Jean Pierre Serre. Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p

Σχετικά έγγραφα
MÉTHODES ET EXERCICES

Sheet H d-2 3D Pythagoras - Answers

11 Drinfeld. k( ) = A/( ) A K. [Hat1, Hat2] k M > 0. Γ 1 (M) = γ SL 2 (Z) f : H C. ( ) az + b = (cz + d) k f(z) ( z H, γ = cz + d Γ 1 (M))

!"#$ %"&'$!&!"(!)%*+, -$!!.!$"("-#$&"%-

!! " &' ': " /.., c #$% & - & ' ()",..., * +,.. * ' + * - - * ()",...(.

Discriminantal arrangement

Table 1. morphism U P 1 dominant (MMP) 2. dim = 3 (MMP) 3. (cf. [Ii77], [Miy01]) (Table 1) 3.

Séminaire Grothendieck


Jeux d inondation dans les graphes

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Στοιχεία και έγγραφα που απαιτούνται για την εγγραφή στο ΓΕΜΗ


Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

March 14, ( ) March 14, / 52

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Ó³ Ÿ , º 3(180).. 313Ä320

P t s st t t t t2 t s st t t rt t t tt s t t ä ör tt r t r 2ö r t ts t t t t t t st t t t s r s s s t är ä t t t 2ö r t ts rt t t 2 r äärä t r s Pr r

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

Προγραμματική Περίοδος

Αλγεβρικές Δομές Ι. 1 Ομάδα I

15PROC

( [T]. , s 1 a as 1 [T] (derived category) Gelfand Manin [GM1] Chapter III, [GM2] Chapter 4. [I] XI ). Gelfand Manin [GM1]

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

ΙΑΓΡΑΜΜΑ ΠΕΡΙΕΧΟΜΕΝΩΝ

IUTeich. [Pano] (2) IUTeich

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΝΟΜΙΚΩΝ, ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΠΟΛΙΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΝΟΜΙΚΗΣ

Diderot (Paris VII) les caractères des groupes de Lie résolubles

HONDA. Έτος κατασκευής

Déformation et quantification par groupoïde des variétés toriques

: 1. 10:20 12:40. 12:50 13:50 14:00 14:50 15:00 16:30 Selberg ( ) 18:45 20:00 20:15 21:45 Selberg ( ) 7:00 9:00

πρακτικού συνεδριάσεως ιοικητικού ΗΜΟΣ ΠΑΤΜΟΥ

ΓΕΝΙΚΟ ΛΥΚΕΙΟ Λ. ΑΙΔΗΨΟΥ ΣΧΟΛ. ΕΤΟΣ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ ΙΟΥΝΙΟΥ ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Ax = b. 7x = 21. x = 21 7 = 3.

ΑΝΑΛΥΤΙΚΟΣ ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

"#$%$$ &* '#( "#$%$$,$*- ') % %$$. '#-) -& $$ #)**-% -"*! :6 -#0! :888 -! #;/$-

Monotonicity theorems for analytic functions centered at infinity. Proc. Amer. Math. Soc. (to appear). Growth theorems for holomorphic functions

! "# " #!$ &'( )'&* $ ##!$2 $ $$ 829 #-#-$&2 %( $8&2(9 #."/-0"$23#(&&#

πρακτικού συνεδριάσεως ιοικητικού ΗΜΟΣ ΠΑΤΜΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

( ) 1.1. (2 ),,.,.,.,,,,,.,,,,.,,., K, K.

Vers un assistant à la preuve en langue naturelle

Transfert sécurisé d Images par combinaison de techniques de compression, cryptage et de marquage


Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

(2), ,. 1).

Points de torsion des courbes elliptiques et équations diophantiennes

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

a11 a A V = v 1 = a 11 w 1 + a 12 w 2 + a 13 w 3 + a 14 w 4 v 2 = a 21 w 1 + a 22 w 2 + a 23 w 3 + a 24 w 4 (A 12, A 13, A 14, A 23, A 24, A 34 ) A 6.

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

Couplage dans les applications interactives de grande taille

Apì ton diakritì kôbo ston q ro tou Gauss

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

Π Α Ν Α Γ Ι Ω Τ Η Π Α Ν Ο Π Ο Υ Λ Ο Υ ΣΙΩΝΙΣΜΟΣ ΤΑ ΣΧΕΔΙΑ ΜΙΑΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΣΥΝΩΜΟΣΙΑΣ. «Επί των ποταμών Βαβυλώνος εκεί εκαθίσαμεν

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.

SWOT 1. Analysis and Planning for Cross-border Co-operation in Central European Countries. ISIGInstitute of. International Sociology Gorizia

Consommation marchande et contraintes non monétaires au Canada ( )

Coupling strategies for compressible - low Mach number flows

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

A summation formula ramified with hypergeometric function and involving recurrence relation

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ADE. 1 Introduction. (Ryo Fujita) Lie. U q (Lg) U(Lg) Dynkin. Dynkin. Dynkin. 4 A n (n Z 1 ), B n (n Z 2 ), C n (n Z 2 ), D n (n Z 4 )

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

A General Note on δ-quasi Monotone and Increasing Sequence

cz+d d (ac + cd )z + bc + dd c z + d

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

The q-commutators of braided groups

Prey-Taxis Holling-Tanner

ISBN , 2009

Παρασκευή 1 Νοεμβρίου 2013 Ασκηση 1. Λύση. Παρατήρηση. Ασκηση 2. Λύση.

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Fourier Analysis of Waves

Sur les articles de Henri Poincaré SUR LA DYNAMIQUE. Le texte fondateur de la Relativité en langage scientiþque moderne. par Anatoly A.

Wishart α-determinant, α-hafnian

Hydraulic network simulator model


k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +


ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 31 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 22 Φεβρουαρίου 2014

ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΕΞΙΣΩΣΕΙΣ

ΟΜΟΛΟΓΙΑΚΟΣ ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΟΜΑΛΩΝ (REGURAL) ΔΑΚΤΥΛΙΩΝ

!!" #7 $39 %" (07) ..,..,.. $ 39. ) :. :, «(», «%», «%», «%» «%». & ,. ). & :..,. '.. ( () #*. );..,..'. + (# ).

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

.1. 8,5. µ, (=,, ) . Ρ( )... Ρ( ).

D Alembert s Solution to the Wave Equation


Απειροστικός Λογισμός ΙΙ, εαρινό εξάμηνο Φυλλάδιο ασκήσεων επανάληψης.

ss rt t r s t t t rs r ç s s rt t r t Pr r r q r ts P 2s s r r t t t t t st r t

tel , version 1-7 Feb 2013

Résolution de problème inverse et propagation d incertitudes : application à la dynamique des gaz compressibles

Συνήθεις Διαφορικές Εξισώσεις Ι ΣΔΕ Bernoulli, Riccati, Ομογενείς. Διαφορικές Εξισώσεις Bernoulli, Riccati και Ομογενείς

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Transcript:

Jean Pierre Serre Géométrie Algébrique et Géométrie Analytique (GAGA) Annales de l institut Fourier, Tome 6 (1956), p. 1-42.

2 0 X X X X X Kähler 1 X X X Chow X n 12 1 H. Cartan [3] H. Cartan W-L. Chow 2 X O x H x X x O x H x 4 3 [18] [3], exp. XVIII- XIX A B 4 2 Betti Chow 0 EGA, SGA EGA, SGA 2015.8.27 1 =courant(distribution) 2 [3], exp. XX

3 1 n 1 n 0 C n n U C n U x U x W W f 1,...,f k U W f i (z) = 0, i = 1,...,k z W U C n U X C X X C [18], n 3 H C n H C C n x U ε x : C C n,x C U,x H x ε x C U,x H U,x H U,x C U H U U A (U) x ε x : H x H U,x H U,x A (U) x f H x U x H U,x H x /A (U) x U [3], exp. VI [18], n 32 U V C r C s ϕ : U V f H V,ϕ(x) f ϕ H U,x x U ϕ(x) s x r H U ϕ : U V ϕ ϕ 1 ϕ ϕ U V H U H V U U C r C r U U C r+r [18], n 33 ϕ : U V ϕ : U V ϕ ϕ : U U V V U U U U

n 2 4 n 2 1. 3 X C X H X (H I ) X {V i } V i U i n 1 (H II ) X n 1 X H X X X Y ϕ : X Y f H Y,ϕ(x) f ϕ H X,x N. Bourbaki V X V U V (H II ) X Y X Y ϕ : V U ϕ(y V ) U Y X X [18], n 35 X X X X ϕ : V U ϕ : V U ϕ ϕ : V V U U V V X X X X X X X X [18], 34-35 n 3 [2], exp. XV X H X H X [18], n 6 Y X x X A (Y ) x H X,x Y x f H X,x A (Y ) x H X A (Y ) A (Y ) H X /A (Y ) Y Y H Y H Y [18], n 5 1. a) H X [18], n 15 b) Y X A (Y ) H X [18], n 12 3

n 4 5 C n X K. Oka H. Cartan [1], 1 2 [2], exp. XV-XVI X C n U H X = H U /A (X) H U A (X) H U H X [18], n 16 b) n 20 ([3], exp. XX) n 4 X x X H x X x C m x f H x /m C H x C X = C n H x n C{z 1,...,z n } H x C{z 1,...,z n } X C n H x Noether H. Cartan ( [3], exp. VII) H x X x [3], X x C n H x C{z 1,...,z n } H x n [16] x X n X X H x 0 [15], IV, 2 0 = p i p i H x X i X x p i = A (X i ) x H x /p i = H Xi,x X X i X x X i H x (Krull) X x H x r [14], 4 [3], exp. VIIIH x C{z 1,...,z r } C{z 1,...,z r } C[[z 1,..., z r ]] r H x [16], p. 18 2 C Zariski

n 5 6 n 5 1. a)c n Zariski b) C n Zariski c) U U C n C n Zariski f : U U f d) c) f C n Zariski a) b) c) U = C U c) f 1 d) X C [18], n 34 V X Zariski ϕ : V U U Zariski 1, b) U 2. X ϕ : V U Zariski V ϕ V X U n 2 X Zariski V ϕ : V U U ϕ 1 V ϕ : V U 1, d) V V V V 1, a) V V V V X H X (H I ) (H II ) [18], n 34 (VA II ) U i U j T ij U i U j Zariski X X ϕ : V U X Zariski H X,x O X,x C (X) x [3], exp. VIII X an X X an X X an X an

n 6 7 X an X Y (X Y ) an = X an Y an Y X Zariski Y an X an Y an X an Y f : X Y X Y f X an Y an n 6 X x X X x O x X an x H x f O x x θ(f) θ : O x H x O x H x θ : Ô x Ĥx n 24 3. θ : Ô x Ĥx Y X Zariski I (Y ) x I (Y,X) x X O x Y x Zariski f [18], n 39 I (Y ) x θ H x A (Y ) x n 3 4. A (Y ) x θ(i (Y ) x ) X C n 3 4 3 Ôx Ĥx n C[[z 1,...,z n ]] 4 a I (Y ) x H x O x H x θ H x X x [1], n 3 [3], exp. VI, p. 6 a Y f A (Y ) x H x [14], p. 278 [2], exp. XIV, p. 3 [3], exp. VIII, p. 9 r 0 f r a f r a.ĥx = I (Y ) x.ĥx = I (Y ) x.ôx I (Y ) x Y x Chevalley [16], p. 40 [17], p. 67 I x.ôx f r I (Y ) x.ôx f I (Y ) x.ôx H x Noether a.ĥx H x = a [15], IV 27 f I (Y ) x 4 X U

n 7 Zariski 8 O x = O U,x /I (X, U) x H x = H U,x /A (X, U) x θ : O x H x θ : O U,x H U,x θ : Ô U,x ĤU,x A (X, U) x = θ(i (X, U) x ).H U,x 3 29 4 A (Y ) x A (Y,U) x A (Y,U) x θ(i (Y,U) x ) 3 θ : O x H x O x H x 1. (O x, H x ) 4 3 28 2. O x H x Noether [16], p. 26 n 4 X 3. X r X an r n 7 Zariski 5. X U X U X Zariski Zariski U X Y U X X Zariski x X x U x Y = X A (Y ) x =0 n 6 A (Y ) x θ(i (Y ) x ) θ 3 I (Y ) x =0 x Zariski Y = X U X Zariski 5 θ : O x H x 3 5 6. X X an Chow [7] [19], n 4 X Y Y Zariski Zariski U f : U X f T X Y Zariski U = Y X

n 8 9 X X = f(y ) X X T X Y U T Y U Y 5 U = Y Chevalley 2. f : X Y X Y f(x) Y Zariski U f(x) Y Zariski Zariski X Y [4], exp. 3 [17], p. 15 X i (i I) X Y i f(x i ) Y Zariski Y i Y = Y i J I Y j (j J) Y j J Y j Zariski Zariski U j f(x j ) U j U j Y k (k J, k j) U = U j Y j J 7. f : X Y X Y f(x) Y Zariski T f(x) Y Zariski 2 f : X T U f(x) T Zariski Zariski 5 U T f(x) T T f(x) n 8 n 19 8. X Y f : X Y X Y f T X Y Zariski f p =pr X T p x (x, f(x)) p p f =pt Y p 1 9. T X p : T X p T X p Zariski F T Zariski p p(f ) X 7

n 8 10 p : F X p(f ) X Zariski p X O X T O T t T x = p(t) p p 4 p : O X,x O T,t pzariski p O X,x O T,t A = O X,x,A = O T,t A A B B H X,x H T,t A A B B 3 p B = B X i X x X i A p i = I (X i ) x A i = A/p i X i x K i A i X i p i A 0= p i A p i S A A S K i 3 T i = p 1 (X i ) p Zariski T i T t A p i A i = A /p i K i A i A A S K i p i A = p i A i A i,k i K i A S A S K i = K i p T i X i p : T i X i Zariski T i X i K i K i C n i =[K i : K i ] 5 X i Zariski U i U i T i n i p n i =1K i = K i A S A S K i K i A S = A S f A f A S g A s S g = sf g sa g sb g sb 3 1 (A, B) sb A = sa n 22 g sa f A g = sf s(f f )=0 s A f = f A = A 3. A p i K i A/p i S A p i A S K i A S A S [15], 4 P. Samuel 5 [17], p. 16

11 IV, 3 m i = p i A S m i A S m i A = p i[15], A S /m i A/p i K i ϕ : A S A S /m i = K i p i = 0 m i = 0 ϕ b i m j, j i A S b = b i b m i A S x i b i x i =1 x i 1(mod. m i ) x i 0(mod. m j ), j i ϕ(a S ) K i (1, 0,...,0),...,(0,...,0, 1) A S K i ϕ 3 n 9 X X an n 5 F X F X an π : F X F X F f (π(f),f) X an F X an F F F X an F x X F x = F x F F F F X an X X O n 6 3 O X an H 2. F X F X an F an F an = F O H F an F H F an H O H α : F F an O ϕ : F G

n 10 12 ϕ an : F an G an F an F 10. a) F an b) F α : F F an c) F F an F 1 F 2 F 3 F 1 F 2 F 3 3 1 F 1 O H F 2 O H F 3 O H a) b) c) O an = H F x X x Zariski U O q O p F 0 a) U H q H p F an 0 U x H n 3, 1 F an [18], n 15 I O I an I H n 10 Y X Zariski F Y F X F X Y [18], n 5 F X X (F X ) an X an F an Y an X an Y an (F an ) X 11. (F an ) X (F an ) X Y an Y an x Y A = O X,x, A = O Y,x, B = H X,x, B = H Y,x, E = F x

n 11 13 (F an ) X x = E A B (F X ) an x = E A B n 6 4 A A a B = B/aB = B A A θ x : E A B = E A A A B E A B x 11 F an F F X n 11 n 9 X F X F an F U X Zariski s F U s F X an U an s α(s ) = s 1 F an = F O H U an s α(s ) ε : Γ(U, F ) Γ(U an, F an ) U = {U i } X Zariski Ui an X an U an i 0,...,i q ε : Γ(U i0 U iq, F ) Γ(U an i 0 U an i q, F an ) [18], n 18 ε : C (U, F ) C (U an, F an ) d ε : H q (U, F ) H q (U an, F an ) U ε : H q (X, F ) H q (X an, F an ) ϕ : F G 0 A B C 0

n 12 14 A H q (X, C ) ε H q (X, C an ) δ H q+1 (X, A ) ε δ H q+1 (X an, A an ) U [18] n 12 X P r (C) Zariski 1. X F q 0 n 11 ε : H q (X, F ) H q (X an, F an ) q =0 Γ(X, F ) Γ(X an, F an ) 2. F G X F an G an F G 3. X an M X F F an M F 1. X an X X 2. ε H q (X, F ) H q (X an, F ) H q (X an, F an ) 1 H q (X, F ) H q (X an, F ) F X K = C(X) [19], 2 q>0 H q (X, K) =0 H q (X an,k) K X an q Betti n 13 1 X P r (C) F X

n 13 1 15 [18], n 26 H q (X, F ) = H q (P r (C), F ) H q (X an, F an ) = H q (P r (C) an, F an ) F an 11 ε : H q (P r (C), F ) H q (P r (C) an, F an ) X = P r (C) 4. 1 O q =0 H 0 (X, O) H 0 (X an, O an ) q>0 H q (X, O) = 0 [18], n 65, 8 Dolbeault [8] H q (X an, O an ) X (0,q) 6 5. 1 O(n) O(n) [18], n 54 n 16 r =dimx r =0 t t 0,...,t r E t =0 0 O( 1) O O E 0 O O E O( 1) O t [18], n 81 n Z 0 O(n 1) O(n) O E (n) 0 n 11 H q (X, O(n 1)) H q (X, O(n)) H q (E,O E (n)) H q+1 (X, O(n 1)) ε ε H q (X an, O(n 1) an ) H q (X an, O(n) an ) H q (E an, O E (n) an ) H q+1 (X an, O(n 1) an ) ε ε q 0 n Z ε : H q (E,O E (n)) H q (E an, O E (n) an ) 1 O(n) O(n 1) 4 n =0 n 6 n 16 H q (X, O) Laurent J. Frenkel Kähler

n 14 2 16 1 q q>2r H q (X, F ) H q (X an, F an ) [18], n 55, 1 0 R L F 0 L O(n) 5 1 L H q (X, R) H q (X, L ) H q (X, F ) H q+1 (X, R) H q+1 (X, L ) ε 1 ε 2 ε 3 ε 4 ε 5 H q (X an, R an ) H q (X an, L an ) H q (X an, F an ) H q+1 (X an, R an ) H q+1 (X an, L an ) ε 4 ε 5 ε 2 ε 3 R ε 1 ε 3 n 14 2 A = H om(f, G ) F G [18], n 11 n 14 f A x x F G F an G an f an f f an A A n 9 B = H om(f an, G an ) O ι : A an B 6. ι : A an B x X F [18], n 14 A x = Hom Ox (F x, G x ) A an x = Hom Ox (F x, G x ) Ox H x F an B x = Hom Hx (F x Ox H x, G x Ox H x ) ι x : Hom Ox (F x, G x ) Ox H x Hom Hx (F x Ox H x, G x Ox H x ) (O x, H x ) 21

n 15 3 17 2 H 0 (X, A ) ε H 0 (X an, A an ) ι H 0 (X an, B) H 0 (X, A ) H 0 (X an, B) F G F an G an f H 0 (X, A ) ι ι ε(f) =f an 2 ι ε 1 ε A [18], n 14 6 ι n 15 3 F 2 F G X g : F an G an 2 f : F G g = f an f A B 0 A F f G B 0 10 a) 0 A an F an g G an B an 0 g A an = B an = 0 10 b) A = B =0 f F X P r (C) Y X = P r (C) M Y an Y an M X X an 3 X X G G an M X I = I (Y ) Y f I x f G x ϕ M Y an Gx an = Mx X ϕ an 10 b) ϕ I.G =0YFG = F X [18], n 39, 3 11 (F an ) X (F X ) an = G an M X Y F an M n 16 3 M (n) X = P r (C) r r =0 n Z M (n) t 0,...,t r X U i t i 0 M i M U i t n j /tn i M j M i U i

n 16 3 M (n) 18 U j M i M (n) [18], n 54 M (n) M M M (n) =M H H (n) F F an (n) =F (n) an 7. E P r (C) A E q>0 n H q (E an, A (n)) = 0 [3], exp. XVIII B E F A = F an A (n) = F (n) an 1 H q (E an, A (n)) H q (E,F (n)) 7 [18], n 65, 7 8. M X = P r (C) n(m ) n n(m ) x X H x M (n) x H 0 (X an, M (n)) [3], exp. XVIII A H 0 (X an, M (n)) M (n) x m n k x U k i θ i M i (t k /t i ) m n θ i M (n) M (m) θ : M (n) M (m) θ U k H 0 (X an, M (n)) M (n) x [18], n 12 x y M (n) y X an x X n x M H 0 (X an, M (n)) M (n) x x H t =0 A (E) E n 3 0 A (E) H H E 0 A (E) H ( 1) H ( 1) A (E) t 5 M M H A (E) M M H H E 0 B M H H E C M H A (E) M C = T or1 H (M, H E )A (E) H ( 1) M H A (E)

n 16 3 M (n) 19 M ( 1) (1) 0 C M ( 1) M B 0 M (n) (1) (2) 0 C (n) M (n 1) M (n) B(n) 0 P n M (n) B(n) (2) (3) 0 C (n) M (n 1) P n 0 (4) 0 P n M (n) B(n) 0 (5) H 1 (X an, M (n 1)) H 1 (X an, P n ) H 2 (X an, C (n)) (6) H 1 (X an, P n ) H 1 (X an, M (n)) H 1 (X an, B(n)) B C A (E).B =0 A (E).C =0 B C E 7 n 0 n n 0 H 1 (X an, B(n)) = 0 H 2 (X an, C (n)) = 0 (5) (6) (7) dim H 1 (X an, M (n 1)) dim H 1 (X an, P n ) dim H 1 (X an, M (n)) [5] [3], exp. XVII n n 0 dim H 1 (X an, M (n)) n n 1 n 0 dim H 1 (X an, M (n)) n n 1 n>n 1 (8) dim H 1 (X an, M (n)) = dim H 1 (X an, P n ) = dimh 1 (X an, M (n)) n 1 n 0 H 1 (X an, B(n)) = 0 (6) H 1 (X an, P n ) H 1 (X an, M (n)) (8) (4) 7 n>n 1 (9) H 0 (X an, M (n)) H 0 (X an, B(n)) 7 Kodaira-Spencer Lefschetz [12]

n 17 3 20 n>n 1 H 0 (X an, B(n)) B(n) x B E G an 1 H 0 (X an, B(n)) = H 0 (X, G (n)) n H 0 (X, G (n)) G (n) x [18], n 55, 1 n A = H x,m= M (n) x, p = A (E) x N H 0 (X an, M (n)) M A B(n) x = M (n) x Hx H E,x = M A A/p = M/pM N M/pM M/pM M = N + pm M = N + mmm A M = N, 24, 8 n 17 3 M X = P r (C) 8 n M (n) H p M H ( n) p L 0 O( n) p R 0 R L an 0 M 0 R L 1 L an 1 R L an 1 g L an 0 M 0 2 f : L 1 L 0 g = f an F f f L 0 F 0 L 1 10 L an 1 g L an 0 F an 0 M F an 3 4 n 18 Betti σ C P r (C) t 0,...,t r x x σ t σ 0,...,tσ r σ Pr (C)

n 19 Chow 21 X P r (C) Zariski σ X σ P r (C) Zariski X X σ Jacobi 12. X X X σ Betti b n (X) X n Betti Ω p (X) an X p h p,q (X) = dimh q (X an, Ω p (X) an ) Dolbeault ( [8]) b n (X) = h p,q (X) p+q=n b n (X σ ) = p+q=n h p,q (X σ ) 1 h p,q (X) =dimh q (X, Ω p (X)) Ω p (X) X p h p,q (X σ )=dimh q (X σ, Ω p (X σ )) ω X Zariski U ω σ X σ Zariski U σ X Zariski U σ C(U, Ω p (X)) C(U σ, Ω p (X σ )) H q (U, Ω p (X σ )) H q (U σ, Ω p (X σ )) H q (X, Ω p (X)) H q (X σ, Ω p (X σ )) h p,q (X) =h p,q (X σ ) 12 A. Weil. V K V K C X Betti K C C X X σ 1 n 19 Chow ( [6]) 13. 3 X Y X an H. Cartan (no 3, 1) H Y = H X /A (Y ) X an X F ( 3) H Y = F an 10, b) F an F

n 20 22 [18], no 81 F F x 0 x X Zariski F F an = H Y Y Zariski Chow 14. X X X 6 Y U Y Y Zariski Zariski f : U X T X Y Zariski T = T (X Y ) X Y T T T Y Y Y = f 1 (X ) Y U Y Chow Y Y Zariski 7 f : Y X X = f(y ) X Zariski 15. X Y f T f X Y f T X Y 14 T 8 f. n 20 G X X G Abel G A H 0 (X, A ) H 1 (X, A ) [9] [10], V H 1 (X, G ) X G A. Weil [20] H 1 (X, O X ) C G an X G H 1 (X an, G an ) X G E E an no 11 ε : H 1 (X, G ) H 1 (X an, G an ) 16. X ε E E X G 16 E E ϕ : E E

n 20 23 E E X X G G (E,E ) X X X E E G G G (g, g ).h = ghg 1 T (E,E ) G T E E ϕ T s 15 s : X T s ϕ X ε :H 1 (X, G ) H 1 (X an, G an ) 16 G G Abel G 17. G C ε G = O G an = O an 1 18. G GL n (C) ε GL n (C) C n [18], no 41 M X an H n X F O n F an M 3 X F x X H x Fx an = F x Ox H x Hx n 30 A = O x,a = H x E = F x F x Ox n F F O n 1. n =1 GL n (C) C X H 1 (X, G ) ( [20], 3) 18 X C X Kodaira-Spencer [12] Lefschetz 2. 18 Kodaira [11] 7 8 G H G [13] G/H G H G G G/H H

n 20 24 G/H G A. Grothendieck 19. X P H X P P H G P H G P H G G P 0 h : P 0 P H G E E 0 P H G P 0 G/H G E 0 = P 0 G G/H E = (P H G) G G/H = P H G/H h f : E 0 E E = P H G/H s H G/H G f s E 0 s 0 = f 1 s s 0 15 G P 0 H P 0 /H E 0 P 0 H E 0 G G/H H P 1 = s 1 0 (P 0 ) P 0 s 0 : X E 0 P 1 X H P 1 P s 0 = f 1 s f P 1 = s 1 0 (P 0) P H G H s : X E P P P H G s X E = P H G/H 18 19 20. G GL n (C) (R) GL n (C)/G GL n (C) X ε : H 1 (X, G ) H 1 (X an, G an )

n 21 25 (R) a) G Rosenlicht [13] b) G = SL n (C) c) G = Sp n (C) n =2m GL n (C)/G i<j a ij x i x j (R) u ij x i x j C(u ij ) i<j m x 2i 1 x 2i i=1 (R) G G = O + n (C) (R) n 3 ε :H 1 (X, G ) H 1 (X an, G an ) n 21 3. B A B A A E F G E A B F A B G A B Tor A Q Tor A 1 (B,Q) = 0 Tor Q Tor Q B A A a Tor A 1 (B,A/a) =0 a A B B 1. A B A B 2. S A A S A [18], no 48, 1 A B θ : A B A B B

n 22 26 A E F A E A B F A B B f : E F f 1 E A B F A B B A B Hom A (E,F) Hom B (E A B,F A B) ι : Hom A (E,F) A B Hom B (E A B,F A B) 21. ι A Noether E A B A A F T (E) = Hom A (E,F) A B T (E) = Hom B (E A B,F A B) ι T (E) T (E) E = A T (E) =T (E) =F A B ι E A Noether E L 1 L 0 E 0 L 0 L 1 0 T (E) T (L 0 ) T (L 1 ) ι ι 0 ι 1 0 T (E) T (L 0 ) T (L 1 ) B A Hom ι 0 ι 1 ι n 22 4. A B A (A, B) B/A A 22. (A, B) B A

n 22 27 a)a ) A A E E E A B a ) A a ab A = a E A 0 A B B/A 0 Tor A 1 (A, E) Tor A 1 (B,E) Tor A 1 (B/A,E) A A E B A E A A E = E Tor A 1 (A, E) =0 0 Tor A 1 (B,E) Tor A 1 (B/A,E) E E A B Tor A 1 (B/A,E) 0 Tor A 1 (B,E) 0 E E A B a ) A/a A/a A B 23. A B C (A, C) (B,C) (A, B) B A A 0 E F 0 E A B F A B N E A B F A B C B 0 N B C (E A B) B C (F A B) B C (E A B) B C E A C (F A B) B C F A C C A E A C F A C N B C =0 22 (B,C) N =0 B A E A E E A B E A C (A, C) E E A B (A, B) 22 (A, B) (B,C) (A, C) (A, B) (A, C) (B,C)

n 23 28 n 23 A Noether 8 m 24. A E E = me E =0 [15], p. 138 [4], exp. I E 0 e 1,...,e n E e n me e n = x 1 e 1 + + x n e n x i m (1 x n )x n = x 1 e 1 + + x n 1 e n 1 1 x n A e 1,...,e n 1 E n. E A E F E = F + me E = F E/F = m(e/f) A E m m n E 0 ( [15], p. 153) 25. E A a) E F E m F m b) E E m E ( [15], [3], exp. VIII bis) a) (Krull, [15]) r n r F m n E = m n r (F m r E) (Artin, Rees, [4], exp. 2) E a) 0 E F F = mf F =0 24 E b) E A Ê Â E A m A E E Â Ê Ê Ê Â E Ê ε : E A Â Ê 26. A E ε 8 Zariski ( [15], p. 157)

n 24 29 0 R L E 0 A L A Noether R 25 R m L m E m L 0 R L Ê 0 R A Â L A Â E A Â 0 ε ε ε R L Ê 0 ε ε Ê = Â.E [15], p. 153, 1 A R ε ε n 24 Noether 27. A Â (A, Â) Â A E F E A Â F A Â E F 26 E A Â Ê F A Â F Ê F E Ê E (A, Â) 22 a ) A B θ A B θ A B θ θ : Â B 28. θ : Â B A θ B (A, B) A B B = Â (A, Â) (B, B) 23 (A, B) 29. A B a A θ A B θ 28 θ A/a B/θ(a)B (A/a,B/θ(a)B)

30 26 A/a Â/a B/θ(a)B B/θ(a) B 30. A A θ A A 28 E A A E = E A A A n E A n A θ A m m A A m m m 0 A A A A = m + A A/m = A /m E/mE = E /m E A E n A /m E /m E E n e 1,...,e n E/mE E/mE A/m e i f : A n E 24 f N f (A, A ) ( 28) 0 N A n f E 0 0 N A n f E 0 E N A n 0 N /m N A n /m A n E /m E 0 f A n /m A n E /m E N /m N =0 N =0( 24) N =0 (A, A ) [1] H. Cartan. Idéaux et modules de fonctions analytiques de variables complexes. Bull. Soc. Math. France, 78, 1950, p. 29-64. [2] H. Cartan. Séminaire E. N. S., 1951-1952. [3] H. Cartan. Séminaire E. N. S., 1953-1954. [4] H. Cartan et C. Chevalley. Séminaire E. N. S., 1955-1956. [5] H. Cartan et J.-P. Serre. Un théorème de finitude concernant les variétés analytiques compactes. C. R., 237, 1953, p. 128-130.

31 [6] W-L. Chow. On compact complex analytic varieties. Amer.J.ofMaths., 71, 1949, p. 893-914. [7] W-L. Chow. On the projective embedding of homogeneous varieties. Lefschetz s volume, Princeton, 1956. [8] P. Dolbeault. Sur la cohomologie des variétés analytiques complexes. C. R., 236, 1953, p. 175-177. [9] J. Frenkel. Cohomologie à valeurs dans un faisceau non abélien. C. R., 240, 1955, pp. 2368-2370. [10] A. Grothendieck. A general theory of fibre spaces with structure sheaf. Kansas Univ., 1955. [11] K. Kodaira. On Kähler varieties of restricted type (an intrinsic characterization of algebraic varieties). Ann. of Maths., 60, 1954, p. 28-48. [12] K. Kodaira and D. C. Spencer. Divisor class groups on algebraic varieties. Proc. Nat. Acad. Sci. U. S. (1., 39, 1953, p. 972-877. [13] M. Rosenlicht. Some basic theorems on algebraic groups. Amer.J.ofMaths., 78, 1956, p. 401-443. [14] W. Rückert. Zum Eliminationsproblem der potenzreihenidéale. Math. Ann., 107, 1933, pp. 259-281. [15] P. Samuel. Commutative Algebra (Notes by D. Herzig). Cornell Univ., 1953. [16] P. Samuel. Algèbre locale. Mém. Sci. Math., 123, Paris, 1953. [17] P. Samuel. Méthodes d algèbre abstraite en géométrie algébrique. Ergebn. der Math., Springer, 1955. [18] J.-P. Serre. Faisceaux algébriques cohérents. Ann. of Maths., 61, 1955, p. 197-278. [19] J.-P. Serre. Sur la cohomologie des variétés algébriques J. de Math. Pure et Appl., 35, 1956. [20] A. Weil. Fibre-spaces in algebraic geometry (Notes by A. Wallace). Chicago Univ., 1952.