Λογισμός 3. Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Σχετικά έγγραφα
ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 13: Τύπος του Taylor. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 17: Απόδειξη Θεωρήματος Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ. Λογισμός 3. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 8: Ιδιότητες της κλίσης, Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 4:Συνέχεια διανυσματικών συναρτήσεων-ιδιότητες της συνέχειας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 12:Οι κλασικοί μετασχηματισμοί και ο κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 11: Κανόνας της αλυσίδας. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 10: Παραγώγιση Διανυσματικών Συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 3: Όρια και συνέχεια συναρτήσεων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 7: Κλίση και παράγωγος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 6: Μερικές παράγωγοι. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 1: Τοπολογία των Ευκλείδειων χώρων. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 16: Θεώρημα Αντιστροφής. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 14: Τοπικά ακρότατα. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 3. Ενότητα 9: Ιδιότητες της κλίσης. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 15: Τοπικά ακρότατα υπό συνθήκες. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 10

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 5: Το Θεώρημα του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 3. Ενότητα 19: Θεώρημα Πεπλεγμένων (γενική μορφή) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 3: Το Θεώρημα του Lebesgue. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 2: Ορισμός του ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 12

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 6: Εφαρμογές του Fubini. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4. Ενότητα 4: Ιδιότητες του Ολοκληρώματος. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 4 Ενότητα 15

Λογισμός 4. Ενότητα 9: Παραδείγματα από άλλες αλλαγές. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Λογισμός 3. Ενότητα 18: Θεώρημα Πεπλεγμένων (Ειδική περίπτωση) Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 1: Εισαγωγή. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Λογισμός 4 Ενότητα 17

Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.

Λογισμός 4 Ενότητα 18

Λογισμός 4 Ενότητα 19

Ιστορία της μετάφρασης

Λογισμός 4 Ενότητα 11

Λογισμός 4 Ενότητα 14

Λογισμός 4 Ενότητα 16

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής

Θέματα Αρμονικής Ανάλυσης

Εκκλησιαστικό Δίκαιο

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Θεωρία μέτρου και ολοκλήρωσης

Θέματα Αρμονικής Ανάλυσης

Εκκλησιαστικό Δίκαιο

Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)

Θέματα Αρμονικής Ανάλυσης

Θεωρία μέτρου και ολοκλήρωσης

Θεωρία μέτρου και ολοκλήρωσης

Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

Γενικά Μαθηματικά Ι. Ενότητα 8: Εφαρμογές Σειρών Taylor. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Παράκτια Τεχνικά Έργα

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Συμπεριφορά Καταναλωτή

Θεωρία μέτρου και ολοκλήρωσης

Θέματα Αρμονικής Ανάλυσης

Οικονομία των ΜΜΕ. Ενότητα 7: Μορφές αγοράς και συγκέντρωση των ΜΜΕ

Λογισμός 4 Ενότητα 13

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ

Ιστορία της μετάφρασης

Θεωρία μέτρου και ολοκλήρωσης

Φ 619 Προβλήματα Βιοηθικής

Μηχανολογικό Σχέδιο Ι

Εισαγωγή στους Αλγορίθμους

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Λογισμός 4. Ενότητα 8: Αλλαγή μεταβλητών. Μιχ. Γ. Μαριάς Τμήμα Μαθηματικών

Γενικά Μαθηματικά Ι. Ενότητα 14: Ολοκλήρωση Κατά Παράγοντες, Ολοκλήρωση Ρητών Συναρτήσεων Λουκάς Βλάχος Τμήμα Φυσικής

Εκκλησιαστικό Δίκαιο

Γενικά Μαθηματικά Ι. Ενότητα 5: Παράγωγος Πεπλεγμένης Συνάρτησης, Κατασκευή Διαφορικής Εξίσωσης. Λουκάς Βλάχος Τμήμα Φυσικής

ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ. Γενικά Μαθηματικά Ι. Ενότητα 6: Ακρότατα Συνάρτησης. Λουκάς Βλάχος Τμήμα Φυσικής

Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής

Θεσμοί Ευρωπαϊκών Λαών Ι 19 ος -20 ος αιώνας

Αξιολόγηση μεταφράσεων ιταλικής ελληνικής γλώσσας

Εισαγωγή στην Διοίκηση Επιχειρήσεων

Συμπεριφορά Καταναλωτή

Εισαγωγή στους Αλγορίθμους

ΓΕΝΙΚΗ ΚΑΙ ΑΝΟΡΓΑΝΗ ΧΗΜΕΙΑ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΑΝΟΙΚΤΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΚΑΔΗΜΑΪΚΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΜΑΘΗΜΑΤΑ Γενικά Μαθηματικά Ι Ενότητα 11 : Ακολουθίες και Σειρές Λουκάς Βλάχος Τμήμα Φυσικής

Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη

Γενικά Μαθηματικά Ι. Ενότητα 9: Κίνηση Σε Πολικές Συντεταγμένες. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Μοντέρνα Θεωρία Ελέγχου

Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.

Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ

Γεωργική Εκπαίδευση Ενότητα 9

Εργαστήριο Χημείας Ενώσεων Συναρμογής

Διπλωματική Ιστορία Ενότητα 2η:

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 1

Στρατηγικό Μάρκετινγκ

Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός

Γενικά Μαθηματικά Ι. Ενότητα 17: Αριθμητική Ολοκλήρωση, Υπολογισμός Μήκους Καμπύλης Λουκάς Βλάχος Τμήμα Φυσικής ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Διοικητική Λογιστική

Οικονομετρία. Εξειδίκευση του υποδείγματος. Μορφή της συνάρτησης: Πολυωνυμική, αντίστροφη και αλληλεπίδραση μεταβλητών

Οδοποιία IΙ. Ενότητα 14: Υπόδειγμα σύνταξης τευχών θέματος Οδοποιίας. Γεώργιος Μίντσης ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Ενότητα 4: Εισαγωγή στο Λογισμό Μεταβολών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Οικονομία των ΜΜΕ. Ενότητα 9: Εταιρική διασπορά και στρατηγικές τιμολόγησης

Φ 619 Προβλήματα Βιοηθικής

Ενότητα 6: Ακρότατα συναρτησιακών διανυσματικών συναρτήσεων. Νίκος Καραμπετάκης Τμήμα Μαθηματικών

Εκκλησιαστικό Δίκαιο

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5:Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια. Μιχ. Γ. Μαριάς

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σεάδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύπου άδειας χρήσης, η άδεια χρήσης αναφέρεται ρητώς. 2

Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 3

Περιεχόμενα ενότητας 1. Θεώρημα ακραίων τιμών. 2. Θεώρημα ενδιάμεσων τιμών. 3. Ομοιόμορφη συνέχεια. 4. Ασκήσεις. 4

Σκοποί ενότητας Στην ενότητα αυτή θα αποδείξουμε δύο ουσιαστικά θεωρήματα της συνέχειας πραγματικών συναρτήσεων. Το θεώρημα ακραίων τιμών και το θεώρημα ενδιάμεσων τιμών. Επίσης θα οριστεί η ομοιόμορφη συνέχεια. 5

Θεώρημα των ακραίων τιμών Έστω συμπαγές και : συνεχής. Τότε υπάρχουν,, τέτοια ώστε. Το θεώρημα των ακραίων τιμών μας λέει ότι μια συνεχής συνάρτηση επί ενός συμπαγούς, παίρνει τις ακραίες τιμές της σε σημεία εντός του συμπαγούς. 6

Λήμμα Το θεώρημα δεν ισχύει για μη συμπαγή σύνολα. Η στο διάστημα, είναι ένα καλό αντιπαράδειγμα. Λήμμα: Αν η :! είναι συνεχής και το συμπαγές, τότε και η εικόνα του είναι συμπαγής. 7

Θεώρημα των ενδιάμεσων τιμών Έστω " συνεκτικό κατά τόξα και :" συνεχής. Αν η παίρνει τις τιμές # $ %#, τότε παίρνει και όλες τις ενδιάμεσες, δηλαδή για κάθε # # $,#, " '.(. #. 8

Ομοιόμορφη συνέχεια Σε αυτή την παράγραφο θα αναφερθούμε στην ομοιόμορφη συνέχεια. Είναι μια έννοια πιο ισχυρή από την συνέχεια και πολύ χρήσιμη στην Ανάλυση. Ας θυμηθούμε μόνο ότι στην διάσταση 1, για να δείξουμε ότι μια συνεχής συνάρτηση είναι ολοκληρώσιμη κατά Riemann, χρησιμοποιήσαμε ουσιαστικά την ομοιόμορφη συνέχεια. 9

Ορισμός ομοιόμορφης συνέχειας (1) Έστω " και " ) *. Λέμε ότι η είναι ομοιόμορφα συνεχής επί του Α, αν για κάθε,0, υπάρχει.,0 τ.ω. για κάθε ζεύγος,/ " που ικανοποιεί / 0., ισχύει / 0. Ας σχολιάσουμε λίγο τον ορισμό της ομοιόμορφης συνέχειας: 1. Είναι προφανές όταν η είναι ομοιόμορφα 10

Ορισμός ομοιόμορφης συνέχειας (2) συνεχής επί του Α, τότε είναι και συνεχής επί του Α. 2. Η διαφορά της ομοιόμορφης συνέχειας με την (απλή) συνέχεια είναι η εξής: Στην ομοιόμορφη συνέχεια, για δοθέν,0, μπορούμε να βρούμε ένα.,0 που εξαρτάται μόνο από το τ.ω. κάθε μπάλλα Β,.με κέντρο και ακτίνα.να έχει εικόνα μέσα στην μπάλλα Β,. 11

Σχήμα 1 Η 2,.περιέχεται στην 2,. 12

Ορισμός ομοιόμορφης συνέχειας (3) Στην απλή συνέχεια αυτό δεν ισχύει αφού για δοθέν,0, η επιλογή του. εξαρτάται και από τα. Το κλασσικό παράδειγμα αυτού του γεγονότος είναι η συνάρτηση,/ 3/,,/,0. Η είναι συνεχής αλλά όχι και ομοιόμορφα συνεχής. Θα το δείξουμε με άτοπο. 13

Ορισμός ομοιόμορφης συνέχειας (4) Ας υποθέσουμε ότι η είναι ομοιόμορφα συνεχής και ας πάρουμε 1στην (2,13). Τότε μπορούμε να βρούμε.,0, τ.ω.,/,/ 0.,/,/ 01 Αν πάρουμε τότε,/ 1.,/. 2 31.,. 2 //. 2 14

Ορισμός ομοιόμορφης συνέχειας (5) άρα ενώ,/,/ 3 //. 2 %.,,/,/ 23. 2,1. Θα τελειώσουμε με τη σχέση συνέχειας και συμπάγειας. 15

Θεώρημα Θεώρημα:Αν είναι συμπαγές και η :! συνεχής, τότε η είναι ομοιόμορφα συνεχής. 16

Παράδειγμα 1 (1) Έστω,/ 8 Να δειχθεί ότι 1 3/, 9,/ :0,1 ; < $ = >? = <$, 9,/ :0,1 @ 1. Η είναι συνεχής σε όλο το. 2. Η είναι ομοιόμορφα συνεχής. 17

Παράδειγμα 1 (2) Λύση: 1) Η είναι συνεχής και εντός και εκτός του ανοικτού δίσκου :0,1. Μένει να δείξουμε ότι είναι συνεχής σε κάθε σημείο,/του κύκλου A0,1. Αν θέσουμε B 3/, τότε έχουμε,/ 8 1B, 9 B 01 ; < $ C = <$, 9 B,1 18

Παράδειγμα 1 (3) Η λοιπόν είναι ακτινική, και αν,/ A0,1 τότε B 3/ 1. Άρα για την συνέχεια στα,/ A0,1, αρκεί να δείξουμε ότι lim,/ G,$,? I,? I ή ισοδύναμα lim,/ G,$ J,? I,? I lim C $ K,/ lim C $ L,/. 19

Παράδειγμα 1 (4) Η παραπάνω σχέση ισχύει αφού και lim C $ K,/ lim 1B 0. C $ K lim C $ L,/ lim C $ L;< $ C = <$ ; < $ L ; <M 0 2) Για οποιοδήποτε N,0, η είναι συνεχής επί του κλειστού δίσκου:0, N, άρα και ομοιόμορφα συνεχής αφού ο:0, Nείναι συμπαγής. 20

Παράδειγμα 1 (5) Ας διαλέξουμε λοιπόν το N αρκετά μεγάλο. Τότε για,/ :0,N @ ισχύει ο δεύτερος κλάδος της. Έτσι, αν $,/ $,,/ :0,N @, τότε από το θεώρημα μέσης τιμής $,/ $,/ B $ B B $ B B B $ B όπου B B $,B. 2B B 1 ;< $ C = <$ 21

Παράδειγμα 1 (6) Όμως με de l Hopital, μπορούμε να δείξουμε ότι 2B $ B 1 ;< C = <$ B 0, Και συνεπώς 2B B 1 ;< $ C = <$ 0P,B QN Από τις (2,17) και 2,18 συμπεραίνουμε ότι 22

Παράδειγμα 1 (7) $,/ $,/ 0P B $ B, και έχουμε την ομοιόμορφη συνέχεια στο συμπλήρωμα του δίσκου : 0,1 αν πάρουμε. R S. 23

Βιβλιογραφία 1. V. Guillemin, A. Pollack, Differential Topology, Prentice-Hall, Inc., New Jersey, 1974. 2. J. Marsden, A. Tromba, Διανυσματικός Λογισμός, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 2000. 3. J.-M. Monier, Analyse 4, Dunod, Paris, 2000. 4. M. Spivak, Λογισμός σε Πολλαπλότητες, Πανεπιστημιακές Εκδόσεις Κρήτης, Ηράκλειο, 1994. 5. Τ. Χατζηαφράτης, Απειροστικός Λογισμός σε Πολλές Μεταβλητές, Αθήνα, 1996. 24

Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Θεσσαλονικης,Μιχάκης Μαριάς. «, Θεώρημα ακραίων τιμών και θεώρημα ενδιάμεσων τιμών- Ομοιόμορφη συνέχεια». Έκδοση: 1.0. Θεσσαλονίκη 2014. Διαθέσιμο από τη δικτυακή διεύθυνση: http://eclass.auth.gr/courses/ocrs289/.

Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative CommonsΑναφορά -Παρόμοια Διανομή [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχοξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. [1] http://creativecommons.org/licenses/by-sa/4.0/

Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑ ΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Τέλος ενότητας Επεξεργασία: Αναστασία Γ. Γρηγοριάδου Θεσσαλονίκη, Χειμερινό Εξάμηνο 2014-2015