Διάλεξη 3: D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορ

Σχετικά έγγραφα
Διάλεξη 13: D Σχήμα 13.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 13.3: Σχηματική επεξήγηση περιπτώσεων πο

z 1 E(G) 2(k 1) = 2k 3. x z 2 H 1 H 2

E(G) 2(k 1) = 2k 3.

Διάλεξη 4: Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος συνεκτικά γραφήματα (συνέχεια) Πρόταση 4.1 Δύο μπλοκ ενός

Διάλεξη 4: Απόδειξη: Για την κατεύθυνση, παρατηρούμε ότι διαγράφοντας μια κορυφή δεν μπορούμε να διαχωρίσουμε τα u και v. Αποδεικνύουμε

m = 18 και m = G 2

e 2 S F = [V (H), V (H)]. 3-1 e 1 e 3

d(v) = 3 S. q(g \ S) S

u v 4 w G 2 G 1 u v w x y z 4

Διάλεξη 3: Σχήμα 3.3: Το σύνολο των κόκκινων ακμών είναι ακμοδιαχωριστής αλλά όχι τομή. Το σύνολο ακμών {1, 2, 3} είναι τομή. Από

q(g \ S ) = q(g \ S) S + d = S.

S A : N G (S) N G (S) + d S d + d = S

Διάλεξη 7: X Y Σχήμα 7.2: Παράδειγμα για το Πόρισμα 7.2, όπου: 1 = {1, 2, 5}, 2 = {1, 2, 3}, 3 = {4}, 4 = {1, 3, 4}. Θ

Θεωρία Γραφημάτων 11η Διάλεξη

Θεωρία Γραφημάτων 4η Διάλεξη

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

( ) x 1 1. cone( (10.1) ( ) x ) := D (10.2) D Ax b 0 Ax 0 b. i λ i 1

P = (J, B) T = (I, A) P = (J, B) G = (V, E) i 1 i i + 1

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Θεωρία Γραφημάτων 5η Διάλεξη

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

X i, i I Y j, j J. X i. Z j P = (J, B) G T = (I, J) 1 2 i i + 1 n. 1 i V

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 6η Διάλεξη

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Θεωρία Γραφημάτων 7η Διάλεξη

χ(k n ) = n χ(c 5 ) = 3

Επίπεδα Γραφήματα (planar graphs)

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Θεωρία Γραφημάτων 1η Διάλεξη

Θεωρία Γραφημάτων 8η Διάλεξη

Εισαγωγή στους Αλγορίθμους

2. dim(p ) = n rank(a = )

Μαθηματικά Πληροφορικής

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Εισαγωγή σε βασικές έννοιες. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Μαθηματικά Πληροφορικής

x 3 = 0 x 6 = 0 x 4 = 0 x 5 = 0 x 2 = 0 x 1 = 0 aff(p )

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Θεωρία Γραφημάτων 10η Διάλεξη

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Μιχάλης Παπαδημητράκης. Αναλυτική χωρητικότητα Συνεχής αναλυτική χωρητικότητα

Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Θεωρία Γραφημάτων 9η Διάλεξη

Θεωρία Γραφημάτων 1η Διάλεξη

Στοιχεία Θεωρίας Γραφηµάτων (1)

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Βασικές Έννοιες Θεωρίας Γραφημάτων

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Στοιχεία Θεωρίας Γραφηµάτων (2)

Νικος Χαλιδιας Μαθηματικό Τμήμα κατεύθυνση Στατιστικής και Αναλογιστικών-Χρηματοοικονομικών Μαθηματικών Πανεπιστημιο Αιγαιου

Μορφές αποδείξεων. Μαθηματικά Πληροφορικής 2ο Μάθημα. Μορφές αποδείξεων (συνέχεια) Εξαντλητική μέθοδος

ΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 3 : Γραφήματα & Αποδείξεις. Αλέξανδρος Τζάλλας

rec(p ) rec(p ) = {y Ay = 0}. lin(p ) := rec(p ) rec(p ) = {y Ay = 0}. Ax b = α T i x = b i. P = {x R n Ax b} { x R n α T i x = b i 11-1 α T i x b i

Θεωρία Γραφημάτων 2η Διάλεξη

Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες

ΔΕΝΔΡΙΚΑ ΓΡΑΦΗΜΑΤΑ ΚΕΦΑΛΑΙΟ 3

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

x είναι f 1 f 0 f κ λ

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Μορφές αποδείξεων Υπάρχουν πολλά είδη αποδείξεων. Εδώ θα δούμε τα πιο κοινά: Εξαντλητική μέθοδος ή μέθοδος επισκόπησης. Οταν το πρόβλημα έχει πεπερασμ

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

6 Συνεκτικοί τοπολογικοί χώροι

2 ) d i = 2e 28, i=1. a b c

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

4 Ασθενείς τοπολογίες σε χώρους με νόρμα. 4.1 θεωρήματα Mazur, Alaoglou, Goldstine.

Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

********* Β ομάδα Κυρτότητα Σημεία καμπής*********

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

ΑΝΑΛΥΣΗ 1 ΕΙΚΟΣΤΟ ΕΒΔΟΜΟ ΜΑΘΗΜΑ, Μ. Παπαδημητράκης.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Διμερή γραφήματα και ταιριάσματα

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

jτο πλήθος των ταξιδιών που κάνει η αεροσυνοδός µέχρι την j ηµέρα. Σχηµατίζω µία ακολουθία που αποτελείται από τα a.

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Θεωρία Γραφημάτων 3η Διάλεξη

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

3.5 Το θεώρημα Hahn-Banach σε τοπολογικούς διανυσματικούς χώρους.

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Αναζήτηση Κατά Πλάτος

ΚΕΦΑΛΑΙΟ 4: Ριζικό του Jacobson

Transcript:

Διάλεξη 3: 25..26 Θεωρία Γραφημάτων Διδάσκων: Σταύρος Κολλιόπουλος Γραφέας: Καλλιόπη Πατερομιχελάκη 3. Εναγόμενοι κύκλοι Ορισμός 3. Ενας κύκλος του γραφήματος G = (V, E), καλείται εναγόμενος αν = G[V ()]. Δηλαδή, εναγόμενος κύκλος είναι κύκλος ο οποίος δεν έχει χορδές. Βλ. Σχήμα 3. για ένα παράδειγμα εναγόμενου κύκλου. G G 2 Σχήμα 3.: Ο G περιέχει εναγόμενο κύκλο 6, ο G 2 περιέχει ένα υπογράφημα ισόμορφο με το 6 που δεν είναι εναγόμενο υπογράφημα. Λήμμα 3. Εστω κύκλος σε επίπεδο γράφημα G = (V, E) τ.ώ. G, G \ είναι συνεκτικό και το γράφημα G δεν είναι ο κύκλος συν μια χορδή. Τότε ο ορίζει το σύνορο όψης σε κάθε εμβάπτιση του G στο επίπεδο, αν και μόνο αν ο είναι εναγόμενος κύκλος και δεν είναι διαχωριστής. Απόδειξη: : Εστω εμβάπτιση Γ του G στο επίπεδο. Αφού το G \ συνεκτικό, από το Θεώρημα του Jordan (Θεώρημα.) θα περιέχεται εξολοκλήρου είτε στο εσωτερικό του δίσκου D που ορίζει ο στη Γ (βλ. Σχήμα 3.2) είτε στο R 2 \ D. Σε κάθε περίπτωση, η «άλλη» περιοχή του R 2 \, δηλαδή αυτή που δεν περιέχει το G \, είναι μία όψη που έχει ως σύνορο το, διότι δεν υπάρχουν χορδές (βλ. Σχήμα 3.3). : (χρησιμοποιώντας τη μέθοδο της αντιθετοαντιστροφής) Εστω ο κύκλος δεν είναι εναγόμενος ή το G \ δεν είναι συνεκτικό. Διακρίνουμε τις εξής περιπτώσεις: Περίπτωση : Ο δεν είναι εναγόμενος, δηλαδή υπάρχει χορδή c του στο G. Αφού G c, είτε ο G έχει κορυφή εκτός του ή το G περιέχει χορδή d του όπου d c. 3-

Διάλεξη 3: 25..26 3-2 D Σχήμα 3.2: Ενδεικτική αναπαράσταση δίσκου D που ορίζει ο στην εμβάπτιση Γ. Σχήμα 3.3: Σχηματική επεξήγηση περιπτώσεων που απορρέουν απο Θεώρημα του Jordan. Αριστερά: το G\ περιέχεται στο εσωτερικό του δίσκου D. Δεξιά: το G \ περιέχεται στο R 2 \ D. Η μη ύπαρξη χορδών και στις δύο περιπτώσεις περιγράφεται σχηματικά. Στην αριστερή εικόνα η απουσία χορδών είναι προφανής, ενώ στη δεξιά, επισημαίνεται με την ύπαρξη των δύο πράσινων κόμβων.

Διάλεξη 3: 25..26 3-3 Θεωρούμε εμβάπτιση Γ του γραφήματος G, στην οποία ο ορίζει όψη f (βλ. Σχήμα 3.4). (Αν δεν υπάρχει τέτοια εμβάπτιση τότε αποδείχθηκε.) d f c Σχήμα 3.4: Εμβάπτιση Γ στην οποία ο ορίζει όψη. Τροποποιούμε τη Γ σχεδιάζοντας τη c μέσα στην όψη f. Παίρνουμε εμβάπτιση Γ στην οποία ο δεν ορίζει όψη και έξω από τον δίσκο που ορίζει ο θα βρίσκεται η κορυφή ή η χορδή d (βλ. Σχήμα 3.5). d c Σχήμα 3.5: Εμβάπτιση Γ στην οποία δεν ορίζει όψη ο. Περίπτωση 2: Το G \ έχει τουλάχιστον δύο συνιστώσες. Υποθέτουμε χωρίς βλάβη της γενικότητας ότι έχει ακριβώς δύο συνιστώσες,. Εστω η εμβάπτιση Γ στην οποία ορίζει όψη ο. Από την Α παίρνουμε τις «εναγόμενες» εμβαπτίσεις Γ του G \ = και Γ του G \ = (βλ. Σχήμα 3.6). Σχήμα 3.6: Εμβάπτιση Γ στην οποία ορίζει όψη ο Χ.β.τ.γ., υποθέτουμε επίσης ότι ο ορίζει την εξωτερική όψη στη Γ και μη εξωτερική όψη στη Γ (βλ. Σχήμα 3.7). Συνδυάζουμε τις Γ και Γ «συγκολλώντας» τες στον. Με άλλα λόγια επεκτείνουμε την Γ σε εμβάπτιση όλου του G «προσθέτοντας» τη Γ στο εσωτερικό της όψης που ορίζει ο (βλ. Σχήμα 3.8).

Διάλεξη 3: 25..26 3-4 Σχήμα 3.7: Εμβαπτίσεις Γ (αριστερά στο σχήμα), Γ (δεξιά στο σχήμα) Σχήμα 3.8: Συνδυασμός εμβαπτίσεων Γ και Γ σε μία εμβάπτιση. Παρατήρηση 3. Αποκλείεται G \ = γιατί μια από τις υποθέσεις μας είναι G. Υπενθυμίζουμε ότι το κενό γράφημα δεν είναι συνεκτικό. Παρατήρηση 3.2 Αν G = ή G = d, όπου d είναι χορδή του κύκλου, τότε το G δεν είναι 3-συνεκτικό. Πόρισμα 3. Ενας κύκλος ενός 3-συνεκτικού γραφήματος ορίζει όψη σε κάθε εμβάπτιση αν και μόνο αν ο είναι εναγόμενος κύκλος και δεν είναι διαχωριστής. 3.2 Θεώρημα του Whitney Θεώρημα 3. (Whitney, 932) Ολες οι εμβαπτίσεις ενός 3-συνεκτικού γραφήματος είναι ισοδύναμες. Απόδειξη: Εστω G ένα 3-συνεκτικό γράφημα. Υποθέτουμε ότι υπάρχουν δύο εμβαπτίσεις Γ και Γ 2 του G, οι οποίες δεν είναι ισοδύναμες. Τότε υπάρχει, όπου κύκλος =(v,...,v k ), k 3, που ορίζει όψη στη Γ αλλά όχι στη Γ 2. Από το Πόρισμα 3., ο ή έχει χορδή ή είναι διαχωριστής. Περίπτωση : Ο έχει χορδή {v i, v j } με j i + 2. Ορίζουμε επίσης: := {v x i < x < j} και := {v x x > i ή x > j}. Ισχύει ότι, δεδομένου ότι v i, v j δεν είναι γειτονικά στο. Αφού Γ είναι 3-συνεκτικό, υπάρχει τουλάχιστον ένα - μονοπάτι P που δεν χρησιμοποιεί τα v i, v j (βλ. Σχήμα 3.9). Εστω a η τελευταία κορυφή του P που ανήκει στο και στο. Αφού το ορίζει όψη f στη Γ μπορούμε να προσθέσουμε κορυφη μέσα στην όψη f και να την συνδέσουμε με τέσσερις διακεκριμένες (disjoint) καμπύλες με τις v i,v j,a, (βλ. Σχήμα 3.). Βρήκαμε λοιπόν, επίπεδο γράφημα G G που περιέχει το K 5 ως έλασσον ή υποδιαίρεση (βλ. Σχήμα 3.). Ομως το G είναι επίπεδο. Οδηγηθήκαμε λοιπόν σε άτοπο. Περίπτωση 2: Ο είναι διαχωριστής, άρα το G \ περιέχει δύο συνιστώσες και. Θεωρούμε εμβάπτιση Γ στην οποία ο ορίζει όψη f. Χ.β.τ.γ. η f δεν είναι εξωτερική άρα και το Α και το Β

Διάλεξη 3: 25..26 3-5 v j a P v i Σχήμα 3.9: Σχηματική αναπαράσταση Περίπτωσης της απόδειξης του Θεωρήματος, εστιάζοντας στην ύπαρξη μονοπατιού P, το οποίο δεν χρησιμοποιεί τις κορυφές v i, v j. v j v i a P Σχήμα 3.: Εστιάζουμε στην αναπαράσταση της κορυφής μέσα στην όψη f και τη σύνδεσή της με τις προαναφερθείσες κορυφές. a v j v i Σχήμα 3.: Παρουσιάζεται το υπογράφημα του G που έχει σαν έλασσον το K 5

Διάλεξη 3: 25..26 3-6 είναι εμβαπτισμένα εξωτερικά της f. Διαλέγουμε a V () και V (). Από το Θεώρημα του Menger «εκδοχή με κορυφές» (Θεώρημα 6.) υπάρχουν τουλάχιστον 3 εσωτερικά διακεκριμένα μονοπάτια P, P 2, P 3, απο το a στο. Επίσης ορίζουμε τη c i ως την πρώτη κορυφή του P i στον κύκλο, όπου i =,2,3. Βρήκαμε μια υποδιαίρεση του K 2,3 στο G. Επειτα προσθέτουμε τη στο εσωτερικό της όψης f και ενώνουμε με τρείς διακεκριμένες καμπύλες με τα c, c 2, c 3 (βλ. Σχήμα 3.2). Παρατηρούμε ότι πήραμε ενεπίπεδο γράφημα G G που περιέχει υποδιαίρεση του K 3,3. Οδηγηθήκαμε σε άτοπο. c P a c 2 P 2 c 3 P 3 Σχήμα 3.2: Σχηματική αναπαράσταση μονοπατιών P i και κορυφών c i, i =, 2, 3, και «σχέση» με την κορυφή.