh Ta anwtèrw grammikˆ progrˆmmata mporoôn na epanadiatupwjoôn ste na gðnoun qamhlìterhc diˆstashc. Gia to skopì autì ja prèpei na upojèsoume ìti ìla ta stoiqeða tou pðnaka A eðnai jetikˆ, prˆgma pou arqikˆ mporeð na mhn isqôei. An ìmwc prosjèsoume thn Ðdia stajerˆ, K > max ij a ij se ìla ta stoiqeða tou pðnaka tìte paðrnoume èna nèo 18

pðnaka me stoiqeða b ij = K +a ij > 0. Autì asfal c allˆzei thn axða tou paiqnidioô gia touc paðktec, profan c ìmwc den allˆzei thn bèltisth strathgik. Me ton metasqhmatismì autì exasfalðzoume ìti u > 0, v > 0 kai sunep c epitrèpetai na diairèsoume me tic posìthtec autèc kai na orðsoume nèec metablhtèc X i = x i u, Y j = y j v. To prwteôon prìblhma, diair ntac touc periorismoôc me v gðnetai tìte minv u.p. Y 1 + +Y j + Y n = 1 v 1 b 11 Y 1 b 12 Y 2 b 1j Y j b 1n Y n 0 1 b i1 Y 1 b i2 Y 2 b ij Y j b in Y n 0 1 b m1 Y 1 b m2 Y 2 b mj Y j b mn Y n 0 Y j 0, j = 1,2,...,n. to opoðo grˆfetai isodônama wc maxy 1 + +Y j + +Y n u.p. b 11 Y 1 +b 12 Y 2 +b 1j Y j +b 1n Y n 1 b i1 Y 1 +b i2 Y 2 +b ij Y j +b in Y n 1 b m1 Y 1 +b m2 Y 2 +b mj Y j +b mn Y n 1 Y j 0, j = 1,2,...,n. 19

Parìmoia, gia to duðkì prìblhma: minx 1 + +X i + +X m u.p. b 11 X 1 +b 21 X 2 +b i1 X i +b m1 X m 1 b 12 X 1 +b 22 X 2 +b i2 X i +b m2 X m 1 b 1n X 1 +b 2n X 2 +b in X i +b mn X m 1 X i 0, i = 1,2,...,m. Metˆ thn epðlush tou prwteôontoc me th mèjodo Simplex h axða tou metasqhmatismènou paiqnidioô prokôptei wc 1 Y 1 + +Y n en h bèltisth strathgik tou paðkth II wc y j = Y j Y 1 + +Y n, j = 1,...,n. H metablhtèc X i prokôptoun wc oi anhgmènoi suntelestèc kìstouc twn metablht n qalarìthtac sto beltisto tableau thc Simplex kai h bèltisth strathgik tou paðkth I wc x i = X i X 1 + +X m, i = 1,...,m. Tèloc, h axða tou arqikoô paiqnidioô prokôptei afair ntac thn stajerˆk apì to 1 Y 1 + +Y n. 20