Μοντέρνα Θεωρία Ελέγχου

Σχετικά έγγραφα
Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Μοντέρνα Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Κλασσική Θεωρία Ελέγχου

Ιστορία της μετάφρασης

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Κλασσική Θεωρία Ελέγχου

Εκκλησιαστικό Δίκαιο

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Κλασσική Θεωρία Ελέγχου

Κλασσική Θεωρία Ελέγχου

Παράκτια Τεχνικά Έργα

Ενότητα 10: Γραμμικό Τετραγωνικό Πρόβλημα. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Μηχανολογικό Σχέδιο Ι

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Ιστορία της μετάφρασης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Γενικά Μαθηματικά Ι. Ενότητα 7: Σειρές Taylor, Maclaurin. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Συμπεριφορά Καταναλωτή

Κλασσική Θεωρία Ελέγχου

Γεωργική Εκπαίδευση Ενότητα 9

Εκκλησιαστικό Δίκαιο

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εισαγωγή στους Αλγορίθμους

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διοικητική Λογιστική

Διπλωματική Ιστορία Ενότητα 2η:

Επιμέλεια μεταφράσεων και εκδοτικός χώρος

Στρατηγικό Μάρκετινγκ

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Κλασσική Θεωρία Ελέγχου

Φ 619 Προβλήματα Βιοηθικής

Κλασσική Θεωρία Ελέγχου

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Συμπεριφορά Καταναλωτή

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Κλασική Θεωρία Ελέγχου

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6

Λογισμός 4 Ενότητα 10

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων

Εκκλησιαστικό Δίκαιο

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων

Αξιολόγηση και ανάλυση της μυϊκής δύναμης και ισχύος

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 13: Ακτίνα Σύγκλισης, Αριθμητική Ολοκλήρωση, Ολοκλήρωση Κατά Παράγοντες. Λουκάς Βλάχος Τμήμα Φυσικής

Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική

Διπλωματική Ιστορία. Ενότητα 12η: Ο Β Παγκόσμιος Πόλεμος Η Ευρώπη. του Hitler Ιωάννης Στεφανίδης, Καθηγητής Τμήμα Νομικής Α.Π.Θ.

Κλασσική Θεωρία Ελέγχου

Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Εισαγωγή στους Αλγορίθμους

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Φ 619 Προβλήματα Βιοηθικής

Διδακτική της Πληροφορικής

Κλασσική Θεωρία Ελέγχου

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 18. Ασυμπτωτική ευστάθεια και σταθεροποιησιμότητα γραμμικών συστημάτων Νίκος Καραμπετάκης

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα Ενότητας Ασυμπτωτικά ευσταθές σύστημα. Σταθεροποιήσιμο σύστημα. 4

Σκοποί Ενότητας Μελέτη της έννοιας του ασυμπτωτικά ευσταθούς συστήματος. Μελέτη της έννοιας της σταθεροποιησιμότητα ενός συστήματος. 5

Ασυμπτωτικά ευσταθές σύστημα (1) Έστω το ελεύθερο εισόδων σύστημα του χώρου των καταστάσεων x t = Ax t (1) Ορισμός. Το σύστημα (1) ονομάζεται ασυμπτωτικά ευσταθές αν, για κάθε αρχική συνθήκη x(0), η λύση x(t) της (1) τείνει στην αρχή των αξόνων (δηλαδή στο 0 0 0 T R n 1 ) καθώς ο χρόνος t lim x t = t lim t e At x 0 = 0 6

Ασυμπτωτικά ευσταθές σύστημα (2) 7

Ασυμπτωτικά ευσταθές σύστημα (3) Επειδή η λύση της (1) για αρχική συνθήκη x(0) είναι η x t = e At x 0 = Ue Λt U 1 x 0 = Ue Λt Vx 0 = = u 1 e λ 1t v 1 T + u 2 e λ 2t v 2 T + + u n e λ nt v n T x 0 όπου λ i C, i = 1,2,.., n είναι οι ιδιοτιμές του πίνακα A, έχουμε το παρακάτω Θεώρημα. Θεώρημα. Το σύστημα (1) είναι ασυμπτωτικά ευσταθές, αν όλες οι ιδιοτιμές λ i C, i = 1,2,.., n του πίνακα Α βρίσκονται εντός του ανοικτού αριστερού ημι-επιπέδου C = s C, Re s < 0. 8

Σταθεροποιήσιμο σύστημα (1) Ορισμός. Μια ιδιοτιμή λ i C ενός πίνακα A R n n ονομάζεται ευσταθής αν Re λ i < 0 και ασταθής αν Re λ i > 0. Ορισμός. Ένας πίνακας A R n n ονομάζεται ευσταθής αν όλες οι ιδιοτιμές του λ i C, i = 1,2,.., n είναι ευσταθείς. Ορισμός. Ένα σύστημα x t = Ax t + Bu t ονομάζεται σταθεροποιήσιμο (stabilizable) αν υπάρχει πίνακας F τέτοιος ώστε ο πίνακας A + BF είναι ευσταθής. 9

Σταθεροποιήσιμο σύστημα (2) Αν το σύστημα είναι ελέγξιμο τότε, σύμφωνα με το προηγούμενο θεώρημα, υπάρχει πίνακας F τέτοιος ώστε ο πίνακας A + BF να έχει αυθαίρετες ιδιοτιμές. Αν το σύστημα είναι ελέγξιμο και επιλέξουμε τον F έτσι ώστε όλες οι ιδιοτιμές λ i C, i = 1,2,.., n του πίνακα A + BF να βρίσκονται εντός του ανοικτού αριστερού ημιεπιπέδου C, τότε ο πίνακας A + BF θα είναι ευσταθής. Άρα: Η ελεγξιμότητα συνεπάγεται την σταθεροποιησιμότητα. Το αντίστροφο δεν ισχύει. 10

Σταθεροποιήσιμο σύστημα (3) Δηλαδή, αν το σύστημα x t = Ax t + Bu t (2) είναι σταθεροποιήσιμο, αν δηλαδή υπάρχει πίνακας F τέτοιος ώστε ο πίνακας A + BF είναι ευσταθής, τότε αυτό δεν συνεπάγεται ότι το σύστημα (2) είναι ελέγξιμο. Για παράδειγμα, ένα ασταθές μη ελέγξιμο σύστημα του οποίου το μη ελέγξιμο μέρος έχει όλες τις ιδιοτιμές του ευσταθείς μπορεί να σταθεροποιηθεί μεταφέροντας (μέσω ανάδρασης του ανύσματος κατάστασης) τις ελέγξιμες αλλά ασταθείς ιδιοτιμές του στο ανοικτό αριστερό ημι-επίπεδο C. 11

Σταθεροποιήσιμο σύστημα (4) Ένα σύστημα όπως το (2) είναι ελέγξιμο αν και μόνο αν rank si n A B = n, s sp A όπου sp A = λ 1, λ 2,, λ n C είναι το σύνολο των ιδιοτιμών του A. Μία ιδιοτιμή λ i του A είναι αποσυζευκτικό μηδενικό εισόδου του συστήματος (2) αν rank λ i I n A B < n Δηλαδή τα αποσυζευκτικά μηδενικά εισόδου του συστήματος είναι οι μη ελέγξιμες ιδιοτιμές του A. 12

Σταθεροποιήσιμο σύστημα (5) Αν τα αποσυζευκτικά μηδενικά εισόδου του συστήματος είναι ευσταθή, βρίσκονται δηλαδή εντός του ανοικτού αριστερού ημι-επιπέδου C, τότε το σύστημα είναι σταθεροποιήσιμο. Με άλλα λόγια έχουμε την παρακάτω πρόταση. 13

Πρόταση Πρόταση. Ένα σύστημα, όπως το (2), είναι σταθεροποιήσιμο αν και μόνο αν όλα τα αποσυζευκτικά μηδενικά εισόδου (αν υπάρχουν) βρίσκονται στο ανοικτό αριστερό ημι-επίπεδο C (είναι ευσταθή). Ισοδύναμα x t = Ax t + Bu t είναι σταθεροποιήσιμο rank s 0 I n A B = n, s 0 C + s C, Re s > 0 (Δηλαδή το σύστημα δεν έχει ασταθή αποσυζευκτικά μηδενικά εισόδου.) 14

Βιβλιογραφία Βαρδουλάκης Α.Ι.Γ., 2012, Εισαγωγή στην Μαθηματική Θεωρία Σημάτων, Συστημάτων και Ελέγχου, Τόμος Β.. Εκδόσεις Τζιόλα. Antsaklis P. and Michel A.N., 1977, Linear Systems, The McGraw-Hill Companies Inc. New York. Charles Ε., Donald G., James L., Melsa J., Rohrs C., Schultz D., 1996, Γραμμικά συστήματα αυτομάτου ελέγχου, Εκδόσεις Τζιόλα. Chen C.T., 1970, Introduction to Linear System Theory, Holt, Renehart and Winston Inc. New York. Kailath T., 1980, Linear Systems, Prentice Hall. 15

Σημείωμα Αναφοράς Copyright, Νικόλαος Καραμπετάκης. «. Ενότητα 18. Ασυμπτωτική ευστάθεια και σταθεροποιησιμότητα γραμμικών συστημάτων». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs431/ 16

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά - Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/ 17

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 18

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Τέλος Ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Εαρινό εξάμηνο 2014-2015