Αλγεβρικές Δομές Ι. 1 Ομάδα I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αλγεβρικές Δομές Ι. 1 Ομάδα I"

Transcript

1 Αλγεβρικές Δομές Ι 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω G μια προσθετική ομάδα S ένα μη κενό σύνολο και M(S G το σύνολο όλων των συναρτήσεων f : S G. Δείξτε ότι το σύνολο M(S G είναι ομάδα με πράξη την πρόσθεση συναρτήσεων που ορίζεται με τον εξής τρόπο: (f + g(s = f(s + g(s για κάθε f g M(S G και κάθε s S. Αν η G είναι αντιμεταθετική τότε και η M(S G είναι επίσης αντιμεταθετική. Ά σ κ η σ η 1.2 Αν G είναι μια ομάδα και a b στοιχεία της G τέτοια ώστε να ισχύει bab 1 = a r για κάποιο r N δείξτε ότι θα έχουμε b k ab k = a rk για κάθε k N. Ά σ κ η σ η 1.3 Δείξτε ότι το υποσύνολο H = { } της ομάδας Z 10 είναι μια υποομάδα της Z 10. Ά σ κ η σ η 1.4 Aν H 1 H 2 H 3 H m είναι μια αύξουσα ακολουθία υποομάδων μιας ομάδας G δείξτε ότι το σύνολο H = n=1 H n είναι υποομάδα της G. Ά σ κ η σ η 1.5 Nα βρεθεί η κυκλική υποομάδα της S 3 που παράγεται από τη μετάθεση σ = Ά σ κ η σ η 1.6 Δείξτε ότι το υποσύνολο K = {( ( ( της S 4 αποτελεί αντιμεταθετική υποομάδα της S 4.. ( ( Ά σ κ η σ η 1.7 Έστω (G τυχούσα ομάδα και a G. Στο σύνολο G ορίζουμε την πράξη x y = xay για κάθε x y G. Δείξτε ότι (G είναι ομάδα και να εξεταστεί αν ισχύει (G = (G. Ά σ κ η σ η 1.8 Δείξτε ότι το σύνολο H = {( 1 n n n 1 + n είναι ομάδα με πράξη τον πολλαπλασιασμό πινάκων. /n Z } } 1

2 2 Ομάδα II Ά σ κ η σ η 2.1 Θεωρούμε την πολλαπλασιαστική ομάδα R των μη μηδενικών πραγματικών αριθμών. Να εξεταστεί αν η συνάρτηση φ : R R που ορίζεται με τη σχέση φ(a = 5a για κάθε a R είναι ένας ισομορφισμός ομάδων. Ά σ κ η σ η 2.2 Θεωρούμε την προσθετική ομάδα R των πραγματικών αριθμών. Να εξεταστεί αν η συνάρτηση φ : R R που ορίζεται με τη σχέση φ(a = 5a για κάθε a R είναι ένας ισομορφισμός ομάδων. Ά σ κ η σ η 2.3 Δείξτε ότι οι πολλαπλασιαστικές ομάδες R και C των μη μηδενικών πραγματικών και μιγαδικών αριθμών αντίστοιχα δεν μπορεί να είναι ισόμορφες. Ά σ κ η σ η 2.4 Δείξτε ότι η συνάρτηση φ : R R + η οποία ορίζεται με τη σχέση φ(x = 2 x για κάθε x R είναι ένας ισομορφισμός των ομάδων (R + και (R +. Ά σ κ η σ η 2.5 Δείξτε ότι δεν υπάρχει αντιμεταθετική ομάδα η οποία να είναι ισόμορφη με μια μη αντιμεταθετική ομάδα. Ά σ κ η σ η 2.6 Στο σύνολο Z ορίζουμε μια πράξη με την παρακάτω σχέση: x y = x + y + 1 για κάθε x y Z. Δείξτε ότι (Z είναι μια ομάδα. Δείξτε επίσης ότι οι ομάδες (Z και (Z + είναι ισόμορφες. Ά σ κ η σ η 2.7 Έστω G τυχούσα ομάδα και a ένα στοιχείο της G. Δείξτε ότι η συνάρτηση f a : G G που ορίζεται με τη σχέση f a (x = a 1 xa για κάθε x G είναι ένας αυτομορφισμός της ομάδας G. Ά σ κ η σ η 2.8 Δείξτε ότι υπάρχει ένας μη τετριμμένος ομομορφισμός f : Z 2 Z 4. Δείξτε ότι υπάρχει ένας μη τετριμμένος ομομορφισμός φ : Z 2 Z n για κάθε άρτιο n. Ά σ κ η σ η 2.9 Έστω n τυχαίος ακέραιος. Δείξτε ότι η συνάρτηση f n : Z Z που ορίζεται με τη σχέση f n (a = na για κάθε a Z είναι ένας ενδομορφισμός της προσθετικής ομάδας Z των ακεραίων. Να βρεθεί ο πυρήνας του ενδομορφισμού αυτού. Να εξεταστεί αν η συνάρτηση f n είναι μονομορφισμός επιμορφισμός ή ισομορφισμός. 2

3 3 Ομάδα III Ά σ κ η σ η 3.1 Θεωρούμε την προσθετική ομάδα Z 12 των ακεραίων mod 12 και την κυκλική υποομάδα της H = 4 που παράγεται από το στοιχείο 4. Να βρεθούν οι κλάσεις της H στην Z 12 και ο δείκτης της υποομάδας H στην Z 12. Ά σ κ η σ η 3.2 (i Αν H είναι η κυκλική υποομάδα της S 3 που παράγεται από το στοιχείο π 3 = ( δείξτε ότι καμιά αριστερή κλάση της H στην S 3 δεν είναι και δεξιά κλάση της H στην S 3 (με εξαίρεση βέβαια την ίδια την H. Επίσης δείξτε ότι το γινόμενο H (π 2 H των αριστερών κλάσεων H και π 2 H της H στην S 3 δεν είναι αριστερή κλάση της H στην S 3. (ii Αν K είναι η κυκλική υποομάδα της S 3 που παράγεται από το στοιχείο σ 1 = ( δείξτε ότι κάθε αριστερή κλάση της K στην S 3 είναι ταυτόχρονα και δεξιά κλάση της K στην S 3. Ά σ κ η σ η 3.3 Έστω G μια ομάδα και H K υποομάδες της G τέτοιες ώστε να ισχύει H < K < G. Αν ο δείκτης της H στην G είναι ένας πρώτος αριθμός p δείξτε ότι θα ισχύει K = H ή K = G. Ά σ κ η σ η 3.4 Έστω x και y δύο στοιχεία μιας ομάδας G. Αν υπάρχει κάποιο στοιχείο s G τέτοιο ώστε να ισχύει y = s 1 xs δείξτε ότι τα στοιχεία x και y έχουν την ίδια τάξη. Δείξτε επίσης ότι τα στοιχεία ab και ba έχουν την ίδια τάξη για τυχόντα στοιχεία a και b της G. Ά σ κ η σ η 3.5 Έστω G μια πεπερασμένη αντιμεταθετική ομάδα τάξης n και m ένας σταθερός φυσικός αριθμός. Δείξτε ότι η συνάρτηση f : G G που ορίζεται με τη σχέση f(a = a m για κάθε a G είναι ένας αυτομορφισμός της G αν ισχύει (n m = 1. 4 Ομάδα IV Ά σ κ η σ η 4.1 Θεωρούμε την πολλαπλασιαστική ομάδα GL 2 (R όλων των αντιστρέψιμων 2 2 πινάκων με στοιχεία πραγματικούς αριθμούς. Δείξτε ότι το υποσύνολο SL 2 (R όλων των 2 2 πινάκων με στοιχεία πραγματικούς αριθμούς και ορίζουσα 1 αποτελεί υποομάδα της GL 2 (R. Να εξεταστεί επίσης αν η υποομάδα αυτή είναι κανονική υποομάδα της GL 2 (R. 3

4 Ά σ κ η σ η 4.2 Έστω a τυχόν στοιχείο μια ομάδας G. Θεωρούμε το υποσύνολο C(a = {x G/xa = ax} της ομάδας G που περιέχει όλα τα στοιχεία της G που αντιμετατίθενται με το στοιχείο a. Δείξτε ότι το σύνολο αυτό αποτελεί υποομάδα της G. Να εξεταστεί αν είναι κανονική υποομάδα. (Η υποομάδα C(a λέγεται κεντροποιητής του στοιχείου a. Ά σ κ η σ η 4.3 Έστω G τυχούσα ομάδα και N μια υποομάδα της. Δείξτε ότι N G (ab N αν και μόνον αν ba N για κάθε a b G. Ά σ κ η σ η 4.4 Έστω G τυχούσα ομάδα και a ένα στοιχείο της. Θεωρούμε την κυκλική υποομάδα a της G. Δείξτε ότι η a είναι κανονική υποομάδα της G αν και μόνον αν για κάθε g G υπάρχει k Z τέτοιο ώστε να ισχύει ga = a k g. Ά σ κ η σ η 4.5 Να βρεθούν όλες οι κανονικές υποομάδες της συμμετρικής ομάδας S 3. Ά σ κ η σ η 4.6 Δείξτε ότι το σύνολο Z[x] όλων των πολυωνύμων με ακέραιους συντελεστές είναι μια προσθετική αντιμεταθετική ομάδα. Επίσης δείξτε ότι το σύνολο H = {φ(x Z[x]/φ(x έχει άρτιο σταθερό όρο} είναι υποομάδα της Z[x]. Είναι κανονική; 5 Ομάδα V Ά σ κ η σ η 5.1 Να βρεθούν τα συζυγή στοιχεία του στοιχείου π 2 της ομάδας S 3. Επίσης να βρεθούν οι συζυγείς ομάδες της υποομάδας H = π 2 της S 3. Ά σ κ η σ η 5.2 Δείξτε ότι μια υποομάδα H μιας ομάδας G είναι κανονική αν και μόνον αν περιέχει όλες τις συζυγείς ομάδες της H στην G. Ά σ κ η σ η 5.3 Αν H είναι μια γνήσια υποομάδα μιας πεπερασμένης ομάδας G δείξτε ότι το σύνολο a G aha 1 δεν καλύπτει ολόκληρη την ομάδα G. 6 Ομάδα VI Ά σ κ η σ η 6.1 Αν H = σ 1 είναι η κυκλική υποομάδα της S 3 που παράγεται από το στοιχείο σ 1 να προσδιοριστεί η ομάδα πηλίκο S 3 /H. Ά σ κ η σ η 6.2 Να προσδιοριστούν οι ομάδες πηλίκο Z 8 / 2 και Z 8 4. Ά σ κ η σ η 6.3 Δείξτε ότι κάθε ομάδα πηλίκο μιας αντιμεταθετικής ομάδας είναι αντιμεταθετική. 4

5 Ά σ κ η σ η 6.4 Αν N είναι μια κανονική υποομάδα της πεπερασμένης ομάδας G και a G δείξτε ότι η τάξη του στοιχείου an της ομάδας πηλίκο G/N διαιρεί την τάξη του στοιχείου a. Ά σ κ η σ η 6.5 Δείξτε ότι ισχύει η σχέση Z 12 /H = Z 4 όπου H = 4 η κυκλική υποομάδα της Z 12 που παράγεται από το στοιχείο 4 Z 12. (Υπόδειξη: Δείξτε ότι η συνάρτηση φ : Z 12 Z 4 που ορίζεται με τη σχέση φ(a = a Z 4 για κάθε στοιχείο a Z 12 είναι καλά ορισμένη και επιμορφισμός ομάδων. Ά σ κ η σ η 6.6 Αν G = a είναι μια κυκλική ομάδα και H τυχούσα ομάδα δείξτε ότι κάθε ομομορφισμός f : G H ορίζεται πλήρως από το στοιχείο f(a H. Ά σ κ η σ η 6.7 Αν m 0 είναι ένας σταθερός ακέραιος δείξτε ότι το γνήσιο υποσύνολο {km/k Z} της προσθετικής ομάδας Z των ακεραίων είναι μια προσθετική υποομάδα της Z ισόμορφη με την Z. Ά σ κ η σ η 6.8 Αν k και n είναι θετικοί ακέραιοι και ο k διαιρεί τον n δείξτε ότι θα ισχύει η σχέση Z n /H = Z k όπου H = k. Ά σ κ η σ η 6.9 Θεωρείστε τις υποομάδες 6 και 30 της προσθετικής ομάδας Z των ακεραίων και δείξτε ότι ισχύει 6 / 30 = Z 5. Ά σ κ η σ η 6.10 Έστω G αντιμεταθετική προσθετική ομάδα πεπερασμένης τάξης m. Έστω επίσης n ένας θετικός ακέραιος τέτοιος ώστε να ισχύει (m n = 1. Δείξτε ότι η συνάρτηση f n : G G που ορίζεται με τη σχέση f n (x = nx για κάθε x G είναι ένας ισομορφισμός ομάδων. Ά σ κ η σ η 6.11 Αν G είναι μια αντιμεταθετική ομάδα τάξης pq όπου p και q είναι πρώτοι αριθμοί δείξτε ότι υπάρχει μια τουλάχιστον μη τετριμμένη υποομάδα H της G διάφορη από την G. Να βρεθεί η ομάδα πηλίκο G/H. Ά σ κ η σ η 6.12 Έστω G μια ομάδα και C(G το κέντρο της G. Αν η G είναι μη αντιμεταθετική δείξτε ότι η ομάδα πηλίκο G/C(G δεν είναι κυκλική. Ά σ κ η σ η 6.13 Έστω G τυχούσα ομάδα και N μια κανονική υποομάδα της. Αν M είναι μια υποομάδα της ομάδας πηλίκο G/N δείξτε ότι το σύνολο M = {a G/aN M} είναι υποομάδα της G η οποία περιέχει την N. Δείξτε επίσης ότι αν η M είναι κανονική υποομάδα της G/N τότε η M είναι κανονική υποομάδα της G. Τέλος δείξτε ότι ισχύει M/N = M. Ά σ κ η σ η 6.14 Έστω G τυχούσα ομάδα και N μια κανονική υποομάδα της. Δείξτε ότι η G/N είναι αντιμεταθετική αν και μόνον αν ισχύει aba 1 b 1 N για κάθε a b G. 5

6 Ά σ κ η σ η 6.15 Έστω f : G H ένας ομομορφισμός ομάδων με πυρήνα N. Αν K είναι μια υποομάδα της G δείξτε ότι ισχύει f 1 (f(k = NK. Επιπλέον δείξτε ότι θα ισχύει f 1 (f(k = K αν και μόνον αν ο πυρήνας N περιέχεται στην K. Ά σ κ η σ η 6.16 Έστω f : G H ένας επιμορφισμός ομάδων. Θεωρούμε το σύνολο S(G όλων των υποομάδων K της G που περιέχουν τον πυρήνα Ker f του f και το σύνολο S(H όλων των υποομάδων της H. Ορίζουμε μια συνάρτηση Φ : S(G S(H με τη σχέση Δείξτε ότι ισχύουν 7 Ομάδα VII Φ(K = f(k για κάθε στοιχείο K S(G. (i η συνάρτηση Φ είναι αμφιμονότιμη και επί και (ii θα ισχύει Φ(K H αν και μόνον αν ισχύει K G. Ά σ κ η σ η 7.1 Έστω G μια πεπερασμένη ομάδα και x ένα στοιχείο της G. Αν ισχύει ord(x = [G : 1] δείξτε ότι η G είναι κυκλική. Να εξεταστεί αν ισχύει το ίδιο στην περίπτωση μιας μη πεπερασμένης ομάδας. Ά σ κ η σ η 7.2 Να βρεθούν όλα τα στοιχεία που μπορούν να παράγουν την ομάδα πηλίκο Z/ 20. Ά σ κ η σ η 7.3 Έστω G = a μια κυκλική ομάδα τάξης m. Αν n και k είναι θετικοί διαιρέτες του m τέτοιοι ώστε ο n να διαιρεί τον k δείξτε ότι ισχύει H n H k όπου H n και H k είναι οι κυκλικές υποομάδες της G που παράγονται από τα στοιχεία a m n και a m k αντίστοιχα. Ά σ κ η σ η 7.4 Αν G = a είναι μια κυκλική ομάδα και f : G H ένας ομομορφισμός ομάδων δείξτε ότι η εικόνα Im f = f(g του ομομορφισμού f είναι μια κυκλική υποομάδα της H. Ά σ κ η σ η 7.5 Αν G είναι άπειρη κυκλική ομάδα δείξτε ότι η συνάρτηση f : G G που ορίζεται από τη σχέση f(a = a 2 για κάθε στοιχείο a G είναι ένας μονομορφισμός αλλά όχι αυτομορφισμός ομάδων. Ά σ κ η σ η 7.6 Αν G είναι μια κυκλική ομάδα f ένας αυτομορφισμός της G και a ένα στοιχείο της G που παράγει την ομάδα G δείξτε ότι το στοιχείο f(a της G παράγει επίσης την ομάδα G. Ά σ κ η σ η 7.7 Έστω G μια κυκλική ομάδα και a b δύο στοιχεία της G που μπορούν να παράγουν τη G. Δείξτε ότι υπάρχει αυτομορφισμός f της G που ικανοποιεί την ισότητα f(a = b. (Υπόδειξη. Να αποδείξετε ότι η συνάρτηση f : G = a G = b 6

7 που ορίζεται με τη σχέση f(a k = b k για κάθε k Z είναι ένας αυτομορφισμός. Ά σ κ η σ η 7.8 Αν G είναι μια ομάδα δείξτε ότι το σύνολο Aut G = {f : G G/f αυτομορφισμός} είναι μια ομάδα με πράξη τη σύνθεση συναρτήσεων. Επίσης δείξτε ότι ισχύουν οι παρακάτω ισομορφίες ομάδων: (i Aut Z = Z 2 (ii Aut Z 6 = Z2 (iii Aut Z p = Z p όπου p πρώτος αριθμός και Z p η πολλαπλασιαστική ομάδα των μη μηδενικών στοιχείων του Z p. 8 Ομάδα VIII Ά σ κ η σ η 8.1 Έστω G και H πεπερασμένες κυκλικές ομάδες. Δείξτε ότι το (εξωτερικό ευθύ γινόμενο G H είναι κυκλική ομάδα αν και μόνον αν ισχύει (m k = 1 όπου m = [G : 1] και k = [H : 1]. (Υπόδειξη. Αν ισχύουν G = a και H = b όπου ord(a = m ord(b = k και επιπλέον (m k = 1 δείξτε ότι η τάξη του στοιχείου (a b G H είναι mk. Αντίστροφα αν G H = (g h τότε τάξη του (g h θα πρέπει να είναι ίση με [G H : 1] = mk. Αν τώρα (m k = r και ισχύουν m = m 1 r και k = k 1 r τότε θα έχουμε (g h m 1k 1 r = (e e. Επομένως θα πρέπει να ισχύει mk m 1 k 1 r οπότε προκύπτει r = 1. Ά σ κ η σ η 8.2 Δείξτε ότι κάθε κανονική υποομάδα της ομάδας G H είναι της μορφής K 1 K 2 όπου K 1 G και K 2 H. (Υπόδειξη. Αν K είναι μια κανονική υποομάδα της G H τότε θα ισχύει K = K 1 K 2 όπου K 1 = {a G/(a b K για κάποιο b H} και K 2 = {b H/(a b K για κάποιο a G}. Ά σ κ η σ η 8.3 Δείξτε ότι ισχύουν οι σχέσεις Z 15 = Z3 Z 5 και Z 30 = Z2 Z 3 Z 5. Ά σ κ η σ η 8.4 Αν H και K είναι δύο κανονικές υποομάδες μιας ομάδας G δείξτε ότι η ομάδα G/(H K είναι ισόμορφη με μια υποομάδα της ομάδας (G/H (G/K. Ά σ κ η σ η 8.5 Αν a και b είναι δύο στοιχεία μιας ομάδας G τάξης 2 και 3 αντίστοιχα να βρεθεί η τάξη όλων των στοιχείων της ομάδας H K όπου H = a και K = b. Δείξτε επίσης ότι η ομάδα H K είναι κυκλική και να βρεθεί ένας ισομορφισμός φ : H K Z 6. 7

8 Ά σ κ η σ η 8.6 Θεωρούμε την πολλαπλασιαστική ομάδα Z 15 όλων των αντιστρέψιμων στοιχείων της ομάδας Z 15 και τα στοιχεία a = 11 και b = 2 της ομάδας Z 15. Δείξτε ότι κάθε στοιχείο g της ομάδας Z 15 μπορεί να εκφραστεί με μοναδικό τρόπο στη μορφή g = a r b s όπου r = 0 1 και s = Αν H = a και K = b είναι οι κυκλικές υποομάδες της Z 15 που παράγονται από τα στοιχεία a και b αντίστοιχα να κατασκευαστεί ένας ισομορφισμός φ : Z 15 H K. Τέλος δείξτε ότι ισχύει η σχέση Z 15 = Z 2 Z 4. 9 Ομάδα IX Ά σ κ η σ η 9.1 Θεωρούμε έναν K -διανυσματικό χώρο V πεπερασμένης διάστασης m και την πολλαπλασιαστική ομάδα K = K {0} του σώματος K. Δείξτε ότι η συνάρτηση K V V η οποία απεικονίζει το τυχόν στοιχείο (λ x K V στο λx V είναι μια δράση της ομάδας K στο σύνολο V. Να βρεθούν οι τροχιές της δράσης αυτής και η ομάδα ευσταθείας των στοιχείων του V. Ά σ κ η σ η 9.2 Θα λέμε ότι η δράση μιας ομάδας G σε ένα σύνολο X είναι μεταβατική αν για τυχόντα στοιχεία x y του X υπάρχει g G τέτοιο ώστε να ισχύει g x = y. Δείξτε ότι η δράση μιας ομάδας G σε ένα σύνολο X είναι μεταβατική αν και μόνον αν υπάρχει μία και μοναδική τροχιά της G στο X. Ά σ κ η σ η 9.3 Έστω H υποομάδα μιας ομάδας G και X = {ah/a G} το σύνολο όλων των κλάσεων της H στη G. Θεωρούμε τη δράση της G στο X που ορίζεται με τη σχέση g ah = gah για κάθε g G και κάθε στοιχείο ah X. Να βρεθούν οι τροχιές και οι ομάδες ευσταθείας των στοιχείων του X. Ά σ κ η σ η 9.4 Θεωρούμε την υποομάδα H της ομάδας G το σύνολο X και τη δράση της G στο X που είδαμε στην άσκηση 9.3. Δείξτε ότι ο πυρήνας του ομομορφισμού f : G S(X που ορίζεται από τη σχέση f(g = τ g για κάθε g G περιέχεται στην υποομάδα H. Ά σ κ η σ η 9.5 Έστω H υποομάδα μιας ομάδας G με δείκτη m. Αν η υποομάδα H δεν περιέχει καμία μη τετριμμένη κανονική υποομάδα της G δείξτε ότι η ομάδα G είναι ισόμορφη με μια υποομάδα της S m. Υπόδειξη: Χρησιμοποιείστε την άσκηση 9.4. Ά σ κ η σ η 9.6 Έστω p > 1 ένας πρώτος αριθμός και G μια ομάδα πεπερασμένης τάξης p 2. Δείξτε ότι η G έχει μη τετριμμένο κέντρο δηλαδή C(G e. Δείξτε επίσης ότι η ομάδα G είναι αντιμεταθετική. Υπόδειξη: Χρησιμοποιείστε την εξίσωση κλάσεων. Ά σ κ η σ η 9.7 Έστω G μια ομάδα τάξης pn όπου p είναι ένας πρώτος αριθμός μεγαλύτερος από τον αριθμό n. Αν η τάξη μιας υποομάδας H της G είναι p δείξτε ότι η H είναι κανονική υποομάδα της G. Υπόδειξη: Χρησιμοποιείστε την άσκηση

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο

Αλγεβρικές Δομές ΙΙ. 1 Ομάδα I. Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο Αλγεβρικές Δομές ΙΙ 1 Ομάδα I Ά σ κ η σ η 1.1 Έστω R ένας δακτύλιος. Δείξτε ότι το σύνολο C(R) = {a R/ax = xa, για κάθε x R} είναι υποδακτύλιος του R, και λέγεται κέντρο του δακτυλίου R. Ά σ κ η σ η 1.2

Διαβάστε περισσότερα

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k =

(a + b) n = a k b n k, k. (a + b) p = a p + b p. k=0. n! k! (n k)! k = ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2016 Χρήστος Α. Αθανασιάδης Συμβολίζουμε με Z m το δακτύλιο των ακεραίων modulo m, με ā Z m την κλάση (mod m) του a Z και με M n (R) το δακτύλιο

Διαβάστε περισσότερα

a = a a Z n. a = a mod n.

a = a a Z n. a = a mod n. Αλγεβρα Ι Χειμερινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Πράξεις: Πράξεις στο σύνολο S, ο πίνακας της πράξης, αντιμεταθετικές πράξεις. Προσεταιριστικές πράξεις, το στοιχείο a 1 a 2 a n. Η πράξη «σύνθεση

Διαβάστε περισσότερα

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha.

s G 1 ). = R, Z 2 Z 3 = Z6. s, t G) s t = st. 1. H = G 4. [G : H] = a G ah = Ha. Αλγεβρα ΙΙ Εαρινο Εξαμηνο 2017 18 Διάλεξη 1 Ενότητα 1. Ομάδες-Πηλίκο: Κρατήσαμε σταθερή μια ομάδα G με ταυτοτικό το ι και μια υποομάδα H της G. Συμβολίσαμε με G 1 το G/H (το σύνολο των αριστερών συμπλόκων

Διαβάστε περισσότερα

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο.

Κεφάλαιο 1 Πρότυπα. Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο. Κεφάλαιο Πρότυπα Στο κεφάλαιο αυτό εισάγουμε την έννοια του προτύπου πάνω από δακτύλιο Ορισμοί και Παραδείγματα Παραδοχές Στo βιβλίο αυτό θα κάνουμε τις εξής παραδοχές Χρησιμοποιούμε προσθετικό συμβολισμό

Διαβάστε περισσότερα

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης

Α Δ Ι Ε Υ Μ. Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Α Δ Ι Ε Υ Μ Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 28 Ι 2014 Το παρόν κείμενο

Διαβάστε περισσότερα

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}.

G 1 = G/H. I 3 = {f R : f(1) = 2f(2) ή f(1) = 3f(2)}. I 5 = {f R : f(1) = 0}. Αλγεβρα ΙΙ, Εαρινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Φροντιστήριο 1. 1. Δίνεται η ομάδα G = Z 4 Z 8, το στοιχείο a = (1, 2) της G, και η υποομάδα H =< a > της G. Εστω G 1 = G/H.

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R)

Α Δ Ι. Παρασκευή 20 Δεκεμβρίου GL n (R) / SL n (R) Α Δ Ι Α - Φ 8 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 20 Δεκεμβρίου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z)

ΚΕΦΑΛΑΙΟ 1: Πρότυπα. x y x z για κάθε x, y, R με την ιδιότητα 1R. x για κάθε x R, iii) υπάρχει στοιχείο 1 R. ii) ( x y) z x ( y z) ΚΕΦΑΛΑΙΟ 1: Πρότυπα Στο κεφάλαιο αυτό θα υπενθυμίσουμε τις βασικές έννοιες που αφορούν πρότυπα πάνω από ένα δακτύλιο Θα περιοριστούμε στα πλέον απαραίτητα για αυτά που ακολουθούν στα άλλα κεφάλαια Η κατευθυντήρια

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i)

Δακτύλιοι και Πρότυπα Ασκήσεις 2. όπου a (4 i) (1 2 i), b i. Στη συνέχεια βρείτε κάθε τέτοιο d. b. Δείξτε ότι [ i] (4 i) 6 Δακτύλιοι και Πρότυπα 016-17 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Περιοχές κυρίων ιδεωδών. 1. Θεωρούμε το δακτύλιο [ i]. a. Βρείτε ένα d [ i] με ( a, b) d, όπου a (4 i) (1 i), b 16 1 i.

Διαβάστε περισσότερα

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι.

Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη. Τσουκνίδας Ι. Πεπερασμένα σώματα και Κρυπτογραφία Σύμφωνα με τις παραδόσεις του Α. Κοντογεώργη Τσουκνίδας Ι. 2 Περιεχόμενα 1 Εισαγωγή στα πεπερασμένα σώματα 5 1.1 Μάθημα 1..................................... 5 1.1.1

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος

Αλγεβρικες οµες Ι. Εκπαιδευτικο Υλικο Μαθηµατος Αλγεβρικες οµες Ι Εκπαιδευτικο Υλικο Μαθηµατος Ακαδηµαϊκο Ετος 2012-2013 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html 22

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 7 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 13 Δεκεμβρίου

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Τα πρώτα μαθήματα, σχεδόν σε όλους τους κλάδους των μαθηματικών, περιέχουν, ή θεωρούν γνωστές, εισαγωγικές έννοιες που αφορούν σύνολα, συναρτήσεις, σχέσεις ισοδυναμίας, αλγεβρικές δομές, κλπ.

Διαβάστε περισσότερα

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 Περιεχόμενα 1 Βασικές Έννοιες 1 1.1 Ορισμοί - παραδείγματα.............................. 1 1.2 Υποομάδες και Σύμπλοκα..............................

Διαβάστε περισσότερα

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών

Αλγεβρικες οµες ΙΙ. ιδάσκουσα : Χ. Χαραλάµπους. Θέµατα προηγουµένων ετών Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Σχολη Θετικων Επιστηµων Τµηµα Μαθηµατικων Αλγεβρικες οµες ΙΙ ιδάσκουσα : Θέµατα προηγουµένων ετών 1 Θέµατα Πολλαπλής Επιλογής Στις ερωτήσεις πολλαπλής επιλογής, εάν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-Art ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάμε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων Αυτές συνδέονται μεταξύ τους με την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Παρασκευή 16 & Τετάρτη 21 Νοεµβρίου

Διαβάστε περισσότερα

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013

834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 834. Θεωρία Ομάδων Τμήμα Μαθηματικών Πανεπιστήμιο Αθηνών Αθήνα, 2013 Περιεχόμενα 1 Βασικές Έννοιες 1 1.1 Ορισμοί - παραδείγματα.............................. 1 1.2 Υποομάδες και σύμπλοκα..............................

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 3 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 3 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 31 Μαρτίου 2017 Υπενθυµίζουµε

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Θεωρία Sylow. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Θεωρία Sylow Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 2 Θεωρία Sylow 21 Τα Θεωρήματα Sylow Ορισμός 211 Μια ομάδα (G, ) τάξης p α, όπου

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ημιαπλοί Δακτύλιοι ΚΕΦΑΛΑΙΟ : Ημιαπλοί Δακτύλιοι Είδαμε στο κύριο θεώρημα του προηγούμενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισμα απλών προτύπων Εδώ θα χαρακτηρίσουμε όλους

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 8 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση 1.

Διαβάστε περισσότερα

1 Η εναλλάσσουσα ομάδα

1 Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Η εναλλάσσουσα ομάδα Όπως είδαμε η συνάρτηση g : S { } είναι ένας επιμορφισμός ομάδων. Ο πυρήνας Ke g {σ S / g σ } του επιμορφισμού συμβολίζεται με A περιέχει όλες τις άρτιες μεταθέσεις

Διαβάστε περισσότερα

(m, n) = 1 τότε Aut(H K) = Aut(H) Aut(K). Z(GL(2, R)), Z(SL(2, R)), Z(GL(n, R)), Z(SL(n, R)). } a b 0 c {( ) 1 b A = 0 1 {( ) a 0 D = 0 c T = } : b R

(m, n) = 1 τότε Aut(H K) = Aut(H) Aut(K). Z(GL(2, R)), Z(SL(2, R)), Z(GL(n, R)), Z(SL(n, R)). } a b 0 c {( ) 1 b A = 0 1 {( ) a 0 D = 0 c T = } : b R Ασκήσεις στην Θεωρία Ομάδων 2 Μαίου 2014 Άσκηση 1 Δίνεται μια ομάδα G τάξης n και a 1, a 2,..., a n G. Δείξτε ότι υπάρχουν k, m N τέτοια ώστε 1 k m n και a k a 2...a m = 1. Άσκηση 2 Δίνεται μια ομάδα G

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα

ΠΑΡΑΡΤΗΜΑ Αʹ. Στοιχεία από την Άλγεβρα ΠΑΡΑΡΤΗΜΑ Αʹ Στοιχεία από την Άλγεβρα Στο Παράρτημα αυτό, το οποίο παρατίθεται για να συμβάλει στην αυτοδυναμία του βιβλίου, ο αναγνώστης θα μπορεί να προστρέχει για αρωγή σε έννοιες και αποτελέσματα που

Διαβάστε περισσότερα

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m )

f(n) = a n f(n + m) = a n+m = a n a m = f(n)f(m) f(a n ) = b n f : G 1 G 2, f(a n a m ) = f(a n+m ) = b n+m = b n b m = f(a n )f(a m ) 302 14. Ταξινόµηση Κυκλικών Οµάδων και Οµάδες Αυτοµορφισµών Στην παρούσα ενότητα ϑα ταξινοµήσουµε τις κυκλικές οµάδες ως προς τη σχέση ισοµορφίας. Ε- πίσης ϑα αποδείξουµε ένα σηµαντικό κριτήριο ισοµορφίας

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ),

Α Δ Ι. Παρασκευή 15 Νοεμβρίου Ασκηση 1. Να ευρεθεί η τάξη τού στοιχείου a τής ομάδας (G, ), όπου. (4) a = ( 1 + i 3)/2, (G, ) = (C, ), Α Δ Ι Α - Φ 4 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 15 Νοεμβρίου

Διαβάστε περισσότερα

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι:

1.3 Ιδεώδη και Περιοχές κυρίων Ιδεωδών 1.3. Ι Π Ι. Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0}, < n καθώς και ότι: n N {0}, ( ) + n = = n + ( ) και ( ) + ( ) = (**) Ονομάζουμε επικεφαλής συντελεστή ενός μη μηδενικού πολυωνύμου f, τον συντελεστή f(i)

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 7

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 7 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 12 Μαίου 2017 Ασκηση 1.

Διαβάστε περισσότερα

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη

Κεφάλαιο 0. Μεταθετικοί ακτύλιοι, Ιδεώδη Κεφάλαιο 0 Μεταθετικοί ακτύλιοι, Ιδεώδη Το κεφάλαιο αυτό έχει προπαρασκευαστικό χαρακτήρα Θα καθιερώσουµε συµβολισµούς και θα υπενθυµίσουµε ορισµούς και στοιχειώδεις προτάσεις για δακτύλιους και ιδεώδη

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου. Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1) Κεφάλαιο 4 Ευθέα γινόµενα οµάδων Στο Παράδειγµα 1.1.2.11 ορίσαµε το ευθύ εξωτερικό γινόµενο G 1 G 2 G n των οµάδων G i, 1 i n. Στο κεφάλαιο αυτό ϑα ασχοληθούµε λεπτοµερέστερα µε τα ευθέα γινόµενα οµάδων

Διαβάστε περισσότερα

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z).

Παράρτηµα Α Εισαγωγή Οµάδες. (x y) z= x (y z). Παράρτηµα Α 11.1 Εισαγωγή Οπως έχει αναφερθεί ήδη προοδευτικά στο δεύτερο µέρος του παρόντος συγγράµµατος χρησιµοποιούνται ϐασικές έννοιες άλγεβρας. Θεωρούµε ότι οι έννοιες αυτές είναι ήδη γνωστές από

Διαβάστε περισσότερα

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C

Τα παρακάτω σύνολα θα τα θεωρήσουμε γενικά γνωστά, αν και θα δούμε πολλές από τις ιδιότητές τους: N Z Q R C Κεφάλαιο 1 Εισαγωγικές έννοιες Στο κεφάλαιο αυτό θα αναφερθούμε σε ορισμένες έννοιες, οι οποίες ίσως δεν έχουν άμεση σχέση με τους διανυσματικούς χώρους, όμως θα χρησιμοποιηθούν αρκετά κατά τη μελέτη τόσο

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 7 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας.

Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. Ποιες από τις παρακάτω προτάσεις είναι αληθείς; Δικαιολογήστε την απάντησή σας. 1. Κάθε πολυώνυμο ανάγωγο επί του Z είναι ανάγωγο επί του Q. Σωστό. 2. Κάθε πολυώνυμο ανάγωγο επί του Q είναι ανάγωγο επί

Διαβάστε περισσότερα

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες

Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Φυλ. Ασκ. 5, Θεωρία Ομάδων Ασκήσεις στα: Ευθέα Γινόμενα Ομάδων, Θεώρημα Jordan Hölder, Συνθετικές και Κυρίαρχες Σειρές, Επιλύσιμες Ομάδες Εσωτερικά και Εξωτερικά ευθέα Γινόμενα Α 1. Έστω η κυκλική ομάδα

Διαβάστε περισσότερα

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014

Α Δ Ι. Δευτέρα 13 Ιανουαρίου 2014 Α Δ Ι Α - Φ 9 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2013/asi2013.html, https://sites.google.com/site/maths4edu/home/algdom114 Δευτέρα 13 Ιανουαρίου

Διαβάστε περισσότερα

g (v + W ) = gv + W gv = 0.

g (v + W ) = gv + W gv = 0. Ασκήσεις #1 Σε ότι ακολουθεί, G είναι πεπερασμένη ομάδα και V είναι C-διανυσματικός χώρος πεπερασμένης διάστασης. 1. Δείξτε ότι η απεικόνιση G G G που ορίζεται θέτοντας g x = gxg 1 για g, x G αποτελεί

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιμοποιώντας τανυστικά γινόμενα και εφαρμόζοντας το θεώρημα των Wedderbur-rt ( 33) θα αποδείξουμε δύο θεμελιώδη θεωρήματα που αφορούν κεντρικές απλές άλγεβρες θεώρημα

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος

Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τίτλος Μαθήματος: Αλγεβρικές Δομές ΙΙ Ενότητα: Ιδεώδη και Περιοχές κυρίων Ιδεωδών Διδάσκων: Καθηγητής Μαρμαρίδης Νικόλαος - Θεοδόσιος Τμήμα: Μαθηματικών 13 Ι Π Ι Για το σύμβολο δεχόμαστε ότι n N {0},

Διαβάστε περισσότερα

Οµάδες-Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες-Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 5 Οµάδες-Πηλίκα και τα Θεωρήµατα Ισοµορφισµών 5.1 Συνοπτική Θεωρία Στο παρόν Κεφάλαιο επικεντρωνόµαστε στις ϐασικές ιδιότητες των οµάδων πηλίκων και των Θεωρηµάτων Ισοµορφισµών Οµάδων και στις

Διαβάστε περισσότερα

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1}

bca = e. H 1j = G 2 H 5j = {f G j : f(0) = 1} Αλγεβρα Ι, Χειμερινο Εξαμηνο 2017 18 Ασκησεις που συζητηθηκαν στο φροντιστηριο Το [Α] συμβολίζει το φυλλάδιο ασκήσεων που θα βρείτε στην ιστοσελίδα του μαθήματος επιλέγοντας «Άλλες Ασκήσεις». 1. Πόσες

Διαβάστε περισσότερα

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K =

Α Δ Ι. Παρασκευή 29 Νοεμβρίου 2013 & K = Α Δ Ι Α - Φ 5 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html, https://sites.google.com/site/maths4edu/home/algdom114 Παρασκευή 29 Νοεμβρίου 2013 Ασκηση

Διαβάστε περισσότερα

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac

(a + b) + c = a + (b + c), (ab)c = a(bc) a + b = b + a, ab = ba. a(b + c) = ab + ac Σημειώσεις μαθήματος Μ1212 Γραμμική Άλγεβρα ΙΙ Χρήστος Κουρουνιώτης ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ 2014 Κεφάλαιο 1 Διανυσματικοί Χώροι Στο εισαγωγικό μάθημα Γραμμικής Άλγεβρας ξεκινήσαμε μελετώντας

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi07/asi07.html Παρασκευή 9 Μαίου 07 Για κάθε µετάθεση

Διαβάστε περισσότερα

n! k! (n k)!, = k k 1

n! k! (n k)!, = k k 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n ) τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

a b b < a > < b > < a >.

a b b < a > < b > < a >. Θεωρια Δακτυλιων και Modules Εαρινο Εξαμηνο 2016 17 Διάλεξη 1 Ενότητα 1. Επανάληψη: Προσθετικές ομάδες, δακτύλιοι, αντιμεταθετικοί δακτύλιοι, δακτύλιοι με μοναδιαίο στοιχείο, παραδείγματα. Συμφωνήσαμε

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα.

Δακτύλιοι και Πρότυπα Ασκήσεις 6. Η ύλη των ασκήσεων αυτών είναι η Ενότητα6, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα. Δακτύλιοι και Πρότυπα 0-7 Ασκήσεις Η ύλη των ασκήσεων αυτών είναι η Ενότητα, Εφαρμογές Θεωρημάτων Δομής στη Γραμμική Αλγεβρα Βρείτε τη ρητή κανονική μορφή και μια κανονική μορφή Jorda του M( ) 0 0 Έστω

Διαβάστε περισσότερα

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2,

irr Q,b (x) = x 3 2, irr Q,ω (x) = x 2 + x + 1 irr (Q(ω),b) (x) = irr (Q,b) (x) = x 3 2, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 13 Δεκεμβρίου 2014 Περιεχόμενα 3 Μεταθέσεις και ομάδες Galois 41 3.1 Οι ρίζες

Διαβάστε περισσότερα

f(x) = e x g(y) = log e y f(x 1 ) = f(x) 1 f(x k ) = f(x) k

f(x) = e x g(y) = log e y f(x 1 ) = f(x) 1 f(x k ) = f(x) k 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα ϑα µελετήσουµε απεικονίσεις µεταξύ οµάδων οι οποίες ϑα µας επιτρέψουν τη σύγκριση και την ταξινόµηση διάφορων κλάσεων οµάδων, ως προς τις δοµικές τους ιδιότητες.

Διαβάστε περισσότερα

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a)

Δακτύλιοι και Πρότυπα Ασκήσεις 3. Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος. N ( a) 11 Δακτύλιοι και Πρότυπα 2016-17 Ασκήσεις 3 Η ύλη των ασκήσεων αυτών είναι η Ενότητα3, Ελεύθερα πρότυπα Στις παρακάτω ασκήσεις κάθε δακτύλιος είναι μη τετριμμένος μεταθετικός δακτύλιος 1 Δείξτε ότι το

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 8 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 8 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi06/asi06.html Πέµπτη Απριλίου 06 Ασκηση. Θεωρούµε τα

Διαβάστε περισσότερα

Τρίτη 4 εκεµβρίου m + 4Z

Τρίτη 4 εκεµβρίου m + 4Z ιδασκοντες: Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 6 Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Τρίτη 4 εκεµβρίου 202 Ασκηση. Βρείτε

Διαβάστε περισσότερα

(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc)

(a, b) (c, d) = (a + c, b + d) (a, b) (c, d) = (ac, ad + bc) ΒΑΣΙΚΗ ΑΛΓΕΒΡΑ Χειμερινό Εξάμηνο 2016 Ασκήσεις 1. Δείξτε ότι ο a 1 διαιρεί τον a n 1 για κάθε a Z και κάθε n N. 2. Δίνονται οι ακέραιοι a = 126 και b = 434. (α Υπολογίστε το µκδ(a, b. (β Βρείτε x, y Z

Διαβάστε περισσότερα

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τίτλος Μαθήματος: Αλγεβρικές Δομές Ι Ενότητα: Οµοµορφισµοί Οµάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης Τμήμα: Μαθηματικών 287 13. Οµοµορφισµοί Οµάδων Στην παρούσα ενότητα

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Επιλυση Ασκησεων - Φυλλαδιο 2 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Επιλυση Ασκησεων - Φυλλαδιο 2 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 24 Μαρτίου 2017

Διαβάστε περισσότερα

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή )

Θεωρία Galois. Πρόχειρες σημειώσεις (εκδοχή ) Θεωρία Galos Πρόχειρες σημειώσεις 0- (εκδοχή -7-0) Περιεχόμενα 0 Υπενθυμίσεις και συμπληρώματα Ανάγωγα πολυώνυμα Ανάγωγα πολυώνυμα και σώματα Χαρακτηριστική σώματος Απλές ρίζες πολυωνύμων Ασκήσεις 0 Επεκτάσεις

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων

ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων ΚΕΦΑΛΑΙΟ 3: Συνθήκες Αλυσίδων Μελετάµε εδώ τη συνθήκη της αύξουσας αλυσίδας υποπροτύπων και τη συνθήκη της φθίνουσας αλυσίδας υποπροτύπων. Αυτές συνδέονται µεταξύ τους µε την έννοια της συνθετικής σειράς

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι

ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι ΚΕΦΑΛΑΙΟ 2: Ηµιαπλοί ακτύλιοι Είδαµε στο κύριο θεώρηµα του προηγούµενου κεφαλαίου ότι κάθε δακτύλιος διαίρεσης έχει την ιδιότητα κάθε πρότυπο είναι ευθύ άθροισµα απλών προτύπων. Εδώ θα χαρακτηρίσουµε όλους

Διαβάστε περισσότερα

Ε Μέχρι 18 Μαΐου 2015.

Ε Μέχρι 18 Μαΐου 2015. Ε Μέχρι 18 Μαΐου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες άρα

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Ασκησεις - Φυλλαδιο 7 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 14 εκεµβρίου 2018 Ασκηση

Διαβάστε περισσότερα

= k. n! k! (n k)!, k=0

= k. n! k! (n k)!, k=0 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Συμπληρωματικές Ασκήσεις Χειμερινό Εξάμηνο 2015 Χρήστος Α Αθανασιάδης Συμβολίζουμε με O το μηδενικό πίνακα καταλλήλων διαστάσεων, με I (ορισμένες φορές, με I n τον n n ταυτοτικό πίνακα,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες

ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες ΚΕΦΑΛΑΙΟ 6: Κεντρικές Απλές Άλγεβρες Χρησιµοποιώντας τανυστικά γινόµενα και εφαρµόζοντας το θεώρηµα των Wedderbur-rt ( 33) θα αποδείξουµε δύο θεµελιώδη θεωρήµατα που αφορούν κεντρικές απλές άλγεβρες *

Διαβάστε περισσότερα

Περιεχόμενα. Πρόλογος 3

Περιεχόμενα. Πρόλογος 3 Πρόλογος Η Γραμμική Άλγεβρα είναι ένα σημαντικό συστατικό στο πρόγραμμα σπουδών, όχι μόνο των Μαθηματικών, αλλά και άλλων τμημάτων, όπως είναι το τμήμα Φυσικής, Χημείας, των τμημάτων του Πολυτεχνείου,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 5 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδες Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2014/asi2014.html, https://sites.google.com/site/maths4edu/home/algdom114

Διαβάστε περισσότερα

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά

Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες και 30 λεπτά Αριστοτελειο Πανεπιστηµιο Θεσσαλονικης Τµηµα Μαθηµατικων Αλγεβρικές οµές ΙΙ 1. Εστω ότι R Z 3 [x]. Τελική Εξέταση 10 Φεβρουαρίου 2017 ιάρκεια εξέτασης 2 ώρες 30 λεπτά (αʹ) Να αποδείξετε ότι ο R είναι περιοχή

Διαβάστε περισσότερα

1 Ασκήσεις. Άσκηση 1.1 Να επιλυθούν τα παρακάτω γραμμικά συστήματα.

1 Ασκήσεις. Άσκηση 1.1 Να επιλυθούν τα παρακάτω γραμμικά συστήματα. 1 Ασκήσεις Άσκηση 1.1 Να επιλυθούν τα παρακάτω γραμμικά συστήματα. x 1 2x 2 + x =1 x 1 + x 2 x =0 (i) x 1 + x 2 x =2 (ii) 2x 1 2x 2 + x = 2x 1 x 2 + x =1 x 1 4x 2 +2x =4 Άσκηση 1.2 Να βρεθεί η γενική λύση

Διαβάστε περισσότερα

Ε Μέχρι 31 Μαρτίου 2015.

Ε Μέχρι 31 Μαρτίου 2015. Ε Μέχρι 31 Μαρτίου 2015. 1 Αντικείμενα: δακτύλιοι Fraleigh, 4.1. Ορισμός έννοιας «δακτυλίου». Χαρακτηρισμοί δακτυλίων και στοιχείων αυτών: Δακτύλιος R Στοιχεία δακτυλίου R / (= δεν έχει μηδενοδιαιρέτες

Διαβάστε περισσότερα

a pn 1 = 1 a pn = a a pn a = 0,

a pn 1 = 1 a pn = a a pn a = 0, Θεωρία Galois Θεοδώρα Θεοχαρη-Αποστολιδη Χαρά Χαραλαμπους Οι σημειωσεις αυτες θα συμπληρωνονται κατα τη διαρκεια των μαθηματων. 14 Ιανουαρίου 2015 Θ. Θεοχάρη-Αποστολίδη, Χ. Χαραλάμπους, Θεωρία Galois 60

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ Ι Τµηµα Β (ΑΡΤΙΟΙ) Προτεινοµενες Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/linearalgebrai/lai2018/lai2018.html Παρασκευή 23 Νοεµβρίου

Διαβάστε περισσότερα

Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p.

Κεφάλαιο 9. Οµάδες συγκεκριµένης τάξης. 9.1 Οµάδες τάξης pq. Z p 2 και Z p Z p. Κεφάλαιο 9 Οµάδες συγκεκριµένης τάξης Στο κεφάλαιο αυτό ϑα εφαρµόσουµε τη ϑεωρία που αναπτύχθηκε στα προηγούµενα κεφάλαια για να περιγράψουµε οµάδες τάξης pq, όπου p, q είναι διακεκριµένοι πρώτοι αριθµοί,

Διαβάστε περισσότερα

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών

Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Κεφάλαιο 6 Οµάδες Πηλίκα και τα Θεωρήµατα Ισοµορφισµών Στο παρόν Κεφάλαιο ϑα µελετήσουµε τις ϐασικές ιδιότητες της οµάδας πηλίκο µιας οµάδας ως προς µια κανονική υποµάδα, ϑα αποδείξουµε τα ϐασικά ϑεωρήµατα

Διαβάστε περισσότερα

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E.

Ι. ΠΡΑΞΕΙΣ. Ορισµός 2 A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ. Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Ι. ΠΡΑΞΕΙΣ A. ΕΣΩΤΕΡΙΚΗ ΠΡΑΞΗ Ορισµός Έστω E ένα µη κενό σύνολο. Κάθε απεικόνιση f: E x E E λέγεται εσωτερική πράξη επί του E. Παραδείγµατα:. Η ισότητα x y = x y είναι µια πράξη επί του *. 2. Η ισότητα

Διαβάστε περισσότερα

Κεφάλαιο 5. ράση οµάδας. 5.1 Ορισµοί - Βασικές έννοιες. i. g 1 (g 2 α) = (g 1 g 2 ) α, g 1, g 2 G, α A

Κεφάλαιο 5. ράση οµάδας. 5.1 Ορισµοί - Βασικές έννοιες. i. g 1 (g 2 α) = (g 1 g 2 ) α, g 1, g 2 G, α A Κεφάλαιο 5 ράση οµάδας Από τον ορισµό της οµάδας συµµετρίας, S(X), ενός συνόλου Χ και ιδιαίτερα όταν το Χ είναι ένα γεωµετρικό σχήµα στον διδιάστατο ή τριδιάστατο χώρο διαπιστώνουµε ότι η οµάδα S(X) «δρα»

Διαβάστε περισσότερα

Παρασκευή 6 Δεκεμβρίου 2013

Παρασκευή 6 Δεκεμβρίου 2013 Α Δ Ι Α - Φ 6 Δ : Ν. Μαρμαρίδης - Α. Μπεληγιάννης Ι Μ : http://users.uoi.gr/abeligia/algebraicstructuresi/asi20/asi20.html, https://sites.google.com/site/mathsedu/home/algdom Παρασκευή 6 Δεκεμβρίου 20

Διαβάστε περισσότερα

< a 42 >=< a 54 > < a 28 >=< a 36 >

< a 42 >=< a 54 > < a 28 >=< a 36 > Ασκήσεις Βασικής Άλγεβρας και Λύσεις τους 4 Δεκεμβρίου 2013 1 Ασκήσεις και Λύσεις. 2013-14 1. (αʹ Εστω m, n δύο φυσικοί αριθμοί, τέτοιοι ώστε M K (m, n + 5 = MK (m + 5, n = 1. Αποδείξτε ότι MK (mn, m +

Διαβάστε περισσότερα

= s 2m 1 + s 1 m 2 s 1 s 2

= s 2m 1 + s 1 m 2 s 1 s 2 ΑΝΤΙΜΕΤΑΘΕΤΙΚΗ ΑΛΓΕΒΡΑ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ, 203 ΣΗΜΕΙΩΣΕΙΣ ΧΑΡΑ ΧΑΡΑΛΑΜΠΟΥΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ, ΑΠΘ Οι σηµειώσεις αυτές είναι ϐασισµένες στις διαλέξεις του µαθήµατος. Καταγράϕηκαν αρχικά ηλεκτρονικά από τη κ.

Διαβάστε περισσότερα

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1

ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ (ΠΕΡΙΤΤΟΙ) Ασκησεις - Φυλλαδιο 1 ΓΡΑΜΜΙΚΗ ΑΛΓΕΒΡΑ ΙΙ Τµηµα Β (ΠΕΡΙΤΤΟΙ Ασκησεις - Φυλλαδιο 1 ιδασκων: Α Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://usersuoigr/abeligia/linearalgebraii/laii18/laii18html Παρασκευή 9 Μαρτίου 18 Ασκηση 1 Θεωρούµε

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ

ΚΕΦΑΛΑΙΟ 5: ΓΡΑΜΜΙΚΕΣ ΑΠΕΙΚΟΝΙΣΕΙΣ ΚΕΦΑΛΑΙΟ 5: 5. ΟΡΙΣΜΟΙ Έστω U και V δύο διανυσματικοί χώροι. Μια συνάρτηση F : U V θα λέγεται γραμμική απεικόνιση (ή ομομορφισμός, ή απλά μορφισμός εάν ικανοποιεί τις συνθήκες (i F ( u + = u + για κάθε

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 31 Μαρτίου 2016 Υπενθυµίζουµε

Διαβάστε περισσότερα

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz.

f : G G G = 7 12 = 5 / N. x 2 +1 (x y) z = (x+y+xy) z = x+y+xy+z+(x+y+xy)z = x+y+z+xy+yz+xz+xyz. Σ.Παπαδόπουλος 1 1 Βασικές έννοιες ομάδας Εστω G ένα σύνολο με G. Μία πράξη στο G είναι μία συνάρτηση f : G G G. Αντί f(x, y) γράφουμε x y και αν δεν υπάρχει περίπτωση σύγχυσης xy. Είναι φανερό ότι σε

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 11: Αριθμητική υπολοίπων-δυνάμεις Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι

ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι ΚΕΦΑΛΑΙΟ 7: Αναπαραστάσεις Πεπερασμένων Ομάδων Ι Χρησιμοποιώντας το θεώρημα του Weddebu για ημιαπλούς δακτυλίους, αναπτύσσουμε εδώ τις πρώτες προτάσεις από τη θεωρία των αναπαραστάσεων και αρακτήρων πεπερασμένων

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Το Θεώρημα Jordan Hölder. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Το Θεώρημα Jordan Hölder Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 3 Το Θεώρημα Jordan Hölder 31 Προκαταρκτικές Έννοιες 311 Υποορθόθετες

Διαβάστε περισσότερα

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια.

Κεφάλαιο 1. Πρότυπα. Στο κεφάλαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύλιο που θα παίξει σηµαντικό ρόλο στα επόµενα κεφάλαια. Κεφάαιο Πρότυπα Στο κεφάαιο αυτό εισαγάγουµε την έννοια του προτύπου πάνω από δακτύιο που θα παίξει σηµαντικό ρόο στα επόµενα κεφάαια Στις σηµειώσεις αυτές όοι οι δακτύιοι περιέχουν µοναδιαίο στοιχείο

Διαβάστε περισσότερα

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης

Γραµµικη Αλγεβρα Ι. Ακαδηµαϊκο Ετος Βοηθος Ασκησεων: Χ. Ψαρουδάκης Γραµµικη Αλγεβρα Ι Ακαδηµαϊκο Ετος 2011-2012 ιδασκοντες: Ν Μαρµαρίδης - Α Μπεληγιάννης Βοηθος Ασκησεων: Χ Ψαρουδάκης Ιστοσελιδα Μαθηµατος : http://wwwmathuoigr/ abeligia/linearalgebrai/laihtml 21-2 - 2012

Διαβάστε περισσότερα

Πρόλογος 3. Εισαγωγή 7

Πρόλογος 3. Εισαγωγή 7 Πρόλογος Η σύγχρονη Άλγεβρα είναι ένα σημαντικό και ουσιαστικό κομμάτι της μαθηματικής εκπαίδευσης σε όλα τα πανεπιστήμια του κόσμου Αυτό δεν οφείλεται μόνο στο γεγονός ότι πολλοί άλλοι κλάδοι των μαθηματικών,

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 9 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 9 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2016/asi2016.html Πέµπτη 12 Μαίου 2016 Ασκηση 1. Εστω

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά ΙΙ

Εφαρμοσμένα Μαθηματικά ΙΙ Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας Εφαρμοσμένα Μαθηματικά ΙΙ Γραμμικοί Μετασχηματισμοί Ιωάννης Λυχναρόπουλος Μαθηματικός, MSc, PhD Γραμμικοί Μετασχηματισμοί Γραμμικός Μετασχηματισμός ή

Διαβάστε περισσότερα

Υπολογιστικά & Διακριτά Μαθηματικά

Υπολογιστικά & Διακριτά Μαθηματικά Υπολογιστικά & Διακριτά Μαθηματικά Ενότητα 8: Σχέσεις - Πράξεις Δομές Στεφανίδης Γεώργιος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 4 1 2 ιδασκοντες: Ν. Μαρµαρίδης - Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi.html Πέµπτη 27 εκεµβρίου 2012 Ασκηση

Διαβάστε περισσότερα

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1,

0 + a = a + 0 = a, a k, a + ( a) = ( a) + a = 0, 1 a = a 1 = a, a k, a a 1 = a 1 a = 1, I ΠΙΝΑΚΕΣ 11 Σώμα 111 Ορισμός: Ενα σύνολο k εφοδιασμένο με δύο πράξεις + και ονομάζεται σώμα αν ικανοποιούνται οι παρακάτω ιδιότητες: (Α (α (Προσεταιριστική ιδιότητα της πρόσθεσης (a + b + c = a + (b +

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών

Τίτλος Μαθήματος: Θεωρία Ομάδων. Ενότητα: Επεκτάσεις Ομάδων. Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης. Τμήμα: Μαθηματικών Τίτλος Μαθήματος: Θεωρία Ομάδων Ενότητα: Επεκτάσεις Ομάδων Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης Τμήμα: Μαθηματικών Κεφάλαιο 6 Επεκτάσεις Ομάδων 6.1 Προκαταρκτικές Έννοιες Σύμφωνα με το Θεώρημα 4.2.4

Διαβάστε περισσότερα

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4

ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι. Ασκησεις - Φυλλαδιο 4 ΑΛΓΕΒΡΙΚΕΣ ΟΜΕΣ Ι Τµηµα Β Ασκησεις - Φυλλαδιο 4 ιδασκων: Α. Μπεληγιάννης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/algebraicstructuresi/asi2017/asi2017.html Παρασκευή 7 Απριλίου 2017 Ασκηση 1.

Διαβάστε περισσότερα