Μάθημα Επιλογής 8 ου εξαμήνου

Σχετικά έγγραφα
Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Διάλεξη 1: Βασικές Έννοιες

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Διάλεξη 4: Τεχνικές επίλυσης μη-γραμμικών συστημάτων

Μάθημα Επιλογής 8 ου εξαμήνου

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Μάθημα Επιλογής 8 ου εξαμήνου

Υπολογιστικές Μέθοδοι Ανάλυσης και Σχεδιασμού

Εφαρμοσμένα Μαθηματικά ΙΙ

Δυναμική Μηχανών I. Επανάληψη: Μαθηματικά

Επίλυση Συστήματος Γραμμικών Διαφορικών Εξισώσεων

Εφαρμοσμένα Μαθηματικά ΙΙ

Επίλυση Γραµµικών Συστηµάτων

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

όπου Η μήτρα ή πίνακας του συστήματος

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

Επιστημονικοί Υπολογισμοί (ή Υπολογιστική Επιστήμη)

Αριθµητική Ανάλυση. 27 Οκτωβρίου Αριθµητική Ανάλυση 27 Οκτωβρίου / 72

21 a 22 a 2n. a m1 a m2 a mn

Απαντήσεις στα Θέµατα Ιουνίου 2012 (3 και 4)

Παναγιώτης Ψαρράκος Αν. Καθηγητής

Αριθμητική Ανάλυση και Εφαρμογές

Στοχαστικά Σήματα και Τηλεπικοινωνιές

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 15: O αλγόριθμος SIMPLE

ΒΟΗΘΗΤΙΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΣΤΑ ΓΕΝΙΚΑ ΜΑΘΗΜΑΤΙΚΑ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων

Γραμμικά συστήματα. - όπου Α είναι ένας (m x n) πίνακας, ο οποίος περιέχει. - όπου Β είναι ένας (m x 1) πίνακας που περιέχει τους

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 3: Περιγραφή αριθμητικών μεθόδων (συνέχεια)

Εάν A = τότε ορίζουμε την ορίζουσα του πίνακα ως τον αριθμό. det( A) = = ( 2)4 3 1 = 8 3 = 11. τότε η ορίζουσά του πίνακα ισούται με

ιδάσκοντες :Τµήµα Α ( Αρτιοι) : Καθηγητής Ν. Μισυρλής,Τµήµα Β (Περιττοί) : Αριθµητική Επίκ.

ΚΕΦΑΛΑΙΟ 4. Ακέραια Πολύεδρα

Εισαγωγικές έννοιες. Κατηγορίες προβλημάτων (σε μια διάσταση) Προβλήματα εύρεσης μεγίστου. Συμβολισμοί

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ

Δείκτες & Πίνακες Δείκτες, Πίνακες

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Ιδιάζουσες τιμές πίνακα. y έχουμε αντίστοιχα τις σχέσεις : Αυτές οι παρατηρήσεις συμβάλλουν στην παραγοντοποίηση ενός πίνακα

Κλασικη ιαφορικη Γεωµετρια

ΜΕΜ251 Αριθμητική Ανάλυση

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου 25/9/2017 Διδάσκων: Ι. Λυχναρόπουλος

ΓΡΑΜΜΙΚΟΣ & ΔΙΚΤΥΑΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

Επιστηµονικός Υπολογισµός Ι

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 19/6/2018 Διδάσκων: Ι. Λυχναρόπουλος

Οδηγίες χρήσης Aspen Plus 7.1

MATLAB. Εισαγωγή στο SIMULINK. Μονάδα Αυτόματης Ρύθμισης και Πληροφορικής

Κεφάλαιο 2ο: ΜΙΓΑ ΙΚΟΙ ΑΡΙΘΜΟΙ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

Linear Equations Direct Methods

Επιστηµονικοί Υπολογισµοί (Αρ. Γρ. Αλγεβρα)Επαναληπτικές µέθοδοι και 31 Μαρτίου Ηµι-Επαναληπτικές Μέθοδο / 17

Ημερομηνία: Τετάρτη 27 Δεκεμβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες

1 Επανάληψη εννοιών από τον Απειροστικό Λογισμό

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÁÈÇÍÁ ΕΚΦΩΝΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΙΙ ΜΑΘΗΜΑ 1-2-ΠΙΝΑΚΕΣ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ ΠΑΝΗΠΙΣΤΗΜΙΟΠΑΤΡΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΕΞΙΣΩΣΗ ΣΥΝΕΧΕΙΑΣ ΣΕ ΜΙΑ ΤΥΧΑΙΑ ΑΝΑΠΑΡΑΣΤΑΣΗ

Διανύσµατα στο επίπεδο

ΘΕΜΑΤΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Εφαρμοσμένα Μαθηματικά ΙΙ Τελική Εξέταση 8/6/2017 Διδάσκων: Ι. Λυχναρόπουλος

Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Στοιχειώδεις Δοµές Δεδοµένων Δοµικά Στοιχεία και Πίνακες Κεφάλαιο 3 (3.1 και 3.2) Ε. Μαρκάκης Επικ. Καθηγητής

ΜΕΜ251 Αριθμητική Ανάλυση

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

Οδηγός λύσης για το θέμα 2

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών

Ορισμοί και πράξεις πινάκων

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ - Γ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ Τάξη Ηµερήσιου Γενικού Λυκείου

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Οδηγός λύσης θέματος 2

Προγραμματισμός Η/Υ. Αλγόριθμοι. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

10 ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

Εισαγωγή στις Τηλεπικοινωνίες. Δομή της παρουσίασης

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΗΧΑΝΙΣΜΟΙ ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΧΕΔΙΑΣΜΟ ΜΗΧΑΝΩΝ

Εφαρμοσμένα Μαθηματικά ΙΙ Εξέταση Σεπτεμβρίου Διδάσκων: Ι. Λυχναρόπουλος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

Programming Basics. ACM Student Chapter Auth

Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Η/Υ ΠΙΝΑΚΕΣ. Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD

Γραμμική Αλγεβρα ΙΙ Διάλεξη 1 Εισαγωγή Χρήστος Κουρουνιώτης Πανεπισ τήμιο Κρήτης 19/2/2014 Χ.Κουρουνιώτης (Παν.Κρήτης) Διάλεξη 1 19/2/ / 13

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

[A I 3 ] [I 3 A 1 ].

Διδάσκων:Μ.Χατζόπουλος, Παραδόσεις:Τρίτη 4-6, Τετάρτη 1-3; (Αμφιθέατρο Α15) Πληροφορίες στην ιστοσελίδα του μαθήματος

Χαρακτηριστική Εξίσωση Πίνακα

ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

Δυναμική Μηχανών I. Συνάρτηση και Μητρώο Μεταφοράς

Συστήματα Βιομηχανικών Διεργασιών 6ο εξάμηνο

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ (Εξ. Ιουνίου - 02/07/08) ΕΠΙΛΕΓΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΦΥΣ 145 Υπολογιστικές Μέθοδοι στη Φυσική. Τελική εξέταση 5 Μάη 2007 Ομάδα 1 η

Αδιάσπαστοι, p-κυκλικοί, συνεπώς διατεταγµένοι πίνακες και γραφήµατα

2.1 Αριθμητική επίλυση εξισώσεων

Παράδειγμα δημιουργίας συστήματος εξισώσεων παρατηρήσεων & πίνακα βάρους σε οριζόντιο δίκτυο

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΕΝΤΡΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΤΜΗΜΑ. Μαθηματικά 1. Σταύρος Παπαϊωάννου

Εφαρμοσμένα Μαθηματικά ΙΙ

Transcript:

EΘNIKO ΜEΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΧΗΜΙΚΩΝΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΙΙ: Ανάλυσης, Σχεδιασμού & Ανάπτυξης Διεργασιών & Συστημάτων Διάλεξη 2: Υπολογιστικές προκλήσεις διαχείρισης συστημάτων Μάθημα Επιλογής 8 ου εξαμήνου Διδάσκων: Α. Κοκόσης Συνεργάτες: Α. Νικολακόπουλος, Θ.Χ. Ξενίδου

Επισκόπηση Κατηγορίες και μέγεθος συστημάτων Επισκόπηση Επαναληψιμότητα υπολογισμών και παθογένεια Αναγνώριση παθογένειας Αραιά συστήματα Τεχνικές διαχείρισης μνήμης Δομημένα συστήματα

1. Επαναληψιμότητα & παθογένεια

Επαναληψιμότητα & παθογένεια Υπολογιστικό παράδειγμα Ας υποθέσουμε ένα γραμμικό σύστημα, π.χ. στην k επανάληψη A x = b k 1 x = A b k με b 200 400 201 = και A = k 800 401 200 x1 100 x = 200 2 k A k και η γραμμικοποίηση στην επανάληψη k+1, με A k+ 1 401 201 = 800 401 οπότε προκύπτει η καινούρια λύση Αν και η μεταβολή από A A k k + 1 είναι πολύ μικρή, η καινούρια λύση είναι εντελώς διαφορετική. Γιατί;

Αραιά συστήματα & διαχείριση μνήμης Ιδιάζοντες πίνακες και παθογένεια τι έκανε στο προηγούμενο πρόβλημα τη λύση να αλλάζει τόσο πολύ; μπορούμε να επηρεάσουμε σε κάτι τους υπολογισμούς; Ιδιοτιμές, αριθμητική κατάσταση, ιδιάζουσα τιμή Ax 1 = b x = A b ( ) ( ) adj A 1 A = (1) det A T ( ) ( ) ji adj A = C = C πίνακας συμπαραγόντων ( ) i det A = n ij = λ i= 1 ( Ax λ x ) = 0 ή det ( A I ) 0 μ λ = με Ax n = λ u x i= 1 i i i

Επαναληψιμότητα & παθογένεια Παθογένεια συστημάτων (ill-conditioning) ( ) ( ) A = (1) 1 adj A det A ( ) ( 0 i ) Αν dt det A 0 ή λ 0, τότε 1 A Αν λ : λ = 0 i i (ιδιάζων πίνακας) λi : λi 0 (σχεδόν ιδιάζων πίνακας) ) Η μικρότερη τιμή προετοιμάζει για το πόσο δύσκολο είναι να αντιστραφεί ο πίνακας Αριθμός κατάστασης: προετοιμάζει για το πόσο ισοσταθμισμένο είναι το σύστημα Αν λ max, λ min οι μεγαλύτερες/μικρότερες τιμές (απόλυτες) των ιδιοτιμών του πίνακα ( ) Α (ή των Re λ i αν είναι μιγαδικές), τότε μια ένδειξη είναι η: λ max K( A ) = λmin

Επαναληψιμότητα & παθογένεια Ιδιάζουσα τιμή ( ) Τα λ A ισχύουν μόνο για τετράγωνους πίνακες. Στην ουσία μας ενδιαφέρει το μέγεθος του σήματος που δίνει το A. Δηλαδή, για το y = Ax Μας ενδιαφέρει ισοδύναμα T T T y y= xaax ( ) y i i ax i Δηλαδή, ο πίνακας T ( ) 1 2 AA ο οποίος είναι τετράγωνος και θετικός. Η μικρότερη τιμή λέγεται ιδιάζουσα τιμή. { 1 T 2 ( ) } min σ = λ min AA

Επαναληψιμότητα & παθογένεια Παράδειγμα 1 Στην προηγούμενη περίπτωση είχαμε A k 400 201 = 800 401 λ 801.5 λ = 0.49 1 2 K( A) 1635 σ 0.4 σ 1000 1 2 Τι μπορούμε να κάνουμε για να βελτιώσουμε εγγενείς παθογένειες;

Επαναληψιμότητα & παθογένεια Παράδειγμα 2 5 λ 0.999 λ 3.75 10 1 2 4 ( ) K A 3 10 ' Αν εναλλακτικά, ορίσουμε = ( ) y y x10000 2 2 τότε A k 0.9995 0.9999 = 0.375 0.75 λ1 1, 49 K( A) 6 λ2 0.25

2. Αραιά συστήματα & διαχείριση μνήμης

Αραιά συστήματα & διαχείριση μνήμης Παράδειγμα Σύστημα με 1000 εξισώσεις δεξί μέλος 1000 άγνωστοι (1000) x (1000) + (1000) = 1,001,000 000 Μη μηδενικά στοιχεία (sparse elements) Αν υποθέσουμε πως έχουμε: 5 μη μηδενικά στοιχεία / εξίσωση 50 μη μηδενικά μηδενικά στοιχεία στο δεξί μέλος τότε προκύπτουν, 5 x 1000 + 50 = 5050 5050 Συνολικά, 0.5% ή 1, 001,000 o 5 oo Ένα τεράστιο ποσοστό μνήμης δεσμεύεται χωρίς σκοπό και αιτία. Το ποσοστό κενών στοιχείων (sparsity) αποτελεί σημαντικό μέλημα διαχείρισης των υπολογισμών

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση και αναπαράσταση δεδομένων Αναπαράσταση συντεταγμένων F σειριακή (coordinate & serial format) Αποθήκευση μεταβλητών στο Aspen Δομημένα μητρώα για ειδικές διεργασίες Βασικά Δεν υπάρχει σαφής διάκριση αραιών / μη αραιών συστημάτων N Συνήθως s < 5 με 10% (Ns: sparse elements) N

Αραιά συστήματα & διαχείριση μνήμης Αναπαράσταση συντεταγμένων σε αραιούς πίνακες x coordinate (JC) y coordinate (JR) τιμές (AA) π.χ. A = 1 0 0 2 0 3 4 0 5 0 6 0 7 8 9 0 0 14 11 0 2 0 0 0 12 AA = 12 9 7 5 1 2 11 3 6 4 8 10 JR = 5 3 3 2 1 1 4 2 3 2 3 4 JC = 5 5 3 4 1 4 4 1 1 2 4 3 b) Σειριακή αναπαράσταση (serial format) AA = [ 1 2 3 4 5 6 7 8 9 10 11 12] SF = [ 1 4 6 7 9 11 13 14 15 18 19 25]

Αραιά συστήματα & διαχείριση μνήμης Εξοικονόμηση NF πλήρης πίνακας Ν 2 ΝCF CF 3NS NSF SF 2NS Για Ν = 1,000 και NS α= = 3 N o oo N N 2 F CF = = 10N = 10,000 N 3NS CF N N 2 F SF = = 16N = 16, 000 SF N 2NS ή 10 4 της μνήμης για CF 10 4 10 5 της μνήμης για SF Ακόμη μεγαλύτερη εξοικονόμηση με NSF όταν υπολογίζει κανείς Ιακωβιανές συντεταγμένες.

Διαχείριση δεδομένων στο Aspen Plus

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση μεταβλητών στο Aspen Plus b) Δεδομένα διεργασίας Block input Παράδειγμα flash TEMP MAXIT PRES TOL VFRAC DUTY ENTRY F Block results QCALC V L F1 FLOWSHEET BLOCK F1 IN=FEED OUT=VRLIQ ρεύματα διεργασίας BLOCK F1 FLASH2 PARAME TEMP=120 PRES=13.23 δδ δεδομένα διεργασίας

Αραιά συστήματα & διαχείριση μνήμης Αποθήκευση μεταβλητών στο Aspen Plus Δεδομένα καταχωρούνται ξεχωριστά για Ρεύματα του ροοδιαγράμματος Κάθε μία διεργασία ξεχωριστά a) Ρεύματα S: F 1 F 2,, F c F TOT T P h V F L F s ρ MW Παράδειγμα flash NC δεδομένα F V L F V L COMMON / B / B (NPLEX) B-Block 3 ανύσματα με γνωστές διαστάσεις αφού ΝC γνωστά

Αραιά συστήματα & διαχείριση μνήμης Δομημενα συστήματα Συχνά προκύπτουν σε Αποστακτικές στήλες Συστοιχίες διεργασιών A = Εδώ μπορεί να χρησιμοποιηθεί και σε εξειδικευμένους αλγορίθμους για Λιγότερη μνήμη Συνεκτική / συμπαγή αναπαράσταση (π.χ Inside out algorithm)