ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

Σχετικά έγγραφα
g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

A ένα σημείο της C. Τι

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(f(x) + g(x)) = f (x) + g (x).

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

P A B P(A) P(B) P(A. , όπου l 1

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝ. ΠΑΙΔΕΙΑΣ - Γ ΛΥΚΕΙΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

x του Δ». ΘΕΜΑ Α Α1. Έστω μία συνάρτηση f και x Αν η πρόταση είναι αληθής να το αποδείξετε, ενώ αν είναι ψευδής να δώσετε κατάλληλο αντιπαράδειγμα.

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

, και για h 0, . Άρα. Α2. Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε σημεία x.

β) Μια συνάρτηση f είναι 1-1, αν και μόνο αν για κάθε στοιχείο y του συνόλου τιμών της η εξίσωση f(x)=y έχει ακριβώς μία λύση ως προς x

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΟΔΗΓΙΕΣ ΑΥΤΟΔΙΟΡΘΩΣΗΣ +ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Λύσεις των θεμάτων ΔΕΥΤΕΡΑ 19 ΙΟΥΝΙΟΥ 2017 ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Φροντιστήρια ΠΡΟΟΠΤΙΚΗ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

A1. Να αποδείξετε ότι η συνάρτηση f(x)=συνx είναι παραγωγίσιμη στο και για κάθε x ισχύει. = ημx Μονάδες 10

ΣΥΝΔΥΑΣΤΙΚΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΜΑΘΗΜΑΤΙΚΩΝ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. x ισχύει: 1 ln x = x

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

ΕΡΩΤΗΣΕΙΣ ΣΩΣΤΟ ΛΑΘΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

f(x ) 0 O) = 0, τότε το x

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

i μιας μεταβλητής Χ είναι αρνητικός αριθμός

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 26 ΜΑΪΟΥ 2000 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ (ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ)

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

f(x ) 0 O) = 0, τότε το x

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΕΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ. MyΤeachers.gr ΘΕΜΑΤΑ

c f(x) = c f (x), για κάθε x R

στο (α, β). Μονάδες 7 A2. Έστω Α ένα μη κενό υποσύνολο του. Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α; Μονάδες 4

γ) Αν μια συνάρτηση f είναι γνησίως μονότονη σε ένα διάστημα τότε είναι και 1-1 στο διάστημα αυτό.

Transcript:

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑ.Λ. (ΟΜΑ Α Β ) ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ ΤΕΤΑΡΤΗ, 8 ΑΠΡΙΛΙΟΥ 05 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Α. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι: P AB P A P B Α. Τι ορίζεται διάμεσος ενός δείγματος ν παρατηρήσεων; Μονάδες 8 Μονάδες 4 Α3. Πότε μια συνάρτηση f με πεδίο ορισμού το Α λέμε ότι παρουσιάζει τοπικό μέγιστο στο x Α; Μονάδες 3 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας στο τετράδιό σας δίπλα στο γράμμα που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. ΤΕΛΟΣ ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ ΗΣ ΣΕΛΙ ΑΣ Γ ΉΜΕΡΗΣΙΩΝ α) Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ και ισχύει f ( x) 0 για κάθε εσωτερικό σημείο του Δ, τότε η f είναι γνησίως άυξουσα στο Δ. β) Αν f, g δύο συναρτήσεις με g( x) 0, τότε ισχύει: f ( x) f ( x) g( x) f ( x) g ( x) g( x) ( g( x)) γ) Το κυκλικό διάγραμμα χρησιμοποιείται για τη γραφική παράσταση μόνο των ποσοτικών δεδομένων, όταν οι διαφορετικές τιμές της μεταβλητής είναι σχετικά λίγες. δ) Το εμβαδόν του χωρίου που ορίζεται από το πολύγωνο συχνοτήτων και τον οριζόντιο άξονα είναι ίσο με το μέγεθος του δείγματος. ε) Για κάθε ενδεχόμενο A ενός δειγματικού χώρου ισχύει: ΘΕΜΑ Β 0 P A Σε ένα έλεγχο της τροχαίας σχετικά με τα ατυχήματα που γίνονται στην εθνική οδό προέκυψε ότι, από τα 400 οχήματα που ενεπλάκησαν σε ατύχημα τα 00 ήταν ανασφάλιστα και 00 δεν είχαν περάσει ΚΤΕΟ. Ακόμα, διαπιστώθηκε ότι τα 80 από τα οχήματα που ενεπλάκησαν σε ατύχημα ήταν και ανασφάλιστα και δεν είχαν ΤΕΛΟΣ ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 3ΗΣ ΣΕΛΙ ΑΣ Γ ΉΜΕΡΗΣΙΩΝ περάσει ΚΤΕΟ. Επιλέγουμε στην τύχη ένα όχημα. Να βρείτε τις πιθανότητες των παρακάτω ενδεχομένων: Β. Το επιλεγμένο όχημα να ήταν ανασφάλιστο ή να μην είχε περάσει ΚΤΕΟ. Μονάδες 7 Β. Το επιλεγμένο όχημα να ήταν μόνο ανασφάλιστο ή μόνο να μην είχε περάσει ΚΤΕΟ. Μονάδες 0 Β3. Το επιλεγμένο όχημα να ήταν ασφαλισμένο και να είχε περάσει ΚΤΕΟ. Μονάδες 8 ΘΕΜΑ Γ Ένα εργοστάσιο ανακύκλωσης υλικών ανακυκλώνει πλαστικά, αλουμίνια, χαρτιά και άλλα υλικά. Ομαδοποιεί τα υλικά που ανακυκλώνει κάθε έτος, σε σχέση με τη μάζα τους σε τόνους (-00), σε πέντε (5) ισοπλατείς κλάσεις. Ο ετήσιος απολογισμός του εργοστασίου σε σχέση με τους τόνους των υλικών που ανακυκλώνονται έχει τα παρακάτω χαρακτηριστικά: Το μέσο βάρος των ανακυκλούμενων υλικών ήταν 68,8 τόνοι. Έχουν εύρος R 0 τόνους. Τα κέντρα των κλάσεων x έχουν διάμεσο 68 τόνους. Η αθροιστική % σχετική συχνότητα της 3 ης κλάσης είναι 60% ΤΕΛΟΣ 3ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 4ΗΣ ΣΕΛΙ ΑΣ Γ ΉΜΕΡΗΣΙΩΝ Στο ιστόγραμμα αθροιστικών συχνοτήτων το εμβαδόν του ορθογωνίου της 4 ης κλάσης είναι τα 4 του εμβαδού του 5 ορθογωνίου της 5 ης κλάσης. Η γωνία του κυκλικού διαγράμματος συχνοτήτων που αντιστοιχεί στις δύο πρώτες κλάσεις είναι 08 ο. Γ. Να βρείτε τα άκρα των κλάσεων. Μονάδες 5 Γ. Αν η επιχείρηση έχει ως κριτήριο για την εμπορία ανακυκλωμένων υλικών η ποσότητά του να είναι τουλάχιστον 70 τόνοι και τελικά εμπορεύτηκαν 4 ανακυκλωμένα υλικά, να βρείτε το πλήθος των υλικών που ανακυκλώνει η επιχείρηση. Μονάδες 4 Γ 3. Να συμπληρώσετε τον επόμενο πίνακα και να δικαιολογήσετε τη Κλάσεις [, ) συμπλήρωση κάθε στοιχείου του. Κέντρα κλάσεων x v F f % ΤΕΛΟΣ 4ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ Μονάδες 9

ΑΡΧΗ 5ΗΣ ΣΕΛΙ ΑΣ Γ ΉΜΕΡΗΣΙΩΝ Γ4. Να κατασκευάσετε το ιστόγραμμα και το πολύγωνο των σχετικών συχνοτήτων. Μονάδες 7 ΘΕΜΑ Δ Δίνονται οι συνάρτησεις f x ln x και g x x e x3 3 x 3 x Δ. Να βρείτε τα πεδία ορισμού των συναρτήσεων f και g. Μονάδες 4 Δ. Να βρείτε την μονοτονία των συναρτήσεων f και g καθώς και τα ακρότατα της συνάρτησης g. Δ3. Αν Α και Β δύο ενδεχόμενα ενός δειγματικού χώρου Ω με lm P A x e f xln και A B lm P g x e x 0 Μονάδες 6, να αποδείξετε ότι το ενδεχόμενο A B είναι βέβαιο καθώς και ότι: PA B P B Μονάδες 8 Δ4. Έστω οι παρατηρήσεις x, x,... x00 ενός δείγματος μιας συνεχούς τυχαίας μεταβλητής Χ, της οποίας οι τιμές ακολουθούν κανονική κατανομή με διακύμανση s και μέση τιμή x αντίστοιχα:, x P A B P B s 8 P B P A B Δ4.. Να εξετάσετε αν το δείγμα είναι ομοιογενές. Μονάδες 3 ΤΕΛΟΣ 5ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 6ΗΣ ΣΕΛΙ ΑΣ Γ ΉΜΕΡΗΣΙΩΝ Δ4.. Αν επιλέξουμε τυχαία μια τιμή του δείγματος της τυχαίας μεταβλητής Χ, να υπολογίσετε την πιθανότητα του ενδεχομένου: Γ: Η τιμή της μεταβλητής Χ να βρίσκεται στο διάστημα 3, 5 Πόσες τιμές της μεταβλητής Χ βρίσκονται στο διάστημα, 5 ; Ο Δ Η Γ Ι Ε Σ (για τους εξεταζόμενους). Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Δεν επιτρέπεται να γράψετε καμία άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ. 6. Κάθε απάντηση επιστημονικά τεκμηριωμένη είναι αποδεκτή. 7. Διάρκεια εξέτασης : τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων. 8. Χρόνος δυνατής αποχώρησης: ώρα μετά από την διανομή των φωτοαντιγράφων. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ Επιστημονικά υπεύθυνος: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών Ν. Δωδεκανήσου