Kul Models for beam, plate and shell structures, MT

Σχετικά έγγραφα
Kul Models for beam, plate and shell structures, 07/2016

Kul Models for beam, plate and shell structures, 10/2016

Kul Models for beam, plate and shell structures, 02/2016

Kul Models for beam, plate and shell structures, 09/2016

Kul Models for beam, plate and shell structures, 08/2016

Kul Models for beam, plate and shell structures, 09/2016

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Tutorial Note - Week 09 - Solution

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Laplace s Equation in Spherical Polar Coördinates

Fundamental Equations of Fluid Mechanics

Chapter 7a. Elements of Elasticity, Thermal Stresses

Analytical Expression for Hessian

4.2 Differential Equations in Polar Coordinates

r = x 2 + y 2 and h = z y = r sin sin ϕ

ANTENNAS and WAVE PROPAGATION. Solution Manual

Curvilinear Systems of Coordinates

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Matrix Hartree-Fock Equations for a Closed Shell System

The Laplacian in Spherical Polar Coordinates

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Homework 8 Model Solution Section

Problems in curvilinear coordinates

3.7 Governing Equations and Boundary Conditions for P-Flow

Srednicki Chapter 55

1 String with massive end-points

Orbital angular momentum and the spherical harmonics

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Kul Finite element method I, Exercise 07/2016

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

If we restrict the domain of y = sin x to [ π 2, π 2

Strain and stress tensors in spherical coordinates

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

1 Full derivation of the Schwarzschild solution

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Answer sheet: Third Midterm for Math 2339

The Friction Stir Welding Process

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

Physics 505 Fall 2005 Practice Midterm Solutions. The midterm will be a 120 minute open book, open notes exam. Do all three problems.

Section 8.3 Trigonometric Equations

CRASH COURSE IN PRECALCULUS

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

Course Reader for CHEN 7100/7106. Transport Phenomena I

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Solutions Ph 236a Week 2

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Parametrized Surfaces

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Quadratic Expressions

Uniform Convergence of Fourier Series Michael Taylor

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ADVANCED STRUCTURAL MECHANICS

Solution to Review Problems for Midterm III

Matrices and Determinants

1 3D Helmholtz Equation

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

6.3 Forecasting ARMA processes

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Lifting Entry (continued)

Spherical Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

4.6 Autoregressive Moving Average Model ARMA(1,1)

Math221: HW# 1 solutions

Orbital angular momentum and the spherical harmonics

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Mechanics of Materials Lab

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

1- Uzunluğu b olan (b > λ) tek kutuplu bir tel anten xy düzlemindeki iletken plakaya dik olan z ekseninde bulunmakta olup I

Approximation of distance between locations on earth given by latitude and longitude

Second Order RLC Filters

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Every set of first-order formulas is equivalent to an independent set

Statistical Inference I Locally most powerful tests

Module 5. February 14, h 0min

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Second Order Partial Differential Equations

Lecture VI: Tensor calculus

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

Areas and Lengths in Polar Coordinates

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com


D Alembert s Solution to the Wave Equation

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Geodesic Equations for the Wormhole Metric

Transcript:

Kul-49.45 Models fo eam, plate and shell stuctues, MT- 4. Mapping (, φ, z) = cosφi + sinφ j + zk (in detail) the geneic fomula defines the cylindical φ z coodinate system. Use e e eφ= ( [ F])[ F] eφ α α ez ez, whee α {, φ, z} to deive the deivatives of the asis vectos.. Deive the expessions of linea stain components ε, ε φ, εφ and ε φφ of the pola coodinate system. Use the displacement epesentation u= ue + ue φ φ, asis vecto deivative expessions e / φ = e φ, eφ / φ = e and definition ε = + [ u ( u) ] c, whee = e + eφ. φ 3. Conside the simply suppoted xy plane eam of length shown. Mateial popeties E and G, cosssection popeties A, S =, I, and loading ae constants. Wite down the equiliium equations, constitutive equations, and ounday conditions accoding to the Benoulli eam model. Afte that, solve the equations fo the tansvese displacement. y x 4. Vitual wok expession of cetain eam model is given y δw = ( δw EIw + δwkw + δwf ) dx Mδw ( ) + Fδ w( ), whee wx ( ) is the tansvese displacement and w dw / dx. Detemine the undelying diffeential equation and ounday conditions. Assume that the solution is sought fom the set of functions having continuous deivatives of all odes and δw() = δ w () =. Paametes M and F ae given. The given functions EI, k and f have continuous deivatives of all odes ut they ae not constants. 5. Conside a cuved eam foming ¾ of a full cicle of adius in the hoizontal plane. Given toque of magnitude P is acting on the fee end as shown. Wite down the equiliium equations and ounday conditions fo the stess esultants and solve the equations fo Ns, () Qn () s, Q () s, T() s, Mn() s, and M() s. s x P z y

Mapping (, φ, z) = cosφi + sinφ j + zk detail) the geneic fomula e e eφ= ( [ F])[ F] eφ α α ez ez to deive the deivatives of the asis vectos. Solution defines the cylindical φ z coodinate system. Use (in, whee α {, φ, z} 3p In tems of the asis vectos of the Catesian system, expessions of the asis vectos of the cylindical φ z coodinate system ae e, /, cosφ sinφ i i eφ=, φ /, φ = sinφ cosφ j= [ F] j ez, z /, z k k in which T =. [ F] [ F] 3p Diect use of the definition gives (just take the deivatives on oth sides of the elationship aove and use invese of the same elationship to eplace the asis vectos of the Catesian system y the asis vectos of the φ z system) e cosφ sinφ e eφ= sinφ cosφ eφ=, ez ez e sinφ cosφ cosφ sinφ e e eφ eφ= cosφ sinφ sinφ cosφ eφ= eφ= e, φ ez ez ez e cosφ sinφ e eφ= sinφ cosφ eφ=. z ez ez eaning outcome/ geomety: poo -, satisfactoy -4, good 4-6

Deive the expessions of linea stain components ε, ε φ, εφ and ε φφ of the pola coodinate system. Use the displacement epesentation u= ue + ue φ φ, asis vecto deivative expessions e / φ = e φ, eφ / φ = e and definition ε = + Solution [ u ( u) ] c, whee = e + eφ. φ 3p Bute foce type method woks always: u= e ( ue ) + e ( ue ) e ( ue ) e ( ue ) φ φ + φ + φ φ φ φ φ, u= e ( ue ) + e ( ue ) e ( ue ) e ( ue ) φ φ + φ + φ φ φ φ φ, u= eu e + eue + eu e + eue + e u e + e ue + e u e + e ue,, φ, φ φ φ, φ, φ φ, φ φ φ, φ φ φ φ φ, φ u = eu, e+ euφ, eφ + eφ u, φe+ eφ ueφ + eφ uφ, φeφ eφ uφe, u= eeu, + eeu φ φ, + ee φ ( u, φ uφ) + ee φ φ ( u+ uφφ, ). p Conjugate is otained y changing the odes of the asis vectos in each tem, ( u) c = eeu, + ee φ ( u, φ uφ) + eeu φ φ, + ee φ φ ( u+ uφφ, ). p Definition of the small stain ε = [ u+ ( u) ] c gives ε = [ eeu, + eeu φ φ, + ee φ ( u, φ uφ) + ee φ φ ( u+ uφφ, ) + eeu, + ee φ ( u, φ uφ) + eeu φ φ, + ee φ φ ( u+ uφφ, )] ε = eeu, + ee φ ( uφ, + u, φ uφ) + ee φ ( u, φ uφ + uφ, ) + ee φ φ ( u+ uφ, φ). p Finally, collecting the components ε = u, and ε φ = ε φ = ( u,, ) φ + u u φ φ and ε φφ = ( u + uφ, φ ). eaning outcome/ kinematics: poo -, satisfactoy -4, good 4-6

Conside the simply suppoted xy plane eam of length shown. Mateial popeties E and G, coss-section popeties A, S =, I, and loading ae constants. Wite down the equiliium equations, constitutive equations, and ounday conditions accoding to the Benoulli eam model. Afte that, solve the equations fo the tansvese displacement. y x Solution p In xy plane polem Timoshenko eam equations of the fomulae collection simplify to (the non-zeo displacements and otations ae u, v, and ψ and S = ) N + x Q y + y = Mz + Qy + cz N EAu Qy = GA( v ψ ) M z EIψ p The additional kinematic constaint of the Benoulli eam model v ψ = follows fom the constitutive equation of the shea foce. Shea foce Q y ecomes a constaints foce to e otained fom the moment equation ( Q y = M z c z ). Theefoe the equiliium and constitutive equations and ounday condition (otained fom the figue) take the foms N + x = Mz cz + y and N EAu = M EI v z yy x ], [, u v = M z N x = and v = M z x =. p Bounday value polem fo the tansvese displacement is (moment is eliminated using the constitutive equation) (4) EI v + = x ], [ and EI v = x {, } and v = x {, }. yy yy p epeated integations of the diffeential equation taking into account the ounday conditions give (3) v = x+ a EI yy () v = xx ( ) EI yy () 3 v = ( x x ) + a EI 6 4 yy 4 3 3 v = ( x x + x ). EI 4 yy eaning outcome/ eam model: poo -, satisfactoy -4, good 4-6

Vitual wok expession of cetain eam model is given y δw = ( δw EIw + δwkw + δwf ) dx Mδw ( ) + Fδw( ), whee wx ( ) is the tansvese displacement and w dw / dx. Detemine the undelying diffeential equation and ounday conditions. Assume that the solution is sought fom the set of functions having continuous deivatives of all odes and δw() = δ w () =. Paametes M and F ae given. The given functions EI zz, k and f have continuous deivatives of all odes ut they ae not constants. Solution 3p Integation y pats gives equivalent foms (the aim is to emove the deivatives fom vaiations in the integal ove the domain) δw = ( δw EIw + δwkw + δwf ) dx Mδw ( ) + Fδw( ) δw = ( δw ( EIw ) + δwkw+ δwf) dx δw ( )( EIw ) x= Mδw ( ) + Fδw( ) δw = [ ( EIw ) + kw + f ] δwdx + δw( )[( EIw ) + F] δw ( )( EIw + M ) x= x= p Accoding to the pincipal of vitual wok δ W = δ w. et us conside fist vaiations satisfying δ w ( ) = and δ w ( ) = so that the ounday tems vanish. The fundamental lemma of vaiation calculus implies that ( EIw ) + kw + f = in Ω= ], [.. p Knowing the equations aove and consideing vaiations with δ w ( ) = gives EIw + M = x=. Afte that, vaiation satisfying δ w ( ) = gives ( EIw ) + F = x=. p As δw() = δ w () = y assumption, tansvese displacement and it s deivative ae known at x = and theefoe w w= and w + θ = x =. in which w and θ ae the given ounday values. eaning outcome/ pinciple of vitual wok: poo -, satisfactoy -4, good 4-6

Conside a cuved eam foming ¾ of a full cicle of adius in the hoizontal plane. Toque of magnitude P is acting on the fee end as shown. Wite down the ounday value polem fo stess esultants and solve the equations fo Ns, () Qn () s, Q () s, T() s, Mn() s, and M() s. s x P z y Solution p In the geomety of the figue κ, κ = /. Extenal distiuted foces and s = moments vanish. Theefoe the cuved eam equiliium equations of the fomulae collection simplify to N Qn / Qn + N / = Q and T Mn / Mn + T / Q= M + Qn s ], [ whee 3 = π. p Bounday conditions at s = ae (notice the unit outwad nomal to the solution domain n =, moment on s e s e is negative) is pointing to the diection of s, and the component of the given N Qn = Q T + P and Mn = M s =. 3p Solution to the ounday values polem fo Q Q = s ], [ and Q = s = Q () s =. Solution to the connected ounday values polem fo Q n and N N Q n =, Qn + N = s ], [, Q n = and N = s = N + N = s ], [ and N =, N = s = s s N = asin cos + s ], [, N = and N = s = N() s = and Q () s =. n Solution to the ounday values polem fo M M = s ], [ and M = s = M () s =.

Solution to the connected ounday values polem fo M n and T T M n = and Mn + T = s ], [, T = P and M n = s = T + T = s ], [, T = P and T = T( s) Pcos s s = and Mn( s) = Psin. eaning outcome/ cuved eam model: poo -, satisfactoy -4, good 4-6

Kul-49.45 Models fo eam, plate and shell stuctues INDEX NOTATION (Othonomal asis) a i i= a i i= a + a+ + ann i I ai/ xj aij, δ ij ei ej {,} ( e i e j = δ ij ) ε e ( e e ) {,,} ( e i e j = ε ijk e k ) ijk i j k εijkεimn = δ jmδkn δ jnδ km ε det( a) = ε a a a ijk lmn il jm kn GENEA a = ae i i a= a ij ee i j a = aijklee i je ke l... I a = a I = a a ( I = ii + jj + kk ) I : a = a: I = a a ( I = iiii + jjjj + kkkk + ijji + jiij + ikki + kiik + kjjk + jkkj ) a= aijee i j ac = aee ij j i a = a c a = a IDENTITIES a ( c) = ( a ) c a ( c) = ac ( ) ca ( ) a:( ) = ( a ) ( a) c CYINDICA φ z SYSTEM = cosφi + sinφ j + zk e cφ sφ i e e eφ = sφ cφ j eφ= eφ φ ez k ez ez = e + eφ + ez φ z SPHEICA θφ SYSTEM ( θφ,, ) = (s θ c φ i + s θ s φ j + c θ k)

eθ cθφ c cθφ s sθ i eφ = sφ cφ j e sθφ c sθφ s cθ k eθ cθ eφ eφ= sθe cθeθ φ e sθeφ eθ e eφ =, θ e eθ = eθ + eφ + e θ sinθ φ THIN BODY sn SYSTEM FO PANA BEAMS (, s n) = () s + ne () s n es, s /, s, s es en / = = = e n ess, / ess, ess, s en es / = es + en n s n OTHONOMA CUVIINEA COODINATES eα eα eα i e = ( i[ F])[ F] e = [ D] () i e e = D e en en en β β β i j ijk k T T eα α eα α = e F H = e D e e T β [ ] [ ] β β [ ] β = ed i ij j = ed i i n n n n Γ = e e e = e = ( e e ) D D ( e e ) ijk i j k k i s s jl l k a= ( dae ) i a= ( da + a Γ ) ee i i j k ikj i j a= da +Γ a i i iji j a= ( da +Γ a +Γ a ) e i ij kik ij ikj ik j Γ ijk = D i D jk a= ( a) = dda i i +Γjijda i PATE GEOMETY ( φ n) (, φ, n) = [ i cosφ+ j sin φ ] + nen

e cosφ sinφ i eφ = sinφ cosφ j en k e eφ eφ = e φ e n d = d = d = φ φ n n Γ = Γ = φφ φφ dv = dndω BEAM GEOMETY ( sn ) ( s, n, ) = [ ( s)] + ne n + e es, s es κ es κen en= ess, / ess, en= κ κs en= κse κes s e es en e κs e κsen d s = n ) ( s + s n sn ( κ κ κ ) d n = n d = ssn sns ( n ) Γ = Γ = κ κ dv = ( nκ ) dads sn Γ sn = ( nκ ) κs Γ = CYINDICA SHE GEOMETY ( zφ n) ( z, φ, n) = [ i cosφ+ jsin φ + kz] + nen ez i ez eφ = sinφ cosφ j eφ = en φ en cos φ sinφ k en eφ d = z z φ = ( ) φ d n = n d n Γ φφn = Γ φnφ = ( n) dv = ( n ) dn( dφ ) dz = ( n ) dndω INEA ISOTOPIC EASTICITY σ = E: ε = E: u (mino and majo symmeties of the elasticity dyad assumed) ε = [ u + ( u )] c

T T ii ν ν ii ij + ji G ij + ji E = jj E ν ν jj + jk + kj G jk + kj kk ν ν kk ki + ik G ki + ik T T ii ν ii ij + ji G ij + ji E E = jj ν jj + jk + kj jk + kj (plane stess) ν kk kk ki + ik ki + ik T T ii E ii ij + ji G ij + ji E = jj jj + jk + kj G jk + kj (eam) kk kk ki + ik G ki + ik T T ii E ii ij + ji ij + ji E = jj jj + jk + kj jk + kj (uni-axial) kk kk ki + ik ki + ik E G = ( +ν ) 3 Et D = ( ν ) PINCIPE OF VITUA WOK ext int δw = δw + δw = δ u U (a function set) δw = ( σ : δε ) dv + ( f δu) dv + ( t δ u) da V c V A BEAM EQUATIONS F + F σ = = da M + i F + c M ρ σ F σ E E ρ u + i θ = da = da M ρ σ ρ E ρ E ρ θ E = Eii + Gjj + Gkk TIMOSHENKO BEAM ( xyz ) N + x Q y + y= Qz + z T + cx M y Qz + cy= Mz + Qy + cz

N EAu ESzψ + ES yθ Qy= GA( v ψ) GS yφ Q z GA( w + θ) + GSzφ T GS y( v ψ) + GSz( w + θ) + GIφ M y = ES yu EIzyψ + EI yyθ M z ESzu + EIzzψ EI yzθ TIMOSHENKO BEAM ( sn ) N Qnκ + s Qn + Nκ Qκs + n= Q + Qnκ s + T Mnκ + cs Mn + Tκ Mκs Q + cn= M + Mnκ s + Qn + c N EA( u vκ ) + ESn( θ + φκ ψκ s) ES( ψ + θκ s) Qn= GA( v + uκ wκ s ψ ) GSn( φ θκ) Q GA( w + vκ s + θ ) + GS( φ θκ) T GS( w + vκ s + θ ) + GI( φ θκ) GSn( v + uκ wκ s ψ ) Mn = ESn( u vκ ) + EInn( θ + φκ ψκ s) EIn( ψ + θκ s) M ES( u vκ ) EIn( θ + φκ ψκ s) + EI( ψ + θκ s) PATE EQUATIONS F + = ( M Q+ c) k = F = σ dz = iinxx + ijnxy + jin yx + jjn yy + ( ki + ik ) Qx + ( kj + jk ) Qy M = σ zdz = iim + ijm + jim + jjm + ( ki + ik ) + ( kj + jk ) xx xy yx yy x y EISSNE-MINDIN PATE ( xyz ) Nxx, x + Nyx, y + x = Nyy, y + Nxy, x + y Qxx, + Qyy, + z Mxx, x + Myx, y Qx + cx = Myy, y + Mxy, x Qy + cy Qx w, x + θ = Gtk Q w φ y, y Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x M xx θ, x νφ, y Myy = D φ, y + νθ, x M ( ν)( θ φ ) / xy, y, x Qn Q o w w n Nnn Nn o un un = M ns M s o θn θn = N ns Ns o us u s M nn M n o θs θs KICHHOFF PATE ( xyz )

Nxx, x + Nyx, y + x = Nyy, y + Nxy, x + y Mxx, xx + Mxy, xy + Myy, yy + z ( Mxx, x + Myx, y Qx + cx ) = ( Myy, y + Mxy, x Qy + cy ) Nxx u, x + ν v, y Et Nyy = v, y + νu, x ν N ( ν )( u + v ) / xy, y, x Mxx w, xx + ν w, yy Myy = D w, yy + ν w, xx M ( ν ) w xy, xy Nnn Nn o un un = N ns Ns o us us Q + M Q M o w w M nn M n o w, n + θ s n nss, ss, = EISSNE-MINDIN PATE ( φ z) [( N ) + N N ] / + [( Nφ ), + Nφφ, φ + Nφ] / + φ, φ, φ φφ = N u, + ν ( u + uφφ, )/ Et Nφφ = u ν, + ( u+ uφ, φ )/ ν N ( ν )[( u u ) / + u ] / φ, φ φ φ, [( Q), + Qφφ, ] / + z [( M ), + Mφ, φ Mφφ ] / Q + c = [( Mφ ), + Mφφ, φ + Mφ] / Qφ + cφ Q w, + θφ = Gt Qφ w, φ / θ M θφ, + νθ ( φ θ, φ)/ Mφφ = D νθφ, + ( θφ θ, φ )/ M ( ν)[( θ + θ ) / θ ] / φ φφ,, OTATION SYMMETIC KICHHOFF PATE D w+ z = d d = ( ) d d MEMBANE EQUATIONS IN CYINDICA GEOMETY ( zφ n) Nφz, φ + Nzz, z z Nzφ, z + Nφφ, φ + φ = n Nφφ te [ u zz, + ν ( u φφ, u n)] Nzz ν te Nφφ = [ ( u φ, φ un) + νuzz, ] ν Nzφ tg( uz, φ + uφ, z) MEMBANE EQUATIONS IN SPHEICA GEOMETY ( φθ n )

cscθnφφ, φ + Nθφ, θ + cot θ( Nθφ + Nφθ ) φ csc θnφθ, φ + Nθθ, θ + cot θ ( Nθθ Nφφ ) + θ = Nφφ + Nθθ n te [ csc θ(cosθu θ + ν sin θuθθ, + uφφ, ) ( + ν) un] N φφ ν te Nθθ = [ csc θ ( ν cosθu sin u θ + θ θθ, + νuφφ, ) ( + ν) un] ν Nφθ tg( cscθuθφ, co tθuφ + uφθ, ) SHE EQUATIONS IN CYINDICA GEOMETY ( zφ n) κ Nφz, φ + Nzz, z + z Nzφ, z + κnφφ, φ κqφ + φ = κqφ, φ + Qzz, + κnφφ + n Mzφ, z + κmφφ, φ κmφn Qφ + cφ M + κm Q + c = zz, z φz, φ z z Nzz uz, z + νκ( uφφ, un) Et Nφφ = u ν z, z + κ( uφφ, un) ν Nzφ ( ν)( uφ, z + κuz, φ) / Mzz ωzz, + κνωφφ, κuzz, Mφφ νω zz, + κωφφ, + κ ( uφφ, un) Mzφ= D ( ν )( ωφ, z + κωz, φ κuφ, z) / Mφz ( ν)( ωφ, z + κωz, φ + κ uz, φ) / M ( νκκ ) ( u + κu + ω) / φn n, φ φ φ Qz unz, + ωz = tg Q ω + κ( u + u ) φ φ n, φ φ ωz θ φ = ωφ θz