Journal of East China Normal University (Natural Science) DGH. Stability of peakons for the DGH equation. CHEN Hui-ping

Σχετικά έγγραφα
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Prey-Taxis Holling-Tanner

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

High order interpolation function for surface contact problem

D Alembert s Solution to the Wave Equation

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Single-value extension property for anti-diagonal operator matrices and their square

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Congruence Classes of Invertible Matrices of Order 3 over F 2

New Soliton and Periodic Solutions for Nonlinear Wave Equation in Finite Deformation Elastic Rod. 1 Introduction

Second Order Partial Differential Equations

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Envelope Periodic Solutions to Coupled Nonlinear Equations

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

ADVANCED STRUCTURAL MECHANICS

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

L p approach to free boundary problems of the Navier-Stokes equation

A summation formula ramified with hypergeometric function and involving recurrence relation

Example Sheet 3 Solutions

X g 1990 g PSRB

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Frobenius integrable decompositions for PDEs

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

REMARK ON WELL-POSEDNESS FOR THE FOURTH ORDER NONLINEAR SCHRÖDINGER TYPE EQUATION

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 8 Model Solution Section

On the Galois Group of Linear Difference-Differential Equations

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

College of Life Science, Dalian Nationalities University, Dalian , PR China.

2.1

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Bιογραφικό Σηµείωµα. Ευθυµία Μελετλίδου Επίκουρος καθηγήτρια,τµήµα Φυσικής Α.Π.Θ.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Journal of Differential Equations

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

ADVANCES IN MECHANICS Jan. 25, Newton ( ) ,., Newton. , Euler, d Alembert. Lagrange,, , Hamilton ( )

Solvability of Brinkman-Forchheimer equations of flow in double-diffusive convection

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Ηλεκτρονικοί Υπολογιστές IV

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Exact Two Waves Solutions with Variable Amplitude to the KdV Equation 1

Partial Differential Equations in Biology The boundary element method. March 26, 2013

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Math221: HW# 1 solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

Local Approximation with Kernels

A research on the influence of dummy activity on float in an AOA network and its amendments

Finite difference method for 2-D heat equation

(II) * PACS: a, Hj 300. ) [6 9] ) [10 23] ) [26 30]. . Deng [24,25] Acta Phys. Sin. Vol. 61, No. 15 (2012)

Discriminantal arrangement

Fundamentals of Signals, Systems and Filtering

Quick algorithm f or computing core attribute

Section 8.3 Trigonometric Equations

What happens when two or more waves overlap in a certain region of space at the same time?

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Supersymmetric Fifth Order Equations

Homomorphism in Intuitionistic Fuzzy Automata

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Dispersive estimates for rotating fluids and stably stratified fluids

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

Strong global attractors for non-damping weak dissipative abstract evolution equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Q L -BFGS. Method of Q through full waveform inversion based on L -BFGS algorithm. SUN Hui-qiu HAN Li-guo XU Yang-yang GAO Han ZHOU Yan ZHANG Pan

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Numerical Analysis FMN011

Heisenberg Uniqueness pairs

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Εισαγωγή. Κεφάλαιο Διαφορικές εξισώσεις

4.6 Autoregressive Moving Average Model ARMA(1,1)

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Βιβλιογραφία: Turning point properties as a method for the characterization of the ergodic dynamics of one-dimensional iterative maps, F. K.

A General Note on δ-quasi Monotone and Increasing Sequence

Transcript:

5 2010 9 ) Journal of East China Normal University Natural Science) No. 5 Sep. 2010 : 1000-56412010)05-0067-06 DGH, 226007) :,. DGH H 1.,,. : ; DGH ; : O29 : A Stability of peakons for the DGH equation CHEN Hui-ping Xinglin School, Nantong University, Nantong Jiangsu 226007, China) Abstract: The peakons are peaked solitary wave solutions of a certain nolinear dispersive equation that is a model in shallow water theory. In this paper, the author showed that the peaked solitons to the DGH equation were orbital stable in H 1 norm by constructing a functional and conservation laws. The stability theorem indicates that, if a wave is close to the peakons at the beginning, it will remain close to some translate of it at any time later. Key words: stability; the DGH equation; peakons 0 KdV Camassa-Holm, Dullin [1], : { u t α 2 u xxt + c 0 u x + γu xxx + uu x = α 2 2u x u xx + uu xxx ), t > 0, x, ux, 0) = u 0 x), x, α, γ c 0, c 0 = gh > 0, h, g. Dullin, Gottwald Holm, DGH. 0.1) : 2009-10 : 111002); 08QH14006); 07SG29) :,,,. E-mail: chp happy@sohu.com.

68 ) 2010 α = 0, DGH KDV., : ux, t), x, t. [2-4]). Bourgain [5] KDV, [6,7]., [8].,. α 0, : u t α 2 u xxt + c 0 u x c 0 α 2 u xxx + uu x = α 2 2u x u xx + uu xxx ). 0.2) DGH γ = c 0 α 2, α > 0). c > 0, ux, t) = ϕx ct) cϕ x + cα 2 ϕ xxx + c 0 ϕ x + ϕϕ x c 0 α 2 ϕ xxx = α 2 2ϕ x ϕ xx + ϕϕ xxx ). 0.) ϕ 0), 0.) cϕ + cα 2 ϕ xx + c 0 ϕ + 2 ϕ2 c 0 α 2 ϕ xx = α 2 1 2 ϕ2 x + ϕϕ xx ). ϕ x, ϕ c + c 0 )ϕ 2 α 2 ϕ 2 x) = 0. ϕx) = Ce x α, x. ), peaked soliton =peakon). 0.2). Q = 1 α 2 2 x ) 1/2, Q 2 Q 2 f = G f = Gx y)fy)dy, f L 2 ), Gx) = 1 x e α, x., 0.2) u t α 2 u txx ) + c 0 u x α 2 u xxx ) + uu x α 2 u x u xx α 2 uu xxx ) = 2uu x α 2 u x u xx, Q 2 u t + c 0 u x + uu x ) = x u 2 + α2 2 u2 x). ) u t + u + c 0 )u x + x Q 2 u 2 + α2 2 u2 x u 2 H 1 α u2 + α 2 u 2 x)dx.. 0.1 u C0, T, ); H 1 )) 0.2), 0 < ε < C 0, δ > 0, u0, ) cϕ H 1 α < δ, = 0. ut, ) cϕ ξt)) H 1 α < ε, t 0, T ), ξt) ut, ), C 0 = min1, α). DGH, [9].

5 : DGH 69 1.. u 0 H s ), s > 2 0.2) Kato [10,11]. Camassa-Holm. 1.1 [11] u 0 x) H s ), s > /2. T = T u 0 H s) > 0 u 0 0.2) u, u C [0, T ); H s )) C 1 [0, T ); H s 1 ) )., 0.2) Eu) = u 2 + α 2 u 2 x)dx, F u) = t.,,. 1.2 [12] 0.2). uu 2 + α 2 u 2 x)dx u 0 H 5 2 ) y 0 = u 0 u 0xx, x 0,. y 0 x) 0, x, x 0 ) y 0 x) 0, x x 0, + ), 1. [12] u 0 H ), s > 2, 1 2 u 0 H1 ). 0.2). 1.4 [12] 0.2). u 0 H ), s > 2, u 0xdx < 6 2 u 0 H1 ), u 0 H s ), s > 2.,. 2 0.1. 0.2)..., ).., c = 1. c. [1],. [14],. DGH,, [15],. ϕx) = e x α H 1 ) x = 0., Eϕ) =, F ϕ) = 4 α.. 2.1 u H 1 ) ξ, Eu) Eϕ) = u ϕ ξ) 2 H + 4αuξ) 4α. α 1

70 ) 2010 Eϕ) =, u ϕ ξ) 2 H = u ϕx ξ)) 2 + α 2 u α 1 x ϕ x x ξ)) 2 )dx = Eu) + Eϕ ξ)) 2 u x x)ϕ x x ξ)dx 2 ux)ϕx ξ)dx ξ = Eu) + Eϕ) u x x)ϕx ξ)dx + u x x)ϕx ξ)dx 2 ux)ϕx ξ)dx ξ = Eu) + Eϕ) 4αuξ) = Eu) Eϕ) 4αuξ) + 4α.. 2.1 u H 1 ), Eu) [12]). 2.1 u H 1 ) Eu) M = max x ux), u. 2.1,., u H 1 ) C) Eu) = Eϕ) uξ) = M, uξ) 1.. 2.2 u H 1 ), M = max x ux). F u) MEu) 2 αm. M x = ξ, { ux) αu x x), x < ξ, gx) := ux) + αu x x), x > ξ, ξ g 2 x)dx = ux) αu x x)) 2 dx + ux) + αu x x)) 2 dx ξ = u 2 x) + α 2 u 2 xx))dx αu 2 x) ξ + αu 2 x) ξ = Eu) u 2 ξ) = Eu) M 2. 2.1), ux)g 2 x)dx = = ξ ux)ux) αu x x)) 2 dx + ξ ux)ux) + αu x x)) 2 dx ux)u 2 x) + α 2 u 2 xx))dx 2 αu x) ξ + 2 αu x) ξ = F u) 4 αm. ux, t) M, u H 1 ). F u) 4 αm = ux)g 2 x)dx M g 2 x)dx = MEu) M.

5 : DGH 71 F u) MEu) 2 αm. 2. u H 1 ), u ϕ H 1 < δ, Eu) Eϕ) δ 2 ) + δ, F u) F ϕ) δ + δ + 1 ) δ 2. 2.1) u H 1 ),, 1 [12]. sup ux) 1 Eu)) 1 2 = 1 u H 1 x α. 2.2) Eu) Eϕ) = u H 1 α ϕ H 1 α ) u H 1 α + ϕ H 1 α ) δ2 ϕ H 1 α + δ) = δ2 + δ). 2.), F u) F ϕ) = uu 2 + α 2 u 2 x)dx ϕϕ 2 + α 2 ϕ 2 x)dx = u ϕ)u 2 + α 2 u 2 x)dx + ϕ u ϕ) 2 + α 2 u x ϕ x ) 2) dx + ϕ 2ϕu ϕ) + 2 ϕ x u x ϕ x ) ) dx u ϕ L Eu) + ϕ L u ϕ 2 H + ϕ α 1 L 2 u ϕ Hα 1 ϕ Hα 1 1 δ 2 ) δ + δ 2 + + δ 2 + 2 δ = δ + δ + 1 ) δ 2. 2.2) 2.). 2.4 u H 1 ), M = max x ux). δ < 1 4 C 0, Eu) Eϕ) δ2 + δ), F u) F ϕ) δ + δ + 1 ) δ 2, M 1 C 1 δ, C0 = min{1, α}, C 1 = C 1 α) = 64 + 9 8 + 15 2 > 1, C2 1 > 64. 2.2, F u) MEu) 2 αm. P, M MEu) + F u) 0. 2.4) P y) = y yeu) + F u).

72 ) 2010, Eϕ) = F ϕ) = 4 α, P 0 y) = y y + 2 = y 1) 2 y + 2). P 0 M) = P M) + MEu) Eϕ)) F u) F ϕ)). 2.4), P M) 0, M 1) 2 MEu) Eϕ)) F u) F ϕ)). 2.5) 4α 4α, 2.1), Eu) M 2 0, 0 < M < Eu)/ δ2 + δ) + )/ 1 + δ. 2.5), δ < 1 4 C 0 M 1 2 1 + δ ) Eu) Eϕ)) F u) F ϕ)) 4α 4α = δ δ2 + 9δ + 15 ) 4α ) = δ + 9 64 8 + 15 2. M 1 C 1 δ, C 2 1 α) = ) 64 + 9 8 + 15 2.. 0.2), E F, Eut, )) = Eu 0 ) F ut, )) = F u 0 ), t 0. 2.6) u 0 δ = 1 9αC 1 ) 2 ε 4 2.. ε < C 0 δ < 1 4 C 0. 2.4 2.6) ut, ). 2.6) 2.1, ut, ξt)) 1 1 9α ε2, t 0, T ). 2.7) u ϕ ξ) 2 H 1 α = Eu 0) Eϕ) 4αuξ) + 4α, t 0, T ). 2.7) 2., 1 ) 2ε u ϕ ξ) 2 H 4 2 1 ) 2ε ) 4 + + 4 α 1 9C 1 9C 1 9 ε2 ε 2, t 0, T ).. [ ] [ 1 ] DULLIN H, GOTTWALD G, HOLM D. An integrable shallow water equation with linear and nonlinear dispersion [J]. Phy ev Lett, 2001, 87: 1945-1948. 8 )

5 : 8 [ 2 ],,. [J]., 1995, 16A5): 645-651. HAN M A, LI L Y. The uniqueness of the limit cycle bifurcated from the homoclinic or heteroclinic loop [J]. Chin Ann Math, 1995, 16A5): 645-651. [ ] GUENDLE J. Homoclinic solutions for autonomous ordinary differential equations with nonautonomons perturbations [J]. J Diff Equs, 1995, 1221): 1-26. [ 4 ] HOMBUG A J, KAUSKOPF B. esonant homoclinic flip bifurcations [J]. J Dyn Diff Equs, 200012): 807-850. [ 5 ] KOKUBU H. Homoclinic and heteroclinic bifurcations of vector fields [J]. Japan J Appl Math, 1998, 5): 455-501. [ 6 ] TIAN Q P, ZHU D M. Bifurcations of nontwisted heteroclinic loops [J]. Science in China, 2000, 0A): 19-202. [ 7 ] ZHANG T S, ZHU D M. Bifurcations of homoclinic orbit connecting two nonleading eigendirections [J]. Inter J Bifurcation and Chaos, 2007, 17): 82-86. [ 8 ] ZHU D M, XIA Z H. Bifurcations of heteroclinic loops [J]. Science in China, 1998, 41A8): 87-848. [ 9 ] GENG F J, ZHU D M, XU Y C. Bifurcations of heterodimensional cycles with two saddle points [J]. Chaos, Solitons & Fractrals, 2009, 95): 206-2075. [10] LAMB J S W, TEIXEIA M-A, WEBSTE K N. Heteroclinic bifurcations near Hopf-zero bifurcation in reversible vector fields in [J]. J Diff Equs, 2005, 219): 78-115. [11] LIU D, GENG F J, ZHU D M. Degenerate bifurcations of nontwisted heterodimensional cycles with codimension [J]. Nonlinear Analysis, 2008, 68: 281-2827. [12] ADEMACHE J D M. Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit [J]. J Diff Equs, 2005, 218: 90-44. [1] ZHANG W P, ZHU D M, LIU D. Codimension nontwisted double homoclinic loops bifurcations with resonant eigenvalues [J]. J Dyn Diff Equat, 2008, 20: 89-908 [14] LIANG Z J. Periodic orbits of homogeneous vector fields of degree two in [M]// Dynamical System. Singapore: World Scientific, 199: 111-125. 72 ) [ 2 ] BONA J L, SMITH. The initial-value problem for the Korteweg-de Vries equation. Philos [J]. Trans oy Soc London Ser A, 1975, 2781287): 555 601. [ ] KATO T. On the Korteweg-de Vries equation [J]. Manuscripta Math, 1979, 281-): 89-99. [ 4 ] WHITHAN G B. Linear and Nonlinear Waves [M]. New York: Wiley, 1974. [ 5 ] BOUGAIN J. Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations II: The KdV equation [J]. Geom Funct Anal, 199): 209-262. [ 6 ] KENIG C, PONCE G, VEGA L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle [J]. Comm Pure Appl Math, 199, 46: 527-620. [ 7 ] TAO T. Low-regularity global solutions to nonlinear dispersive equations [C]// Surveys in Analysis and Operator Theory Proc Centre Math Appl Austral Nat Univ 40. Canberra: Austral Nat Univ, 2002: 19-48. [ 8 ] DAZIN P G, JOHNSON S. Solitons: An Introduction [M]. Cambridge: Cambridge University Press, 1989. [ 9 ] ZHOU Y, GUO Z G. Blow up and propagation speed of solutions to the DGH equation [J]. Discrete and Continuous Dynamical Systems Series B, 200912): 657-670. [10] KATO T. Quasi-Linear equations of evolution, with applications to partial differential equation [M]// Spectral Theory and Differential Equation: Lecture Notes in Math 448. Berlin: Springer verlag, 1975: 25-70. [11] TIAN L, GUI G, LIU Y. On the Cauchy problem and the scattering problem for the Dullin-Gottwald-Holm equation [J]. Comm Math Phys, 2005, 257): 667-701. [12] ZHOU Y. Blow-up of solutions to the DGH equation [J]. Journal of Functional Analysis, 2007, 250: 227-248. [1] GILLAKIS M, SHATAH J, STAUSS W. Stability theory of solitary waves in the presence of symmetry [J]. J Funct Anal, 1987, 741): 160-97. [14] ZHOU Y. Stability of solitary waves for a rod equation [J]. Chaos Solitons Fractals, 2004, 214): 977-981. [15] CONSTANTIN A, STAUSS W. Stability of peakons [J]. Comm Pure Appl Math, 2000, 5: 60-610.