THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

2 SFI

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Ανώτερα Μαθηματικά ΙI

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

v w = v = pr w v = v cos(v,w) = v w

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Delta Inconel 718 δ» ¼

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

Polymer-Based Composites with High Dielectric Constant and Low Dielectric Loss

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

p din,j = p tot,j p stat = ρ 2 v2 j,

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Κληρονομικότητα. ΙωάννηςΓºΤσ ούλος

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

ER-Tree (Extended R*-Tree)

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Δυναμικοί τύποι δεδομένων

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Blowup of regular solutions for radial relativistic Euler equations with damping

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Εφαρμοσμένα Μαθηματικά

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

PACS: Pj, Gg

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Quick algorithm f or computing core attribute

Microwave Sintering of Electronic Ceramics

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Morganναδώσειμίαεναλλακτικήμέθοδο,αποδεικνύονταςπρώταότιηευθείαπουδιχοτομεί κάθεταμίαχορδήπεριέχειτοκέντροτουκύκλου. Παρ όλααυτά,καιαυτήημέθοδοςέχει

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

ZnO-Bi 2 O 3 Bi 2 O 3

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

S i L L I OUT. i IN =i S. i C. i D + V V OUT

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Transcript:

Ý 4 Ý «Vol.4 No. Ü Ò Ý 97 972 ACTA METALLURGICA SINICA Aug. pp.97 972 Ð Ü Î Ý 2 Fe Å ÑÏÆË ß Ø Å «( Àº¾ºÎ Ç Õ Þ ß¼, 430070) Ì 2 Õ Å Å Å ² Fe ÕØÐ» ± ÅØ εØ., Fe, ÅÕ Å, Å Å Fe Õ± Å «, ² h ØÐ»ºØÔÑ Fe ; ØÐ»ºĐ (t) h, Õ Õ, ; Áµ t=24 h, Fe Û», Å Ç Ì Fe. Fe º¾ Î Å Û Ã, Ƶ Á È»ÏÕ ÃÛ %, Ì Û 1.5 mm º ³ db Û.2 GHz, Û ³ Û. db. É Fe, ØÐ», Î Ã, µø ÁÃ Í TB3 ÓÖ A Ó Í 04 191()0 097 0 THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS ZHOU Jing, WANG Wei, SUN Zhigang, GUAN Jianguo State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 Correspondent: GUAN Jianguo, professor, Tel: (027)7232, E-mail: guanjg@whut.edu.cn Supported by National High Technology Research and Development Program of China (No.0AA03A9) and Young Teachers from Fok Ying Tung Education Foundation (No.49) Manuscript received 03, in revised form 05 13 ABSTRACT The micro fabricating process and electromagnetic properties of two kinds of Fe powders with different grain sizes and internal strains were studied. The results show that the homemade Fe powders with smaller grain size, larger internal strain and surface roughness than the carbonyl Fe powders, evolve into big and thin Fe flakes by micro fabricating for h with the help of the process control agent (PCA). When micro fabrication for t= h, these Fe flakes will fracture and their average width will reduce due to strong internal strain. When t is further prolonged to 24 h, these Fe flakes become thinner, finally, those with larger aspect ratio and smaller width can be obtained, which show high permeability and low permittivity. The epoxy resin-based microwave absorbing materials containing such Fe flakes of % (volume fraction) exhibit a reflection loss less than db in the 9.4 17.9 GHz frequency range with a minimal peak of. db, whose average thickness is 1.5 mm. KEY WORDS Fe flake, micro fabrication, electromagnetic parameter, microwave absorbing properties * ß Ö ÚÙ Ó 0AA03A9 Å Î Ý ¹ Ó 49 ÑÅ : 03, Ñ : 05 13 ºÝ : µ, ß, 19 Ý, È DOI:.3724/SP.J.37.117 Ï µø«æï ÆÜØÆÓÇ, Ì Æ Ü Ø Ø ¹. Ï Æ Ø² Ë, Öµ È Snoek «, ÕµØÏÐ. Walser Ú [1] Á ², Ö 1 GHz ÚÖ, ÆØ Í Ö 00

9 ½ Ý 4», Ï ÐÏÌ Ø µ, ÏÐ È µ 0. ÆØ«Ù ¼ [2 4] Ñ [5 7] À []. Ù ¼ ¼É, Ê «Æ µú Æ ¾. ¹, Ï Ù ¼» (t) Ø, Ø Í Ù, ÆÖÙ Ï Ð Ø» Æ Ù Đ Ä, ߳à [3,4]. ÜÍ«Ü Đ Ä, Þ Ü ÛÍ [9] Ê Á [] Ã É [11 13] Ú«, ß Í Ï, ÌÆÖ«Ü Đ ÄØ» «ÜÏÐ, Ì Þ Æ µ Ù. Å ¹Í 2 Ö Æ Æ Æ ³ Ø Fe ÖÙ ¼ À ز Ñ Ù ĐÏ Ä Ø, à ÆÅ µ Û ÆµÖ Æ Ø Á«Í Ø Fe, Æ ÕÍÏÐ µ Đ ÄÜ, Ù ËØ Ø. 1 ÛÂÀ ¾ Ü: Fe (Carbonyl iron powders, CI), ½É, Æ 1 5 µm; ±«Fe (Homemade iron powders, HI), ¾ ±«; ÆÇË, Ì, Ð Ø ½É. Fe Ø «ÀÜ: Å g CI, 150 ml ÆÇË (² «Ø) 1 kg Ü 5 mm ØÑ  QHJM Å Ñ, Đ Ü 5 Hz, Ö Ù ¼³» (t) Î, Ï Ð Fe, Î ± ² h, ÕÒ Fe A.»ÜÅ, Å CI ± HI ²À¾ ÕÒ Fe B. à Á D/Max III A X Å (XRD) Å Fe ³ Æ, ¼» Ä:, ¾ Cu K α, Đ Ü 35 kv, Đ Ü 30 ma, 2, Ë Ü min 1. à S 400 Đ (SEM) ų» «Ø Fe ³ ², ÊÁ e ruler Ë Ú SEM Ø ÆÍ. Å Fe 30% Â É Ó, ¼«Ò 7.0 mm Ö 3.0 mm ÍÑ 3.5 mm Ø. à ËÖ Å (VNA, Agilent N5230A) Ë Fe Ö 2 GHz ÚÖØ ÏÐ (µ r ) Æ Đ Ä (ε r ). Fe Â Ø Ø RL ÚÍ [] : RL = lg Z in Z 0 (1) Z in + Z 0 Z in = Z 0 (µ r /ε r ) 1/2 tanh (j 2πfd(µ rε r ) 1/2 ) c (2), f ÜĐÏ Ø, d Ü ØÍ, c Ü Ë, Z 0 Ü, Z in Ü Ø. 2 Û ÊÞ 2.1 È Đ 1 Ü Fe CI HI Ø XRD Å., 2 Fe Ö 2θ=44., 5.0 Æ 2.3 Ê È Í ÆØ α Fe Ø. ½ Hall Williamson, ÆÃ (D) ÆÖ (ε) Ø Ü βcos θ=2εsin θ+kλ/d( X λ=0.154 nm, k Ü Scherrer Ä, θ Ü Bragg, β Ü µ ). È βcosθ/(kλ) ܳ¼, sinθ/(kλ) Ü˼»,» ÛÉ, Ø Ü 2ε, Ö³¼ ²Ø Ü 1/D. ÚÍÕÒ CI Æ HI Ø ε Ü 0.% Æ 0.5%, D Ü 41.4 Æ 15.0 nm. 2 Ü CI Æ HI Ø SEM., CI Ø ²,, Æ Ö 1 5 µm, Intensity, a.u. HI CI 1 1 0 0 211 211 30 40 50 0 70 0 90 2, deg Ð 1 Ï Fe CI HI XRD Fig.1 XRD patterns of raw Fe powders CI and HI Ð 2 Ï Fe CI Å HI SEM Fig.2 SEM images of raw Fe powders CI (a) and HI (b)

y (u : "LJ_LpW % r 2 Æ Fe rs.dfd}u(s 99 P C Q 4 (i 2a). HI DF & 4, N+ ( & e & x &, W! t t 9 >, t r 1.5 µm, f CI, g [ u ~, " Fe A N B t U 9. j t e/, * H (i 2b). Fe B t 9U A t 9U, Ok HI r u~ 2.2 nxot> Es v7lp 0FH t \!H CI B. {:Tx zt$n i 3 xu~0'e/ (t) t Fe A N, $N \u )T*, _K \. e/, HI B t SEM, D f U t gv 9 i 4. >, CI t g [, \ n - (O e, T X ~0/ R yo r NOSt/[, + e*t Fe 'Fu~0V, r m, DR k0 & Ce ;N, {A ' [15] l 3 t}/&d. s Fe A M B s SEM Fig.3 SEM images of Fe flakes A (a d) and B (e h) obtained by micro fabricating for t=7.5 h (a, e), h (b, f), h (c, g) and 24 h (d, h) (the irregularly shaped Fe flakes are shown in the white circles in Fig.3f)

970 ½ Ý 4 Width, m; aspect ratio Width, m; aspect ratio (a) Width Thickness Aspect ratio 1. 1.2 0. 0.4 4 2 24 2 Time, h (b) 1. 1.2 0. 0.4 4 2 24 2 Time, h Ð 4 Fe A Å B Ì Å Ì Thickness, m Thickness, m Fig.4 Curves of average width, thickness and aspect ratio of Fe flakes A (a) and B (b) vs micro fabricating time Í ØÑ Ø ÏĐ ÙËØÃ µ, Õ À []. Fe A Ø Ï t Ø Ù ; Æ Fe B Ø Ö h ÖÙ, h» Æ, Ð Ø ( 3f Ñ ). ßÇ HI ÖÙ ¼ À È Í. ß Ø Ì È Ü HI µøö Æ, ÊÐ ² Ø. t Â Ò 24 h, ÍØ Fe B ܼ, Í Ù, Fe B Πà ʵ, Ì ÙÖ Ø» Å Ø Í. t h», Fe A Ø Fe B Ø, t > h», Fe A Ø Fe B Ø, ÞØ й Ø, ß Â Ç HI ÖÙ ¼ À ² Ø Fe È Í, Æ CI ² È Í, ÅÁÍ ÅÔĐØ. 5 ÜÙ ¼³» «Ø Fe A Æ B Ø Đ Ä¾ (ε ) (f) Ø., Ï t Ø, Fe A Ø ε Ù, ÌÜ Fe Ù»Ù,» Ã Ö É ² Ö, ĐÐ µ [17]. f=2 GHz», Ï t Ø, ε 9 ¹ Ù Ò, Ù Ñ %; Æ t h», ε Ù Ò, Ù Ò 0%. ßÇ CI Ø À Ö t h Î, ß 4a Ø Í Ä (a) 0 h 7.5 h h h 24 h (b) Ð 5 Fe A Å B ý (ε ) (f) Fig.5 Dependence of real part of permittvity (ε ) for Fe flakes A (a) and B (b) on frequence (f) ½Â, h» Í Ü 4.92, Æ 24 h» Í 15.. 3a c, CI Ö t h» Æ Æ. CI ØÆ ³ Â, ÆØ Í «Ò À Î, Ñ ½ ÙÖĐ À Ò Ø ÆÅ. Å HI, Ï t Ø, ε Ù, Î «, Î Ü ¼Ù, ß Fe ( 4b) Â. Ö t= h»«ø Fe B Ø ε t= h Ø, ß ÌÜ Fe B Ö Í, «ÜÍ Fe Ø. f=2 GHz, t h», ε ² Ò, Ù 0%, Fe A Ø ε ØÙ µè 90%,» Í Æ 11.95, Fe A Ø 2.4, Ç HI CI ¹ÀØ ¼Ì, µø. t h», ε Ù Ò, Ù Ò 33%,» Í Ù Ò.5, Ç Î Ã µ. 2.3 Ò Ù ÄÔ ÜÅ Fe Ù ¼ 24 h Î«Ø Fe A Æ B ØÙ ĐÏ Ä Ø., Fe B ÜØ Đ Ä, ¾ (ε ) «ÜÑ % ( a), º (ε ) «ÜÑ 30% ( b); ÆÏÐ ¾ (µ ) ƺ (µ ) ÅÁ³, ¾ Ü Ä ( c Æ d). Fe B Ø Đ Ä ÌÜ ÆÃ

Ý «Ù : Ä ÄÔÏ ±Ö 2 Æ Fe Ö º ÐÍ 971 (a) Sample A Sample B 1.5 (b) 1.0 0.5-0.5 4.5 4.0 3.5 3.0 2.5 1.5 1.0 0.5 (c) -1.0 2.5 1.5 1.0 0.5 (d) Ð t=24 h ºÅ Fe A Å B Ø Î Ã Fig. Curves of real part (a) and imaginary part (b) of permittivity, real part (c) and imaginary part (d) of permeability vs frequency f for Fe flakes A and B obtained by micro fabricating for t=24 h, Ù«, ÆÐ Đ µ [3],» Fe B Ø, Ã Đ Ä«Ü. ÏÐ Ø Í Æ ÏÐ. HI µø Ö Æ, Î Æ, ³Ã ÏÐ Ø µ [9], Ì Ò Fe B Ø Í, Ï Ð ³. Ï Â Đ Â ± ¾ Ö ÚÌÊ. HI Ö ØÖ, Ä ÆÏ»ØÔ Ú, ÆÖÏ» Ø À ¹ Ò ÂĐÏ ÙË, Ï ÂÙ, Â, Fe B Ø Í, ± ¾ Í Ø Â, Í Fe A, Đ Â, ÈÖßÔ ÌÊØ²É, Ï Â ³, ² Ë Ø¾ Ü Ä [1]. Ȳ, HI ÖÙ ¼ À ØÙ ĐÏ Ù Ø Ö Ø ÆÃ ƵØÖ Æ. ÆÅ ÚÌÊ À, ÊÕÒ Æ Ø, Ò» Î, Ö Ø», Ð Ø,»Ã ÙÅÁµØ Æ Í. È CI Ü Ù ¼«Ø Fe A, HI Ü Ù ¼«Ø Fe B ÜØ Đ ÄÆ ØÏÐ, Ã, µ Ù. Reflection loss, db 0-5 - -15 Sample A Sample B Ð 7 t=24 h ºÅ Fe A Å B Á µ Ø»Ï ³ Á Fig.7 Curves of reflection loss vs frequency for epoxy resin based microwave absorbing materials containing % volume fraction Fe flakes A or B obtained by micro fabricating for t=24 h (the thickness is 1.5 mm) 2.4 Õ Ù ÄÔ 7 Ü t=24 h»«ø Fe A Æ B  ØÙ ¼ Ø Ï Ø (Fe ÄÜ %)., t=24 h»«ø Fe A, Fe B Ø ¼ Ø

972 ½ Ý 4 db Ø 5.9 GHz Ù Ò.2 GHz, Â.5 db «Ò. db,.7 GHz Ú Ö Ù Æ±±. Æ, ß ÎÞ ÜØ Đ Ä, ÙÅÁµÏÐ ¾ ƺ, Æ Ã, µ Ù. 3 (1) Fe, ±«Fe Ø, Æ, Ö Æ. Å Ù ¼ 24 h Ù«È Í Ø Fe. Fe «Ø Fe A, ±«Fe «Ø Fe B ÙÖ«Ü Đ ÄØ», ÅÁµÏÐ. (2) ±«Fe «Ø Fe B Ø Â É¼ Ö ÄÜ %» ÊÀØ Ù. Ò Í Ü 1.5 mm», db Ø Ü.2 GHz, Ü ÂÜ. db. ÓÖ [1] Walser R M, Win W, Valanju P M. IEEE Trans Magn, 199; 34: 1390 [2] Deng L J, Zhou P H, Xie J L, Zhang L. J Appl Phys, 07; 1: 39 [3] Zhou P H, Deng L J, Xie J L, Liang D F. J Alloys Compd, 0; 44: 303 [4] Xian W, Gong R Z, Li P G, Liu L Y, Cheng W M. Mater Sci Eng, 07; 4A: 17 [5] Cho E K, Kwon H T, Cho E M, Song Y S, Sohn K Y, Park W W. Mater Sci Eng, 07; A449 451: 3 [] Zhang B S, Lu G, Feng Y, Xiong J, Lu H X. J Magn Magn Mater, 0; 299: 5 [7] Moon B G, Sohn K Y, Park W W, Lee T D. Mater Sci Eng, 07; A449 451: 42 [] Huang J J. PhD Thesis, Lanzhou University, 07 (. ß Ð, 07) [9] Zhang X N. PhD Thesis, Beijing Institute of Technology, 03 (Ü Þ. Ʊ» ß Ð, 03) [] Nie Y, He H H, Zhao Z S, Gong R Z, Yu H B. J Magn Magn Mater, 0; 30: 5 [11] Dong D M, Guan J G, Wang W, Li W, Zhou J. Acta Metall Sin, 09; 45: 11 ( Ó,, Õ Ý,  Ý, µ., 09; 45: 11) [] Wang Q, Guan J G, Liu S Q, Wang W, Zhang Q J. J Alloy Compd, 0; 413: 155 [13] Tong G X, Wang W, Guan J G, Zhang Q J. J Inorg Mater, 0; 21: 1 (, Õ Ý,, Ü.»Ï, 0; 21: 1) [] Fan X A, Guan J G, Li Z Z, Mou F Z, Tong G X, Wang W. J Mater Chem, ; : 7 [15] Pan J S, Tong J M, Tian M B. Material Science. th ed, Beijing: Tsinghua University Press, 199: 5 (Ð, ½,.»Ï É. Þ, Ʊ: Ç µ, 199: 5) [] Chen Z H, Chen D. Mechanical Alloying and Solid Liquid Reaction Milling. 4th ed, Beijing: Chemical Industry Press, 0: 5 (Ð,. È Ð. Þ 4, Ʊ:» Ç µ, 0: 5) [17] Fan X A, Guan J G, Wang W, Tong G X. J Phys, 09; 42D: 07500