2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
|
|
- Χλωρίς Δάβης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2. Μέθοδοι δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1
2 Μέθοδος μετακινήσεων ή δυσκαμψίας Εισαγωγή στις μεθόδους μετακινήσεων ή δυσκαμψίας Επίλυση συστημάτων ελατηρίων Γενική διαδικασία μεθόδου μετακινήσεων ή δυσκαμψίας Διαδικασία άμεσης μεθόδου δυσκαμψίας Ανάλυση δικτυωμάτων με τη μέθοδο δυσκαμψίας Μητρώα δυσκαμψίας ράβδων Μετασχηματισμοί δυνάμεων και μετακινήσεων Άμεση μέθοδος δυσκαμψίας για δικτυώματα Κεκλιμένες συνοριακές συνθήκες Ανάλυση χωρικών δικτυωμάτων Προγραμματισμός άμεσης μεθόδου δυσκαμψίας για δικτυώματα Γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 2
3 Σύγχρονες μέθοδοι ανάλυσης κατασκευών μέθοδος των δυνάμεων ή ευκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι δυνάμεις και ροπές μέθοδος των μετακινήσεων ή δυσκαμψίας oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι μετακινήσεις Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 3
4 Μέθοδος των μετακινήσεων ή δυσκαμψίας βασίζεται στα μητρώα δυσκαμψίας των επιμέρους μελών της κατασκευής βάσει των οποίων σχηματίζεται το συνολικό μητρώο δυσκαμψίας Κ της κατασκευής oι άγνωστοι στις σχηματιζόμενες εξισώσεις είναι οι μετακινήσεις των ελεύθερων κόμβων της κατασκευής επιλύνοντας το σύστημα των εξισώσεων το οποίο σχηματίζεται, υπολογίζονται οι μετακινήσεις των βαθμών ελευθερίας των κόμβων της κατασκευής ακολούθως, χρησιμοποιώντας τα επιμέρους μητρώα δυσκαμψίας του κάθε μέλους, υπολογίζονται τα εντατικά μεγέθη στα άκρα του κάθε μέλους χρήσιμη για επιλύσεις γενικών προβλημάτων με Η/Υ εύκολη αυτοματοποίηση και προγραμματισμός της μεθόδου Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 4
5 Βάσεις μεθόδου δυσκαμψίας εξισώσεις ισορροπίας καταστατικό νόμο του υλικού συνθήκες συμβιβαστότητας των παραμορφώσεων κοινός τρόπος ανάλυσης ισοστατικών και υπερστατικών φορέων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 5
6 Γενική περιγραφή μεθόδου καθορισμός σχέσεων εντατικών μεγεθών και των αντίστοιχων μετακινήσεων των μελών ενός φορέα, βάσει των μητρώων δυσκαμψίας των επιμέρους μελών της κατασκευής κατάλληλοι μετασχηματισμοί από τοπικό σε απόλυτο σύστημα συντεταγμένων εφαρμογή εξισώσεων ισορροπίας στους κόμβους σχηματισμός μητρώου δυσκαμψίας της κατασκευής εφαρμογή συνοριακών συνθηκών επίλυση σχηματιζόμενου συστήματος εξισώσεων υπολογισμός μετακινήσεων ελεύθερων κόμβων κατασκευής υπολογισμός αντιδράσεων στις στηρίξεις υπολογισμός εντατικών μεγεθών στα άκρα του κάθε μέλους Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 6
7 Επίλυση συστημάτων ελατηρίων με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 7
8 Εύρεση μητρώου δυσκαμψίας ελατηρίου Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 8
9 Σύστημα τριών ελατηρίων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9
10 Εφαρμογή εξισώσεων ισορροπίας γύρω από κάθε κόμβο Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 10
11 αντιστοιχία βαθμών ελευθερίας Εξισώσεις ισορροπίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11
12 Εξισώσεις ισορροπίας σε μητρωική μορφή Το μητρώο δυσκαμψίας K είναι ιδιάζων (singular), αφού δεν έχουν ορισθεί συνοριακές συνθήκες, οι οποίες καταστούν το φορέα σταθερό. Η ορίζουσα του μητρώου δυσκαμψίας είναι μηδενική και η τάξη (rank) του μητρώου είναι μικρότερη των διαστάσεων του, τα οποία εκφράζουν μαθηματικά τη χαλαρότητα του φορέα. Το μητρώο δυσκαμψίας είναι συμμετρικό, γεγονός το οποίο να αξιοποιηθεί για εξοικονόμηση υπολογισμών και μνήμης αποθήκευσης του, ειδικά λαμβάνοντας υπόψη ότι τα περισσότερα του στοιχεία είναι μηδενικά. Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 12
13 Εφαρμογή συνοριακών συνθηκών U s : δεδομένες μετακινήσεις λόγω συνοριακών συνθηκών R f : δεδομένα επικόμβια φορτία Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 13
14 Διαδικασία μεθόδου άμεσης δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 14
15 Παράδειγμα 1: Εφαρμογή μεθόδου άμεσης δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 15
16 Εφαρμογή συνοριακών συνθηκών U s : δεδομένες μετακινήσεις λόγω συνοριακών συνθηκών R f : δεδομένα επικόμβια φορτία Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 16
17 Ανάλυση δικτυωμάτων με τη άμεση μέθοδο δυσκαμψίας Σχέση δυνάμεων-μετακινήσεων ράβδου δικτυώματος: Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 17
18 Εντατικά μεγέθη και μετακινήσεις ράβδων δικτυώματος Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 18
19 Εντατικά μεγέθη, μετακινήσεις και μητρώο δυσκαμψίας ράβδου δικτυώματος στο τοπικό σύστημα συντεταγμένων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 19
20 Μετασχηματισμοί δυνάμεων και μετακινήσεων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 20
21 Μετασχηματισμοί δυνάμεων και μετακινήσεων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 21
22 Μετασχηματισμοί δυνάμεων και μετακινήσεων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 22
23 Μετασχηματισμοί δυνάμεων και μετακινήσεων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 23
24 Άμεση μέθοδος δυσκαμψίας για δικτυώματα Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 24
25 Μητρώο δυσκαμψίας στο απόλυτο σύστημα συντεταγμένων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 25
26 Υπομητρώα μητρώου δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 26
27 Παράδειγμα-2 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 27
28 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 28
29 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 29
30 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 30
31 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 31
32 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 32
33 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 33
34 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 34
35 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 35
36 Μητρώο δυσκαμψίας κατασκευής Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 36
37 Εφαρμογή συνοριακών συνθηκών Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 37
38 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 38
39 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 39
40 Υπολογισμός εντατικών μεγεθών Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 40
41 Υπολογισμός εντατικών μεγεθών Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 41
42 Υπολογισμός εντατικών μεγεθών Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 42
43 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 43
44 Παράδειγμα-3 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 44
45 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 45
46 Αντιστοιχία βαθμών ελευθερίας μελών και κόμβων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 46
47 Σχηματισμός μητρώου δυσκαμψίας κατασκευής Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 47
48 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 48
49 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 49
50 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 50
51 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 51
52 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 52
53 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 53
54 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 54
55 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 55
56 Παράδειγμα-4 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 56
57 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 57
58 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 58
59 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 59
60 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 60
61 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 61
62 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 62
63 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 63
64 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 64
65 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 65
66 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 66
67 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 67
68 Παράδειγμα-5 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 68
69 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 69
70 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 70
71 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 71
72 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 72
73 Κεκλιμένες συνοριακές συνθήκες Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 73
74 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 74
75 Παράδειγμα-6 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 75
76 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 76
77 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 77
78 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 78
79 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 79
80 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 80
81 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 81
82 Ανάλυση χωρικών δικτυωμάτων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 82
83 Ανάλυση χωρικών δικτυωμάτων Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 83
84 Προγραμματισμός άμεσης μεθόδου δυσκαμψίας Καθορισμός δεδομένων για ανάλυση επίπεδων δικτυωμάτων: Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 84
85 Αυτόματη διαδικασία ανάλυσης επίπεδων δικτυωμάτων: Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 85
86 Γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 86
87 Παράδειγμα-7: γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 87
88 Προσδιορισμός στοιχείων 1 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 88
89 Προσδιορισμός στοιχείων 1 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 89
90 Προσδιορισμός στοιχείων 2 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 90
91 Προσδιορισμός στοιχείων 2 ης στήλης Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 91
92 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 92
93 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 93
94 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 94
95 Παράδειγμα-8: γραφική επίλυση με τη μέθοδο δυσκαμψίας Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 95
96 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 96
97 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 97
98 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 98
99 Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 99
1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση μεθόδων δυσκαμψίας (μετακινήσεων) για επίλυση δικτυωμάτων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
4. Επίλυση Δοκών και Πλαισίων με τις
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 4. Επίλυση Δοκών και Πλαισίων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος
2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος,
2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων)
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 2. Επίλυση Δικτυωμάτων με τις Μεθόδους Ευκαμψίας (ή Δυνάμεων) Εαρινό εξάμηνο 2019 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων)
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 1. Ανασκόπηση Μεθόδων Ευκαμψίας (δυνάμεων) Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος 1 Θέματα Μέθοδος
8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 8. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών
5. Μέθοδοι δυσκαμψίας (μετακινήσεων) για την ανάλυση πλαισιακών κατασκευών Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Σύγχρονες μέθοδοι ανάλυσης κατασκευών
7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα
ΠΠΜ 221: Ανάλυση Κατασκευών με Mητρώα 7. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος
4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 4. Προγραμματισμός Μεθόδου Άμεσης Δυσκαμψίας για Δικτυώματα Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ)
10. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων (ΜΠΣ) Χειμερινό εξάμηνο 2018 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Διατύπωση εξισώσεων ΜΠΣ βάσει μετακινήσεων
ΠΕΡΙΕΧΟΜΕΝΑ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ Εισαγωγή Συστήματα συντεταγμένων. 7
Στατική των γραμμικών φορέων ix ΠΕΡΙΕΧΟΜΕΝΑ σελ. 1. ΟΙ ΓΡΑΜΜΙΚΟΙ ΦΟΡΕΙΣ. 1 1.1 Εισαγωγή.. 3 1.2 Συστήματα συντεταγμένων. 7 2. Η ΚΙΝΗΣΗ ΚΑΙ Η ΣΤΗΡΙΞΗ ΤΟΥ ΔΙΣΚΟΥ ΑΝΤΙΔΡΑΣΕΙΣ 13 2.1 Η κίνηση και η στήριξη
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A. 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3
ΠΕΡΙΕΧΟΜΕΝΑ ΜΕΡΟΣ A 1 Εισαγωγή στην Ανάλυση των Κατασκευών 3 1.1 Κατασκευές και δομοστατική 3 1.2 Διαδικασία σχεδίασης κατασκευών 4 1.3 Βασικά δομικά στοιχεία 6 1.4 Είδη κατασκευών 8 1.4.1 Δικτυώματα 8
11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων
11. Εισαγωγή στις Μεθόδους Πεπερασμένων Στοιχείων Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 2 Θέματα Εισαγωγή Διατύπωση ΜΠΣ Βάσει Μετακινήσεων Γενική
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. Ανάπτυξη Προγράμματος Ανάλυσης Επίπεδων Δικτυωμάτων
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017 Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα ΠΠΜ 221: Ανάλυση Κατασκευών
ιαλέξεις 30-34 Μέθοδοι των δυνάµεων Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 30-34 Μέθοδοι επίλυσης υπερστατικών φορέων: Μέθοδοι των δυνάµεων Τρίτη, 16, Τετάρτη, 17, Παρασκευή 19 Τρίτη, 23, και Τετάρτη 24 Νοεµβρίου 2004 Πέτρος
ΑΣΚΗΣΗ 6 - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤΗ ΚΑΤΑΣΚΕΥΗ Να γίνει πλήρης ανάλυση του μεταλλικού δικτυώματος του σχήματος. Ολες οι συνδέσεις των ράβδων στους κόμβους είναι αρθρωτού τύπου. Επί πλέον, ο ένας εκ των άνω κόμβων μπορεί
ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μανόλης Παπαδρακάκης Καθηγητής ΕΜΠ Εργαστήριο Στατικής & Αντισεισμικών Ερευνών 008-009 Μητρωικές Μέθοδοι Μετατοπίσεων και Δυνάμεων Ανάλυσης Κατασκευών
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα, 08 - η Πρόοδος ΠΠΜ : Ανάλυση Κατασκευών με Μητρώα η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 07 8, Εαρινό Εξάμηνο Πέμπτη, Φεβρουαρίου, 08, 9:00-0:00 π.μ. (60 λεπτά) Όνομα:
9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 9. Προγραμματισμός Δυναμικής Ανάλυσης ΠΒΣ Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση
Σημειώσεις του μαθήματος Μητρωϊκή Στατική
ΑΝΩΤΑΤΗ ΣΧΟΛΗ ΠΑΙΔΑΓΩΓΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Σημειώσεις του μαθήματος Μητρωϊκή Στατική Π. Γ. Αστερής Αθήνα, Μάρτιος 017 Περιεχόμενα Κεφάλαιο 1 Ελατήρια σε σειρά... 1.1 Επιλογή μονάδων και καθολικού
Ανάλυση Ισοστατικών ικτυωµάτων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 5 η και 6 η Ανάλυση Ισοστατικών ικτυωµάτων Τετάρτη,, 15, Παρασκευή, 17 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ιαλέξεις Παρασκευή 8 Οκτωβρίου,, Πέτρος Κωµοδρόµος Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 13-15 Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη, 5, και Τετάρτη, 6 και Παρασκευή 8 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Μέθοδος των Δυνάμεων
Μέθοδος των Δυνάμεων Εισαγωγή Μέθοδος των Δυνάμεων: Δ07-2 Η Μέθοδος των Δυνάμεων ή Μέθοδος Ευκαμψίας είναι μία μέθοδος για την ανάλυση γραμμικά ελαστικών υπερστατικών φορέων. Ανκαιημέθοδοςμπορείναεφαρμοστείσεπολλάείδηφορέων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι, 2004-5 η και 6 η Πρόοδος Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 017-1 η Πρόοδος ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα 1 η Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 016 17, Εαρινό Εξάμηνο Δευτέρα, 0 Φεβρουαρίου, 017, 9:00-10:00 π.μ. (60 λεπτά)
ΑΣΚΗΣΗ 17 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΑΣΚΗΣΗ 7 ΔΕΔΟΜΕΝΑ: Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα M, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα)
ΑΣΚΗΣΗ 1 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH AAΣΚΕΥΗ Η αρθρωτή κατασκευή του σχήματος έπρεπε να απαρτίζεται από τρείς όμοιες μεταλλικές ράβδους, μήκους η κάθε μία με ΕΑ σταθ. και θεωρούμενες ως αβαρείς, οι οποίες να συναντώνται
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q. Διδάσκων: Γιάννης Χουλιάρας
ΟΛΟΣΩΜΑ ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Διδάσκων: Γιάννης Χουλιάρας Διάφοροι τύποι ολόσωμων ισοστατικών πλαισίων Ισορροπία κόμβων ΣF x = 0 N 1 + N 2 cosθ + Q 2 sinθ N 3
ιάλεξη 7 η, 8 η και 9 η
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 7 η, 8 η και 9 η Ανάλυση Ισοστατικών οκών και Πλαισίων Τρίτη,, 21, Τετάρτη,, 22 και Παρασκευή 24 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΜΕΘΟΔΟΣ ΥΠΟΦΟΡΕΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Διατύπωση
Μέθοδοι των Μετακινήσεων
Μέθοδοι των Μετακινήσεων Εισαγωγή Μέθοδοι των Μετακινήσεων: Δ14-2 Στη Μέθοδο των Δυνάμεων (ή Ευκαμψίας), που έχουμε ήδη μελετήσει, επιλέγουμε ως άγνωστα υπερστατικά μεγέθη αντιδράσεις ή εσωτερικές δράσεις.
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 8-9-, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ιάλεξη 3 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Παρασκευή, 10 Σεπτεµβρίου,, 2004
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 3 η Ισορροπία, στατικότητα και εντατικά µεγέθη κατασκευών Παρασκευή, 10 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
Επίλυση 2ας. Προόδου & ιάλεξη 12 η. Τρίτη 5 Οκτωβρίου,,
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 12 η Επίλυση 2ας Προόδου & Εισαγωγή στις Παραµορφώσεις και Μετακινήσεις Τρίτη 5 Οκτωβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα, 019 - Τελική εξέταση ΠΠΜ 1: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 018 19, Εαρινό Εξάμηνο Τελική Εξέταση 8:30-10:30 μ.μ. (10 λεπτά), Δευτέρα, 13 Μαΐου, 019 Όνομα:
1 η Επανάληψη ιαλέξεων
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι 1 η Επανάληψη ιαλέξεων Στατική Ανάλυση Ισοστατικών Φορέων Τρίτη,, 28 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2. Ισοστατικότητα
Εισαγωγικές Έννοιες Ισοστατικότητα Εισαγωγικές Έννοιες (Επανάληψη): Δ02-2 Ισοστατικός (ή στατικά ορισμένος) λέγεται ο φορέας που ο προσδιορισμός της εντατικής του κατάστασης είναι δυνατός βάσει μόνο των
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Castigliano Ελαστική γραμμή Διδάσκων: Γιάννης Χουλιάρας Επίλυση υπερστατικών φορέων Για την επίλυση των ισοστατικών φορέων (εύρεση αντιδράσεων και μεγεθών έντασης) αρκούν
ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ. ομική Μηχανική Ι. Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΑΡΧΙΤΕΚΤΟΝΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΣΥΝΘΕΣΕΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΑΙXΜΗΣ ΕΠΙΠΕ Α ΙΚΤΥΩΜΑΤΑ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ομική Μηχανική Ι 1 Περιεχόμενα 1. Εισαγωγή 2. Μόρφωση επίπεδων
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Υποχωρήσεις Στηρίξεων Μέθοδος των Δυνάμεων: Οι υποχωρήσεις στηρίξεων, η θερμοκρασιακή μεταβολή και τα κατασκευαστικά λάθη προκαλούν ένταση στους υπερστατικούς φορείς. Η
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : , 12:00-15:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : --, :-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΑΡ. ΜΗΤΡ :.......
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΑΤΙΚΗ ΣΥΜΠΥΚΝΩΣΗ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα.
ΘΕΜΑ 1 ΔΕΔΟΜΕΝΑ: Δίνονται: = cm ΕΠΙΛΥΣΗ: Ερώτημα α. k = 6000kN m. Μέθοδος των Δυνάμεων:
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα, Q (2.5 μονάδες) β) να υπολογιστεί το μέτρο και η φορά της κατακόρυφης μετατόπισης στο μέσο του τμήματος (23) ( μονάδα) Δίνονται:
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο Τελική Εξέταση 8:30-11:30 π.µ.
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ
ΑΣΚΗΣΗ 9 - ΧΩΡΙΚΟ ΠΛΑΙΣΙΟ Να γίνει στατική επίλυση τoυ χωρικού πλαισίου από οπλισμένο σκυρόδεμα κατηγορίας C/, κάτοψη του οποίου φαίνεται στο σχήμα (α). Δίνονται: φορτίο επικάλυψης πλάκας gεπικ. KN/, κινητό
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΔΙΚΤΥΩΜΑΤΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2018-2 η Πρόοδος ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Ακαδημαϊκό Έτος 2017 18, Εαρινό Εξάμηνο 2 η Πρόοδος 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 29 Μαρτίου, 2018 Όνομα:
5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 5. Εισαγωγή στο Πρόγραμμα Ανάλυσης GT-Strudl Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Πέτρος Κωμοδρόμος ΠΠΜ 325: Ανάλυση
7. Δυναμική Ανάλυση ΠΒΣ
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα
ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΣΥΝΔΥΑΣΜΕΝΩΝ ΚΟΜΒΩΝ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ
Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ. Ακαδημαϊκό Έτος , Χειμερινό Εξάμηνο
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ, 2016- Τελική Εξέταση Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΠΙΠΕΔΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των υνάμεων (συνέχεια) Παράδειγμα Π8-1 Μέθοδος των υνάμεων: 08-2 Να υπολογιστούν οι αντιδράσεις και να σχεδιαστεί το διάγραμμα ροπών κάθε μέλους του πλαισίου. [ΕΙ σταθερό] Το πλαίσιο στο σχήμα
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΧΩΡΙΚΑ ΠΛΑΙΣΙΑ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα. Εισαγωγή. Παρουσίαση
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΔΟΜΟΣΤΑΤΙΚΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΥΠΟΛΟΓΙΣΜΟΥ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΠΑΡΑΜΟΡΦΩΣΕΩΝ Κ. Β. ΣΠΗΛΙΟΠΟΥΛΟΣ Καθηγητής ΕΜΠ Πορεία επίλυσης. Ευρίσκεται
ιαλέξεις 24-27 Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιαλέξεις 24-27 Αρχή υνατών Έργων (Α Ε) Τρίτη, 2, Τετάρτη, 3, Παρασκευή 5 και Τρίτη, 9 Νοεµβρίου, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk
2. Ανασκόπηση - Πρόγραμμα GT-Strudl
ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 2. Ανασκόπηση - Πρόγραμμα GT-Strudl Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros Γενική Περιγραφή GT- Strudl
Μέθοδος Επικόμβιων Μετατοπίσεων
Μέθοδος Επικόμβιων Μετατοπίσεων Εισαγωγή Μέθοδος Επικόμβιων Μετατοπίσεων: Δ18-2 Τα περισσότερα προγράμματα Η/Υ έχουνωςθεμελιώδηβάση τους τη Μέθοδο Επικόμβιων Μετατοπίσεων. Στη Μέθοδο των Επικόμβιων Μετατοπίσεων,
ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΕΣΩΤΕΡΙΚΕΣ ΕΛΕΥΘΕΡΩΣΕΙΣ ΜΕΘΟΔΟΣ ΤΡΟΠΟΠΟΙΗΜΕΝΩΝ ΜΗΤΡΩΩΝ ΣΤΙΒΑΡΟΤΗΤΑΣ Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ
ΕΠΩΝΥΜΟ :... ΟΝΟΜΑ :... ΒΑΘΜΟΣ:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : 7--, 9:-: ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι, 2004-4 η Πρόοδος Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Ακαδηµαϊκό
ΑΣΚΗΣΗ 2 - ΔΙΚΤΥΩΤH KATAΣΚΕΥΗ
ΑΣΚΗΣΗ - ΔΙΚΤΥΩΤH KAAΣΚΕΥΗ Να επανεπιλυθεί η Ασκηση θεωρώντας και την επίδραση του ιδίου βάρους των ράβδων. Ε- στω ότι το ειδικό βάρος τους είναι γνωστό με τιμή γ, σε ΚΝ/m. Περαιτέρω, να σχεδιασθούν τα
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2018 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
ιάλεξη 1 η komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Πέτρος Κωµοδρόµος Τρίτη, 7 Σεπτεµβρίου,, 2004 ΠΠΜ 220 Στατική Ανάλυση των Κατασκευών Ι 1
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι ιάλεξη 1 η Εισαγωγή στη Στατική Ανάλυση των Κατασκευών Τρίτη, 7 Σεπτεµβρίου,, 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk ΠΠΜ 220
Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής
Κεφάλαιο 5 Περιπτώσεις συνοριακών συνθηκών σε προβλήματα γεωτεχνικής μηχανικής Στο παρόν κεφάλαιο παρουσιάζονται οι περιπτώσεις συνοριακών συνθηκών οι οποίες συναντώνται σε προβλήματα γεωτεχνικής μηχανικής.
ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι
Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή Τµήµα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Γενικές οδηγίες: Ακαδηµαϊκό Έτος 2004 Χειµερινό Εξάµηνο ΠΠΜ 220: Στατική Ανάλυση Κατασκευών Ι 3 η Σειρά Ασκήσεων
Ανυψωτικές και Μεταφορικές Μηχανές Εισαγωγή. Εργαστήριο 1 ο
Ανυψωτικές και Μεταφορικές Μηχανές Εισαγωγή Εργαστήριο 1 ο Τι είναι οι Ανυψωτικές και Μεταφορ. Μηχανές Μηχανικά συγκροτήματα για τη μεταφορά βάρους με κατακόρυφο, οριζόντιο ή ενδιάμεσο τρόπο. Κ. Στυλιανός
ΠΡΟΛΟΓΟΣ ΕΙΣΑΓΩΓΗ... 15
ΠΕΡΙΕΧΟΜΕΝΑ ΠΡΟΛΟΓΟΣ... 11 ΕΙΣΑΓΩΓΗ... 15 1. Εισαγωγικές έννοιες... 17 1.1 Φορτία... 17 1.2 Η φέρουσα συμπεριφορά των βασικών υλικών... 22 1.2.1 Χάλυβας... 23 1.2.2 Σκυρόδεμα... 27 1.3 Η φέρουσα συμπεριφορά
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2015 2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών 2. Δικτυώματα/ Μηχανική Υλικών 1 Σκοποί ενότητας Να είναι σε θέση ο φοιτητής να μπορεί να ελέγχει την ισο-στατικότητα
υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 22.
υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 0-0 Cprigh ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 0. Με επιφύλαξη παντός
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016
ΜΗΧΑΝΙΚΗ ΤΩΝ ΥΛΙΚΩΝ- 2016 A2. Δικτυώματα Κώστας Γαλιώτης, καθηγητής Τμήμα Χημικών Μηχανικών galiotis@chemeng.upatras.gr A2. Δικτυώματα/ Μηχανική Υλικών 1 Τι είναι ένα δικτύωμα Είναι ένα σύστημα λεπτών,
Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 2008
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ- ΣΤΑΤΙΚΗ ΙΙΙ - 19 ΣΕΠΤΕΜΒΡΙΟΥ 008 ΘΕΜΑ 1o Για τον φορέα του σχήματος ζητούνται: Tο Γεωμετρικό Κύριο Σύστημα με τα ελάχιστα άγνωστα μεγέθη. Το μητρώο δυσκαμψίας Κ του
Επαναλήψεις. Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004. komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk. Πέτρος Κωµοδρόµος
ΠΠΜ 220: Στατική Ανάλυση των Κατασκευών Ι Επαναλήψεις Τετάρτη, 1 & Παρασκευή,, 3 εκεµβρίου 2004 Πέτρος Κωµοδρόµος komodromos@ucy.ac.cy http://www.ucy.ac.cy/~petrosk Στατική Ανάλυση των Κατασκευών Ι 1 Θέµατα
11. Χρήση Λογισμικού Ανάλυσης Κατασκευών
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ 11. Χρήση Λογισμικού Ανάλυσης Κατασκευών Εαρινό εξάμηνο 2015 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή Μοντελοποίηση κατασκευής
ΘΕΜΑ 1 ο (6.00 μον.) ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ. Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ Μάθημα : Ανάλυση Γραμμικών Φορέων με Μητρώα ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ Διδάσκων: Μ. Γ. Σφακιανάκης ΤΜΗΜΑ ΠΟΛ/ΚΩΝ ΜΗΧ/ΚΩΝ Εξέταση : -9-0, :00-:00 ΤΟΜΕΑΣ ΚΑΤΑΣΚΕΥΩΝ ΕΠΩΝΥΜΟ :......... ΟΝΟΜΑ :......
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΕΡΕΟΙ ΚΟΜΒΟΙ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ Περιεχόμενα Εισαγωγή Κινηματικές
Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους:
Άσκηση 1 η ίνονται οι δύο παρακάτω φορείς, µε αριθµηµένους τους ενεργούς βαθµούς ελευθερίας τους: (α) Επίπεδο δικτύωµα (β) Επίπεδο πλαίσιο Ζητείται να µορφωθούν συµβολικά τα µητρώα στιβαρότητας των δύο
Καρακίτσιος Παναγιώτης Θέμα Ι Στατική ΙΙΙ users.ntua.gr/pkarak. Εθνικό Μετσόβιο Πολυτεχνείο Ακαδημαϊκό έτος Σχολή Πολιτικών Μηχανικών
Εθνικό Μετσόβιο Πολυτεχνείο Ακαδημαϊκό έτος 2010-2011 Σχολή Πολιτικών Μηχανικών 6 ο εξάμηνο Τομέας Δομοστατικής Μάθημα: Στατική ΙΙΙ (Ανάλυση Ραβδωτών Φορέων Σύγχρονες Μέθοδοι) Καρακίτσιος Παναγιώτης Υποψήφιος
Κεφάλαιο 3. Γραμική θεωρία, στατικά προβλήματα. 3.1 Μέθοδος δυσκαμψίας
Κεφάλαιο 3 Γραμική θεωρία, στατικά προβλήματα Στο κεφάλαιο αυτό παρουσιάζονται ορισμένες από τις βασικές έννοιες στις οποίες βασίζεται η άμεση μέθοδος δυσκαμψίας. Δίνεται πρώτα το γραμμικό ελατήριο, το
Μέθοδος των Δυνάμεων (συνέχεια)
Μέθοδος των Δυνάμεων (συνέχεια) Δοκοί σε Ελαστικές Στηρίξεις Μέθοδος των Δυνάμεων: Δ10-2 Οι στηρίξεις κάποιων φορέων είναι δυνατό να μετακινηθούν υπό την επίδραση της εξωτερικής φόρτισης. Για παράδειγμα,
ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΚΗΣ & ΑΝΤΙΣΕΙΣΜΙΚΩΝ ΕΡΕΥΝΩΝ ΣΤΟΙΧΕΙΑ ΜΕΤΑΒΛΗΤΗΣ ΔΙΑΤΟΜΗΣ Καθηγητής ΕΜΠ ΑΝΑΛΥΣΗ ΡΑΒΔΩΤΩΝ ΦΟΡΕΩΝ ΜΕ ΜΗΤΡΩΙΚΕΣ ΜΕΘΟΔΟΥΣ 1 Περιεχόμενα
Ενδιάμεση Πρόοδος. 10:30-11:30 π.μ. (60 λεπτά), Δευτέρα, 19 Μαρτίου, 2018
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή μήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 2017-18, Εαρινό Εξάμηνο 10:30-11:30 π.μ.
ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΣΕΠΤΕΜΒΡΙΟΥ 2005 ΘΕΜΑ 1
ΔΕΔΟΜΕΝΑ: ΘΕΜΑ 1 Στο φορέα του σχήματος ζητούνται: α) να χαραχθούν τα διαγράμματα Μ, Q, N (3.5 μονάδες) β) η κατακόρυφη βύθιση του κόμβου 7 λόγω της φόρτισης και μιας ομοιόμορφης μείωσης της θερμοκρασίας
ΚΑΤΑΣΚΕΥΗ ΑΝΤΙΣΤΟΙΧΟΥ ΔΙΚΤΥΩΜΑΤΟΣ ΦΟΡΕΑ. 3δ=3*6=18>ξ+σ=5+12=17. Άρα το αντίστιχο δικτύωμα είναι μια φορά κινητό.
1 Α.Π.Θ.- ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ - ΣΤΑΤΙΚΗ ΙΙΙ - ΦΕΒΡΟΥΑΡΙΟΣ 2009 ΘΕΜΑ 1o Για τον φορέα του σχήματος, να υπολογιστούν και σχεδιαστούν τα πλήρη διαγράμματα Μ όλων των στοιχείων του φορέα, λόγω ταυτόχρονης
ΑΣΚΗΣΗ 14. Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα M, Q, για τη δεδομένη φόρτιση.
ΑΣΚΗΣΗ 14 ΔΕΔΟΕΝΑ: Για το πλαίσιο του σχήματος με τεθλασμένο ζύγωμα ζητείται να μορφωθούν τα διαγράμματα,, για τη δεδομένη φόρτιση. ΕΠΙΛΥΣΗ: Ο φορέας είναι συμμετρικός ως προς άξονα με τυχαία φόρτιση.
Μάθημα: Στατική ΙΙ 3 Ιουλίου 2012 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ Τμήμα Πολιτικών Έργων Υποδομής Μάθημα: Στατική ΙΙ 3 Ιουλίου 202 Διδάσκων: Τριαντ. Κόκκινος, Ph.D. ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ( η περίοδος
ΑΣΚΗΣΕΙΣ ΣΤΑΤΙΚΗΣ ΙΙ. Δοκοί, Πλαίσια, Δικτυώματα, Γραμμές Επιρροής και Υπερστατικοί Φορείς
ΤΧΝΟΛΟΙΚΟ ΚΠΑΙΥΤΙΚΟ ΙΡΥΜΑ ΑΘΗΝΑΣ ΣΧΟΛΗ ΤΧΝΟΛΟΙΚΩΝ ΦΑΡΜΟΩΝ Τμήμα Πολιτικών Έργων Υποδομής ΑΣΚΗΣΙΣ ΣΤΑΤΙΚΗΣ ΙΙ οκοί, Πλαίσια, ικτυώματα, ραμμές πιρροής και Υπερστατικοί Φορείς, Ph.D. Μάρτιος 11 Ασκήσεις
Κεφάλαιο 10 Προσδιορισμός των βαθμών ελευθερίας
Κεφάλαιο 0 Προσδιορισμός των βαθμών ελευθερίας Σύνοψη Η άσκηση 0, που περιέχεται στο κεφάλαιο αυτό, αναφέρεται σε μία μεγάλη σειρά απλών και σύνθετων στατικών φορέων, για τους οποίους ζητείται ο προσδιορισμός
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής. Διδάσκων: Γιάννης Χουλιάρας
ΙΣΟΣΤΑΤΙΚΑ ΠΛΑΙΣΙΑ ΜΕ ΣΥΝΔΕΣΜΟΥΣ Υπολογισμός αντιδράσεων και κατασκευή Μ,Ν, Q Γραμμές επιρροής Διδάσκων: Γιάννης Χουλιάρας Ισοστατικά πλαίσια με συνδέσμους (α) (β) Στατική επίλυση ισοστατικών πλαισίων
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ
ΑΛΕΞΑΝΔΡΕΙΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΕΡΓΩΝ ΥΠΟΔΟΜΗΣ Πτυχιακή Εργασία Θέμα: Στατική Επίλυση Επίπεδων Ισοστατικών Δικτυωμάτων Φοιτητής: Γογοδώνης
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ
ΤΕΧΝΙΚΗ ΜΗΧΑΝΙΚΗ Ι ΕΠΙΠΕ ΟΙ ΙΚΤΥΩΤΟΙ ΙΣΟΣΤΑΤΙΚΟΙ ΦΟΡΕΙΣ ΕΙΣΑΓΩΓΗ-ΜΟΡΦΩΣΗ ΙΚΤΥΩΜΑΤΩΝ Στην Τεχνική Μηχανική Ι μελετώνται επίπεδα δικτυώματα. Τα δικτυώματα είναι φορείς που απαρτίζονται από ευθύγραμμες ράβδους
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross. Διδάσκων: Γιάννης Χουλιάρας
ΕΠΙΛΥΣΗ ΥΠΕΡΣΤΑΤΙΚΩΝ ΦΟΡΕΩΝ Μέθοδος Cross Διδάσκων: Γιάννης Χουλιάρας Μέθοδος Cross Η μέθοδος Cross ή μέθοδος κατανομής των ροπών, χρησιμοποιείται για την επίλυση συνεχών δοκών και πλαισίων. Είναι παραλλαγή
ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ. Ενδιάμεση Πρόοδος. 10:30-11:30 π.μ. (60 λεπτά), Δευτέρα, 20 Μαρτίου, 2017
Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 325: Ανάλυση Κατασκευών με Η/Υ μήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ενδιάμεση Πρόοδος Ακαδημαϊκό Έτος 2016-17, Εαρινό Εξάμηνο 10:30-11:30 π.μ.
Πλαστική Κατάρρευση Δοκών
Πλαστική Κατάρρευση Δοκών ΠΕΡΙΕΧΟΜΕΝΑ Σταδιακή Μελέτη Πλαστικής Κατάρρευσης o Παράδειγμα 1 (ισοστατικός φορέας) o Παράδειγμα 2 (υπερστατικός φορέας) Αμεταβλητότητα Φορτίου Πλαστικής Κατάρρευσης Προσδιορισμός
Γενικευμένα Mονοβάθμια Συστήματα
Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu