ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ.

Σχετικά έγγραφα
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

1. For each of the following power series, find the interval of convergence and the radius of convergence:


Homework for 1/27 Due 2/5

Ψηφιακή Επεξεργασία Εικόνας

On Generating Relations of Some Triple. Hypergeometric Functions

The Heisenberg Uncertainty Principle

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Bessel function for complex variable

n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)

α β

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Degenerate Perturbation Theory

Solutions: Homework 3

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

1. Matrix Algebra and Linear Economic Models

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

A Decomposition Algorithm for the Solution of Fractional Quadratic Riccati Differential Equations with Caputo Derivatives

On Certain Subclass of λ-bazilevič Functions of Type α + iµ

arxiv: v1 [math.ca] 6 Oct 2017

Presentation of complex number in Cartesian and polar coordinate system

ECE Notes 21 Bessel Function Examples. Fall 2017 David R. Jackson. Notes are from D. R. Wilton, Dept. of ECE

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

DERIVATION OF MILES EQUATION Revision D

LAD Estimation for Time Series Models With Finite and Infinite Variance

2 Composition. Invertible Mappings

Παραμετρική ανάλυση του συντελεστή ανάκλασης από στρωματοποιημένο πυθμένα δύο στρωμάτων με επικλινή διεπιφάνεια 1

arxiv: v1 [math.sp] 29 Jun 2016

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

A study on generalized absolute summability factors for a triangular matrix

Lecture 3: Asymptotic Normality of M-estimators

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Homework 4.1 Solutions Math 5110/6830

Statistical Inference I Locally most powerful tests

Factorial. Notations. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

EN40: Dynamics and Vibrations

Example Sheet 3 Solutions

B.A. (PROGRAMME) 1 YEAR

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

4.6 Autoregressive Moving Average Model ARMA(1,1)

Three Classical Tests; Wald, LM(Score), and LR tests

Solution Series 9. i=1 x i and i=1 x i.

IIT JEE (2013) (Trigonomtery 1) Solutions

On Inclusion Relation of Absolute Summability

Other Test Constructions: Likelihood Ratio & Bayes Tests

Binet Type Formula For The Sequence of Tetranacci Numbers by Alternate Methods

HermiteHGeneral. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Μελέτη της διάδοσης θορύβου σεισμού στο υποθαλάσσιο περιβάλλον

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ST5224: Advanced Statistical Theory II

Inertial Navigation Mechanization and Error Equations

Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Matrices and Determinants

Diane Hu LDA for Audio Music April 12, 2010

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Gauss Radau formulae for Jacobi and Laguerre weight functions

Notations. Primary definition. Traditional name. Traditional notation. Mathematica StandardForm notation. Generalized hypergeometric function

Concrete Mathematics Exercises from 30 September 2016

Data Dependence of New Iterative Schemes

Srednicki Chapter 55

A New Class of Analytic p-valent Functions with Negative Coefficients and Fractional Calculus Operators

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

p n r

Degenerate Solutions of the Nonlinear Self-Dual Network Equation

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Finite Field Problems: Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

B.A. (PROGRAMME) 1 YEAR

Reminders: linear functions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Homework 3 Solutions

Solve the difference equation

The Simply Typed Lambda Calculus

Every set of first-order formulas is equivalent to an independent set

EE512: Error Control Coding

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Ένα μοντέλο Νx2D για τον υπολογισμό της διάδοσης ακουστικών σημάτων στη θάλασσα σε περιβάλλοντα με τρισδιάστατη γεωμετρία

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Math221: HW# 1 solutions

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Spherical shell model

Steady-state Analysis of the GI/M/1 Queue with Multiple Vacations and Set-up Time

C.S. 430 Assignment 6, Sample Solutions

Higher Derivative Gravity Theories

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Second Order Partial Differential Equations

Section 7.6 Double and Half Angle Formulas

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Transcript:

Ακουστική AcP4 ΜΕΘΟ ΟΣ ΣΥΖΕΥΓΜΕΝΩΝ Ι ΙΟΜΟΡΦΩΝ ΓΙΑ ΤΗΝ ΕΠΙΛΥΣΗ ΠΡΟΒΛΗΜΑΤΩΝ ΙΑ ΟΣΗΣ ΗΧΗΤΙΚΩΝ ΚΥΜΑΤΩΝ ΣΕ ΘΑΛΑΣΣΙΟ ΙΑΣΤΡΩΜΑΤΩΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ. ΣΥΓΚΡΙΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΑΞΙΟΛΟΓΗΣΗ ΜΕ ΜΕΘΟ Ο ΠΕΠΕΡΑΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Γ. A. Αθανασούλης Κ. Α. Μπελιµπασάκης Σχολή Ναυπηγών Μηχ/γων Μηχ Σχολή Ναυπηγών Μηχ/γων Μηχ Εθνικό Μετσόβιο Πολυτεχνείο Εθνικό Μετσόβιο Πολυτεχνείο Πολυτεχνειούπολη Ζωγράφου Πολυτεχνειούπολη Ζωγράφου Αθήνα, 5773 Αθήνα, 5773 matha@cetral.tua.gr kbel@fluid.mech.tua.gr ΠΕΡΙΛΗΨΗ Θεωρούµε το πρόβληµα διάδοσης-σκέδασης ηχητικών κυµάτων σε θαλάσσιο διαστρωµατωµένο περιβάλλον που εκπέµπονται από αρµονική σηµειακή πηγή. Για την επίλυση του προβλήµατος εφαρµόζεται νέα µέθοδος συζευγµένων ιδιοµορφών, η οποία παράγεται από µεταβολική αρχή σε συνδυασµό µε κατάλληλη αναπαράσταση του πεδίου από σειρά τοπικών ιδιοµορφών, που έχει την ιδιότητα να ικανοποιεί µε ακρίβεια τις συνθήκες συναρµογής στις µη-οριζόντιες διεπιφάνειες και να συγκλίνει γρήγορα στην α- κριβή λύση. Παρουσιάζουµε αποτελέσµατα σε διάφορα παραδείγµατα υπολογισµών σε χαµηλές συχνότητες σε σύγκριση µε µέθοδο πεπερασµένων στοιχείων, από όπου διαφαίνεται η ακρίβεια και η αποτελεσµατικότητα της παρούσας µεθόδου. A COUPLED-MODE THEORY OR UDERWATER SOUD PROPAGATO A STRATED EVROMET. COMPARSO O RESULTS AD VALDATO VS. A TE ELEMET METHOD G. A. Athaassoulis Κ. Α. Belibassakis School of aval Arch. ad Marie Egg School of aval Arch. ad Marie Egg atioal Techical Uiversity of Athes atioal Techical Uiversity of Athes Zografos, Athes, 5773, Greece Zografos, Athes, 5773, Greece matha@cetral.tua.gr kbel@fluid.mech.tua.gr

Helleic stitute of Acoustics (HELA) Acoustics ABSTRACT We cosider uderwater acoustic wave propagatio ad scatterig i a axially symmetric cylidrical waveguide, cosistig of several fluid layers of variable thickess overlyig a impeetrable bottom. The problem is reformulated as a trasmissio problem by decomposig the domai ito three subdomais: the rageidepedet "ear" ad "far" parts, ad the rage-depedet (itermediate) part cotaiig the medium ad bottom irregularity. The pressure field i the rageidepedet subdomai, is expressed i terms of stadard ormal-mode series expasios. the itermediate subdomai a variatioal priciple is applied to the trasmissio problem, i cojuctio with a ehaced local-mode represetatio of the acoustic-pressure field, resultig i a cosistet coupled-mode system of equatios. This system cotais additioal equatios, associated with the additioal slopig-iterface modes, ad produces solutios cosistet with the iterface coditios ad the coservatio of eergy. umerical results are preseted i compariso with geeral EM solvers demostratig the efficiecy of the preset method.. troductio the preset work, a cosistet coupled-mode model, developed by the authors [], is used to solve the problem of uderwater acoustic wave propagatio ad scatterig i a multi-layered stratified acoustic eviromet, characterised by a peetrable bottom ad a umber of iterfaces of geeral shape, separatig layers with differet acoustic properties. The complete uderwater acoustic b.v.p. is reformulated as a trasmissio problem by decomposig the domai ito three subdomais: the rageidepedet "ear" ad "far" parts, ad the rage-depedet (itermediate) part cotaiig the bottom ad medium irregularity; see ig.. The pressure field i the two rageidepedet subdomais, is expressed i terms of stadard ormal-mode series represetatios. the itermediate subdomai, a variatioal priciple is applied to the trasmissio problem, i cojuctio with the ehaced local-mode represetatio of the acoustic pressure, resultig i a ew, cosistet, coupled-mode system of equatios. This system cotais oe additioal equatio, associated with each slopig-iterface mode, ad produces solutios cosistet with the slopig-iterface coditio ad the coservatio of eergy. umerical results are preseted for a two-layer sea eviromet, i the case of a steep upslope i shallow water, ad are compared with results obtaied by a geeral fiite elemet (EM) solver, Kampais ad Dougalis [], Dougalis et al [3], demostratig the applicability of the preset approach.. Differetial formulatio of the problem We cosider the rage-depedet, cylidrically symmetric marie eviromet show i ig.. or simplicity, we cosider two fluid layers, water of costat desity ρ ad sedimet of costat desity ρ > ρ, separated by the iterface J :z= h( r) ad overlyig a perfectly rigid horizotal boudary at z = H. We let c = c( r,z) be the speed of soud (discotiuous at the iterface) ad suppose that i the ear regio D ( r r ) ad i the far regio D ( r r ) the acoustic ad geometric parameters

Ελληνικό Ινστιτούτο Ακουστικής (ΕΛΙΝΑ) Ακουστική z r * D h h( r ) D h J D z = H r r r = r = igure. Domai decompositio ad otatio. The poit source is deoted by (*). < < ). The acoustic propagatio ad scatterig boudary-value problem i the domai < r, H z p = p r,z satisfyig are rage idepedet. (Thus, c ad h vary with r oly i D ( r r r ), is to determie a complex-valued fuctio ( ) δ ( r) p p + k ( r,z) p = δ ( z z ), p( r, ), ( r, H) π the iterface coditios r = =, (),(),(3) z + + ( ) = ( ) ( r, h(r) ) ( r, h(r ) ) p r, h(r) p r, h(r), ad the radiatio coditio, p p =, (4),(5) ρ ρ p( r,z ) ~ outgoig cylidrical waves, as r. (6) π f () we have itroduced the wave umber k = k(r,z) = ; i (5) c ormal derivative to the iterface z = h( r ). deotes the 3. Differetial formulatio of the problem The problem ()-(6) ca be reformulated as a trasmissio problem i the D with the aid of the followig geeral (ormal-mode) represe- bouded subdomai tatios of the acoustic field i D ad i ( ) p Z z Z z H k r 4ρ D, respectively, = ( ) ( ) ( ) ( ) ( ) = ( ) = ( ) ( ) + C Z z J k r, (7) = p = C Z z H k r, (8)

Helleic stitute of Acoustics (HELA) Acoustics ad by requirig the matchig of the field ad its ormal derivative at the commo vertical iterfaces r = r ad r r k ad { k } = =. formulas (7,8), the sets of umbers { } = { Z z } ad =, { Z ( )},.. z =,,.., ad the sets of fuctios of ( ),,.., are the eigevalues ad eigefuctios, respectively, of Sturm-Liouville problems, obtaied by sepa-,,.. ratio of variables i the subdomais D ad D. More details about the associated depth problem, ad its solutio i the case of two homogeeous layers: ρ z h ρ c r, z h c ρ H z h ρ c r, H < z < h = ( < < ) =, ( < < ) =, ( < < ) =, ( ) = c, ca be foud i [4]. The trasmissio problem admits a variatioal formulatio, expressed by the statioarity of a fuctioal of the form (see Ref. []), ( p,c { } { } ), C. (9) The variatioal priciple, δ =, ca the be used to obtai a alterative, semidiscrete (Katorovich) formulatio of the problem i terms of local modes. This family of local basis fuctios is obtaied by formulatig ad solvig local, vertical Sturm- Liouville problems i the iterval [ H, ]. The ehaced local-mode represetatio of the acoustic field p ( r,z ) i the variable-bathymetry/iterface domai D, developed i [], reads as follows where ( ) p r,z P r Z z;r P r Z z;r = ( ) ( ) ( ) ( ) ( ) = +, () Z z;r,, are obtaied as the eigefuctios of the followig local, vertical eigevalue problem (defied for each r < r < r ) : Z ( z;r) Z + ( k ( r,z) k (r)) Z( z;r ) =, H z, Z ( ;r ) =, ( H;r ) =, () z z i cojuctio with the matchig-iterface coditios + Z + Z Z( h( r ) ;r) = Z( h( r ) ;r), ( h( r ) ;r) = ( h( r ) ;r). () ρ z ρ z P r deote the amplitudes of the modes, ad the fuctios ( ) However, the local eigefuctios Z ( z;r ),, are icompatible with the slopig iterface coditio (5), wheever dh( r) dr. To remedy this icosistecy a additioal mode is itroduced i [], deoted by P ( r) Z ( z;r ) ad called the slopigiterface mode. The vertical structure of the slopig-iterface mode, Z ( z;r ), is a cotiuous fuctio satisfyig the followig coditios dz ( H ) Z ( r ) =, =, dz + Z + Z Z( h( r ) ;r) = Z( h( r ) ;r), ( h( r ) ;r) ( h( r ) ;r) =. ρ z ρ z the series expasio (), the first P r Z z;r < terms { ( ) ( )} =,,.. (3), corre- spodig to real horizotal eigevalues ( k > ), are the propagatig modes, ad the

Ελληνικό Ινστιτούτο Ακουστικής (ΕΛΙΝΑ) Ακουστική terms { P( r) Z( z;r )}, = +, +,.., correspodig to imagiary eigevalues ( k < ), are the evaescet modes. The slopig-iterface mode P ( r) Z ( z;r ) is ot eeded whe the iterface is flat. Each term i the expasio () satisfies the free surface coditio (), the boudary coditio (3) ad the iterface coditio (4), idividually. Thus, represetatio () reders all of them essetial coditios i relatio with the variatioal formulatio. Usig () i the variatioal priciple, we obtai the followig coupled-mode system of secod-order ordiary differetial equatios, with respect to the mode amplitudes (the Cosistet Coupled-Mode System): d P( r) dp( r) am ( r) + b m ( r) + cm ( r) P ( r ) =, m =,, 3,..., (4) = dr dr where all coefficiets are defied i terms of Z ( z;r ) i r < r < r. The system (4) cotais a additioal equatio, associated with the additioal slopig-iterface mode, ad produces solutios cosistet with the iterface coditios ad the coservatio of eergy. Eq. (4) is supplemeted by the followig ed coditios P r P r, P r = P r =, ( ) = ( ) = ( ) ( ) ( ) + ( ) = P ( r ) D P ( r ) P r A P r B, + = =, 3,..., (5) where the coefficiets A,B,D are defied i terms of the acoustic parameters at the edpoits ( r = r,r = r), ad ca be foud i Ref. []. 4. umerical results ad coclusios umerical results are preseted for the waveguide show i igs. ad 3, which models a smooth but steep upslope, i shallow water. The results cocer the calculated Trasmissio Loss (TL i db), as obtaied by the preset method (CCMM) ad by a geeral fiite elemet (EM) solver, based o a stadard Galerki/P discretizatio of the b.v.p., coupled with a exact, olocal absorbig boudary coditio at the exterior boudary of the waveguide, Kampais ad Dougalis [], Dougalis et al [3]. The source frequecy is 5Hz. the first case, preseted i ig., the pulsatig source is located at z = 5m (ear the free surface). The desity ad the soud speed of the seawater are take costat: ρ =, c = 5 m/s, ad the 3 gr/cm 3 desity ad soud speed of the sea bottom are: ρ =. 5gr/ cm, c = 7 m/s. this case, the umber of propagatig modes i D is =3. i ig.. the secod case, preseted i ig. 3, the source is located at z = 7m, i.e. very ear the bottom iterface, which i the ear regio lies i 75m depth. The desity ad soud speed of the seawater are also costat, with the same, as i the previous case, values. We ca observe from these figures that the agreemet betwee the two methods is excellet, i the whole domai, although the computatioal requiremets of the EM as compared to the preset method are oe order of magitude larger. O the other had, the EM, is iheretly more flexible to treat localized ihomogeeities. Thus, after further compariso ad validatio, both methods ca be used to complemet each other, i order to treat difficult situatios, such as acoustic scatterig problems from localized scatterers embedded i o-homogeeous waveguides.

Helleic stitute of Acoustics (HELA) Acoustics Refereces [] Athaassoulis G.A., Belibassakis K.A.,, A cosistet coupled-mode theory for uderwater soud propagatio i a geeral, stratified acoustic eviromet, i Proc. 6 th Europea Coferece o Uderwater Acoustics, ECUA, Gdask, Polad. [] Kampais.A., Dougalis V.A., 999, A fiite elemet code for the umerical solutio of the Helmholtz equatio i axially symmetric waveguides with iterfaces, J. Comp. Acoustics 7, 83-. [3] Dougalis V., Kampais., Mitsoudis D., A fiite elemet method for the approximatio of uderwater soud propagatio i geeral stratified eviromets, Proc. of Cof. Acoustics, HELA, Patras, Greece. [4] Boyles C.A., 984, Acoustic waveguides, Applicatios to Oceaic Sciece, Wiley, ew York. igure. (a) Compariso of EM ad CCEM i the case of a upslope eviromet. (b)trasmissio Loss (i db) at SD=RD=5m ad at RD=7m. igure 3. (a) Compariso of EM ad CCEM i the case of a upslope eviromet. (b)trasmissio Loss (i db) at RD=5m ad at SD=RD=7m.