Μηχανές Πεπερασµένων Καταστάσεων



Σχετικά έγγραφα
Στοιχεία Θεωρίας Υπολογισµού (1): Τυπικές Γλώσσες, Γραµµατικές

Ποιές οι θεµελιώδεις δυνατότητες και ποιοί οι εγγενείς περιορισµοί των υπολογιστών ; Τί µπορούµε και τί δε µπορούµε να υπολογίσουµε (και γιατί);

Θεωρία Υπολογισμού και Πολυπλοκότητα Κανονικές Γλώσσες (1)

Στοιχεία Θεωρίας Υπολογισµού (2): Πεπερασµένα Αυτόµατα, Κανονικές Εκφράσεις

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 3: Ντετερμινιστικά Πεπερασμένα Αυτόματα (DFA)

Σύνοψη Προηγούµενου. Κανονικές Γλώσσες (1) Προβλήµατα και Γλώσσες. Σε αυτό το µάθηµα. ιαδικαστικά του Μαθήµατος.

ΠΛΗ30 ΕΝΟΤΗΤΑ 3: ΚΑΝΟΝΙΚΕΣ ΓΛΩΣΣΕΣ. Μάθηµα 3.2: ηµήτρης Ψούνης

Γενικές Παρατηρήσεις. Μη Κανονικές Γλώσσες - Χωρίς Συµφραζόµενα (1) Το Λήµµα της Αντλησης. Χρήση του Λήµµατος Αντλησης.

Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών 6

Γραµµατικές για Κανονικές Γλώσσες

Μοντελοποίηση Υπολογισμού. Γραμματικές Πεπερασμένα Αυτόματα Κανονικές Εκφράσεις

Αυτόματα. Παράδειγμα: πωλητής καφέ (iii) Παράδειγμα: πωλητής καφέ (iv) Εισαγωγή στην Επιστήμη των Υπολογιστών. Προδιαγραφές

Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό, όπως εικόνες, που υπόκειται σε άλλου τύ

Συνεκτικά σύνολα. R είναι συνεκτικά σύνολα.

Εισαγωγή στην Επιστήμη των Υπολογιστών

Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» (ε) Κάθε συγκλίνουσα ακολουθία άρρητων αριθµών συγκλίνει σε άρρητο αριθµό.

HY118- ιακριτά Μαθηµατικά. Σχέσεις. Σχέσεις ισοδυναµίας. 15 Σχέσεις

a = a a Z n. a = a mod n.

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2): Αυτόµατα Στοίβας. Παραδείγµατα Σχεδιασµού CFG. Παράδειγµα 1.

Κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Πολυγραφήµατα (Multigraphs)

Ενότητα: Πράξεις επί Συνόλων και Σώµατα Αριθµών

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

Στοιχεία Θεωρίας Γραφηµάτων (1)

Ορισµός. Παρατηρήσεις. Σχόλιο

771 Η - Θεωρία Υπολογισµών και Αλγορίθµων

3 η Θεµατική Ενότητα : Απλοποίηση Συναρτήσεων Boole. Επιµέλεια διαφανειών: Χρ. Καβουσιανός

11 Το ολοκλήρωµα Riemann

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

Συνεχείς συναρτήσεις πολλών µεταβλητών. ε > υπάρχει ( ) ( )

Η δυαδική σχέση M ( «παράγει σε ένα βήμα» ) ορίζεται ως εξής: (q, w) M (q, w ), αν και μόνο αν w = σw, για κάποιο σ Σ

ΙΙ ιαφορικός Λογισµός πολλών µεταβλητών. ιαφόριση συναρτήσεων πολλών µεταβλητών

ΙΑΝΥΣΜΑΤΑ ΘΕΩΡΙΑ ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ. Τι ονοµάζουµε διάνυσµα; αλφάβητου επιγραµµισµένα µε βέλος. για παράδειγµα, Τι ονοµάζουµε µέτρο διανύσµατος;

3 Αναδροµή και Επαγωγή

Κεφάλαιο 4. Ευθέα γινόµενα οµάδων. 4.1 Ευθύ εξωτερικό γινόµενο οµάδων. i 1 G 1 G 1 G 2, g 1 (g 1, e 2 ), (4.1.1)

Αλγεβρικες οµες Ι Ασκησεις - Φυλλαδιο 2

3.1 εκαδικό και υαδικό

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

Σχόλιο. Παρατηρήσεις. Παρατηρήσεις. p q p. , p1 p2

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 4: Μη Ντετερμινιστικά (Αντιαιτιοκρατικά) Πεπερασμένα Αυτόματα (ΝFA)

Γραµµική Αλγεβρα Ι. Ενότητα: ιανυσµατικοί χώροι. Ευάγγελος Ράπτης. Τµήµα Μαθηµατικών

Σύνοψη Προηγούµενου. Γλώσσες χωρίς Συµφραζόµενα (2) Ισοδυναµία CFG και PDA. Σε αυτό το µάθηµα. Αυτόµατα Στοίβας Pushdown Automata

Αριθμήσιμα σύνολα. Μαθηματικά Πληροφορικής 5ο Μάθημα. Παραδείγματα αριθμήσιμων συνόλων. Οι ρητοί αριθμοί

όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.

Σχέση Μερικής ιάταξης Σχέση Μερικής ιάταξης (ή µερική διάταξη): ανακλαστική, αντισυµµετρική, και µεταβατική. Αριθµοί: α β (αλλά όχι α < β), α β, Σύνολ

Κανόνες παραγώγισης ( )

5.1 Θεωρητική εισαγωγή

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Τυπική µορφή συστήµατος 2 ας τάξης

Θεωρία Υπολογισμού και Πολυπλοκότητα

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ. Λυσεις Ασκησεων - Φυλλαδιο 2

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΠΟΛΥΩΝΥΜΙΚΕΣ - ΡΗΤΕΣ ΑΝΙΣΩΣΕΙΣ P x = x+ 2 4 x x 3x x x x 3x

CSC 314: Switching Theory

Ισοδυναμία Αιτ. Και μη Αιτ. Π.Α.

Η NTM αποδέχεται αν µονοπάτι στο δέντρο που οδηγεί σε αποδοχή.

5. (Λειτουργικά) Δομικά Διαγράμματα

HEAD INPUT. q0 q1 CONTROL UNIT

Ισοδυναµία τοπολογιών βρόχων.

1 Ορισµός ακολουθίας πραγµατικών αριθµών

HY118- ιακριτά Μαθηµατικά

Εισαγωγή στην Επιστήμη των Υπολογιστών

Θέµατα και απαντήσεις 1 στα «Σύνολα και Αριθµοί» Εξεταστική Ιανουαρίου 2012 ιδάξας Χ. Κορνάρος.

Εισαγωγή στην Τοπολογία

14 Εφαρµογές των ολοκληρωµάτων

Υπολογιστικά & Διακριτά Μαθηματικά

Όρια συναρτήσεων. ε > υπάρχει ( ) { } = ± ορίζονται αναλόγως. Η διατύπωση αυτών των ορισµών αφήνεται ως άσκηση. x y = +. = και για κάθε (, ) ( 0,0)

Ύλη Λογικού Σχεδιασµού Ι

ΚΕΦΑΛΑΙΟ 3 ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΕΩΝ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Καµπύλες στον R. σ τελικό σηµείο της σ. Το σ. σ =. Η σ λέγεται διαφορίσιµη ( αντιστοίχως

5 Σύγκλιση σε τοπολογικούς χώρους

5.1 ΣΥΝΟΛΑ. 2. Παράσταση συνόλου. 3. Εποπτική παράσταση συνόλου : Γίνεται µε το διάγραµµα Venn, δηλαδή µε

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 15: Διαγνωσιμότητα (Επιλυσιμότητα) ΙΙ

HY118- ιακριτά Μαθηµατικά. Παράδειγµα άµεσης απόδειξης. Μέθοδοι αποδείξεως για προτάσεις της µορφής εάν-τότε Αποδείξεις

ΣΥΝΑΡΤΗΣΕΙΣ I. ΣΥΝΟΛΑ

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

f(t) = (1 t)a + tb. f(n) =

Ισοδυναµίες, Μερικές ιατάξεις

Κεφάλαιο 5 Οι χώροι. Περιεχόµενα 5.1 Ο Χώρος. 5.3 Ο Χώρος C Βάσεις Το Σύνηθες Εσωτερικό Γινόµενο Ασκήσεις

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Υπολογισµός διπλών ολοκληρωµάτων µε διαδοχική ολοκλήρωση

Λύσεις Διαγωνισμάτος 1 Ενότητα: Ακολουθίες-Σειρές

Υλοποιήσεις Ψηφιακών Φίλτρων

x - 1, x < 1 f(x) = x - x + 3, x

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Μοντελοποίηση υπολογισμού. Θέματα Υπολογισμού στον Πολιτισμό Πεπερασμένα αυτόματα

Κεφάλαιο 8. Η οµάδα S n. 8.1 Βασικές ιδιότητες της S n

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Θεωρία Υπολογισμού. Ενότητα 8 : Αυτόματα NFA - DFA. Αλέξανδρος Τζάλλας

( t) όπου το * αντιστοιχεί σε συνέλιξη και. (t 2) * x 2

Αλγόριθµοι και Πολυπλοκότητα

Γενικό πλάνο. Μαθηµατικά για Πληροφορική. Παράδειγµα αναδροµικού ορισµού. οµική επαγωγή ΠΑΡΑ ΕΙΓΜΑ. 3ο Μάθηµα

Κανονικές Γλώσσες. ιδάσκοντες: Φ. Αφράτη,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

q={(1+2)/2}=1 A(1,2)= MERGE( 4, 6 ) = 4 6 q=[(3+4)/2]=3 A(1,4)= MERGE( 4 6, 5 8 ) = q=[(5+6)/2]=5 A(5,6)= MERGE( 2, 9 ) = 2 9

ΘΕΩΡΙΑ ΥΠΟΛΟΓΙΣΜΩΝ ΚΑΙ ΑΥΤΟΜΑΤΩΝ

Transcript:

Μηχανές Επεξεργασίας Πληροφοριών Μηχανές Πεπερασµένων Καταστάσεων Είναι µηχανές που δέχονται ένα σύνολο από σήµατα εισόδου και παράγουν ένα αντίστοιχο σύνολο σηµάτων εξόδου Σήµατα Εισόδου Μηχανή Επεξεργασίας Πληροφοριών Σήµατα Εξόδου 2 Παραδείγµατα Μηχανών Επεξεργασίας Πληροφοριών Λάµπα Γραφείου Σήµα εισόδου: Θέση ιακόπτη Σήµα Εξόδου: Παραγωγή φωτός Παραδείγµατα Μηχανών Επεξεργασίας Πληροφοριών Αθροιστής δύο δεκαδικών αριθµών Σήµατα Εισόδου: Ακολουθίες 2 αριθµών Σήµα Εξόδου: Άθροισµα των 2 αριθµών Π.χ Ανοικτός Κλειστός Ανοικτός Κλειστός Ανοικτός... Φως Σκοτάδι Φως Σκοτάδι Φως... Π.χ. 3 5 3 3 9 2... 4 4 6 4 5 5... Είσοδος 7 9 6 4 7 4 7... Έξοδος 3 4

Παραδείγµατα Μηχανών Επεξεργασίας Πληροφοριών Αυτόµατος Πωλητής Σήµα Εισόδου: Κέρµα, 2 ή 5 λεπτών Σήµα Εξόδου: Πακέτο µε τσίχλες αξίας 6 λεπτών ή Π.χ Είσοδος 2 2 2 5 5 5... Έξοδος... Όπου : : τσίχλες Θυµάται τις προηγούµενες καταστάσεις (µέχρι κάποιο σηµείο) Κατάσταση Μηχανής Κατηγορίες Μηχανές µε µνήµη Μηχανές χωρίς µνήµη Κατάσταση Μηχανής Γεγονότα του παρελθόντος περιγράφονται από τη κατάσταση της µηχανής Η κατάσταση αποτελεί µια περίληψη του παρελθόντος της µηχανής Μια µηχανή µπορεί να έχει πεπερασµένο ή άπειρο αριθµό καταστάσεων Θα ασχοληθούµε µόνο µε τις δεύτερες (πεπερασµένων καταστάσεων) 5 6 Πίνακας συµπεριφοράς Αυτόµατης Μηχανής Συνολικό Ποσό 2 3 4 5 6 2 3 4 5 6 Είσοδος 2 2 3 4 5 6 6 2 5 5 6 6 6 6 6 6 Έξοδος τσίχλες Μηχανές Πεπερασµένων Καταστάσεων Μία µηχανή πεπερασµένων καταστάσεων καθορίζεται από:. Πεπερασµένο σύνολο καταστάσεων S={s,s,s 2,..,s n } 2. Ένα ειδικό στοιχείο του S, s o, την αρχική κατάσταση 3. Ένα πεπερασµένο σύνολο από γράµµατα εισόδου I={i,i 2,i 3, } 4. Ένα πεπερασµένο σύνολο από γράµµατα εξόδου Ο={ο,ο 2,ο 3,...} 5. Μία συνάρτηση µετάβασης f:s x I S 6. Μία συνάρτηση εξόδου g:s O (ή S x I Ο) Κατάσταση a Είσοδος b s o s s 2 s 5 s s 2 s 3 s 2 s 3 s 4 s 3 s 4 s 5 s 4 s 5 s 5 S 6 s s 2 S 5 c Έξοδος 7 8

Κατευθυνόµενο Γράφηµα Παραδείγµατα Αν I={a,b}, O={,} και S={σ ο,σ }. Καθορίστε τις συναρτήσεις f:s x I S (µετάβασης) και g:s x I Ο (εξόδου) από τις τιµές του ακόλουθου πίνακα: S I σ ο σ a σ ο σ f b σ σ a g b f(σ ο,a)=σ ο f(σ ο,b)=σ f(σ,a)=σ f(σ,b)=σ g(σ ο,a)= g(σ ο,b)= g(σ,a)= g(σ,b)= 9 Αυτόµατα πεπερασµένων καταστάσεων Ειδική κατηγορία των µηχανών πεπερασµένων καταστάσεων, όπου: Το σύνολο των γραµµάτων εξόδου είναι Ο={,} και Η παρούσα κατάσταση καθορίζει επακριβώς την προηγούµενη τιµή εξόδου Παράδειγµα Φτιάξτε το κατευθυνόµενο διάγραµµα της µηχανής πεπερασµένων καταστάσεων του διπλανού πίνακα και δείξτε ότι πρόκειται για ένα αυτόµατο πεπερασµένων καταστάσεων f g S I a b a b σ ο σ σ σ σ 2 σ σ 2 σ 2 σ Προηγούµενη Έξοδος : Κατάσταση Αποδοχής 2

Παράδειγµα 2 Ακολουθίες γραµµάτων και ΑΠΚ Σχεδιάστε το κατευθυνόµενο διάγραµµα του αυτόµατου πεπερασµένων καταστάσεων σαν διάγραµµα µηχανής πεπερασµένων καταστάσεων Αν µια ακολουθία γραµµάτων δοθεί σαν είσοδος σε ένα αυτόµατο πεπερασµένων καταστάσεων, θα φτάσουµε σε µια κατάσταση αποδοχής ή όχι Αν φτάσουµε σε κατάσταση αποδοχής θα λέµε ότι η ακολουθία έγινε αποδεκτή από το ΑΠΚ 3 4 Παράδειγµα Παράδειγµα Είναι η ακολουθία χαρακτήρων abaa αποδεκτή από το ΑΠΚ του παραδείγµατος ; Σχεδιάστε ένα ΑΠΚ το οποίο δέχεται µόνο εκείνες τις ακολουθίες γραµµάτων του {a,b} οι οποίες δεν περιέχουν καθόλου a Θα χρησιµοποιήσουµε 2 καταστάσεις Α: Αν βρεθεί κάποιο a NA: Αν δε βρεθεί a Η ακολουθία abbabba ; 5 6

Παράδειγµα Ισοδύναµες Μηχανές Σχεδιάστε ένα ΑΠΚ που να δέχεται εκείνες τις ακολουθίες γραµµάτων που περιέχουν περιττό αριθµό από a Χρησιµοποιούµε 2 καταστάσεις: Ε: Αν βρεθεί άρτιος αριθµός από a O: Αν βρεθεί περιττός αριθµός από a Αν δύο µηχανές ξεκινούν από την ίδια αρχική κατάσταση, δέχονται την ίδια ακολουθία εισόδου και παράγουν την ίδια ακολουθία εξόδου θα λέµε ότι είναι ισοδύναµες Πρέπει να ισχύει για κάθε ακολουθία εισόδου Μπορεί να έχουν διαφορετική εσωτερική δοµή 7 8 Παράδειγµα Κατάσταση A F G H Είσοδος F G H 2 F H Έξοδος Κατάσταση A Είσοδος 2 Έξοδος Για την ακολουθία εισόδου 222222 οι παραπάνω µηχανές παράγουν την ίδια ακολουθία εξόδου Για αποδείξουµε όµως ότι οι µηχανές είναι ισοδύναµες θα έπρεπε να κάνουµε τον παραπάνω έλεγχο για κάθε ακολουθία εισόδου, κάτι που είναι πρακτικά αδύνατο Ισοδύναµες καταστάσεις ύο καταστάσεις s i και s j θα λέγονται ισοδύναµες αν για οποιαδήποτε ακολουθία εισόδου η µηχανή παράγει την ίδια ακολουθία εξόδου ανεξάρτητα από ποια κατάσταση ξεκινάει Σε 2 ισοδύναµες καταστάσεις µπορούµε αν αφαιρέσουµε τη µία κατευθύνοντας στην άλλη όλες τις µεταβάσεις που κατέληγαν στη πρώτη Στο προηγούµενο παράδειγµα F ηµιουργούµε µια λιγότερα λεπτοµερή περίληψη G της ιστορίας της µηχανής H Είναι ζεύγη ισοδυνάµων καταστάσεων 9 2

Ισοδύναµες καταστάσεις ύο καταστάσεις είναι -ισοδύναµες αν έχουν την ίδια έξοδο ύο καταστάσεις είναι -ισοδύναµες αν έχουν την ίδια έξοδο και αν για κάθε γράµµα εισόδου οι ακόλουθες καταστάσεις τους είναι - ισοδύναµες.. ύο καταστάσεις είναι k-ισοδύναµες αν έχουν την ίδια έξοδο και αν για κάθε γράµµα εισόδου οι ακόλουθες καταστάσεις τους είναι (k-)- ισοδύναµες ύο καταστάσεις είναι ισοδύναµες όταν είναι k-ισοδύναµες για κάθε k ιαµέριση συνόλου καταστάσεων Αν οι s i και s j είναι k-ισοδύναµες και s i και s h είναι k- ισοδύναµες, τότε s j και s h είναι k-ισοδύναµες Ορίζεται µια σχέση ισοδυναµίας επί του συνόλου των καταστάσεων διαµέριση του συνόλου Π.χ. π ο = { AFGH} π = { AFGH} π 2 = { AFGH} Θεώρηµα: ύο καταστάσεις βρίσκονται στο ίδιο σύµπλοκο στην π k αν και µόνο αν είναι στο ίδιο σύµπλοκο στην π k- και για οποιοδήποτε γράµµα εισόδου, οι ακόλουθες καταστάσεις τους είναι στο ίδιο σύµπλοκο στην π k- Παρατήρηση: Αν η π k είναι ίση µε την π k-, τότε η π m είναι ίση µε την π k- για όλα τα m k. Στο σηµείοαυτόηδιαδικασίακατασκευήςσταµατάει. 2 22 Γλώσσες & Γραµµατική Παράδειγµα Αν Α είναι ένα πεπερασµένο σύνολο, τότε µία τυπική γλώσσα L πάνω στο A είναι ένα υποσύνολο του A * (του συνόλου όλων των ακολουθιών του A) π.χ. Αν Α={a,b} τότε το σύνολο όλων των ακολουθιών του Α που περιέχουν περιττό αριθµό a είναι µια γλώσσα στο A. Γραµµατική δοµής φράσεως Ένα σύνολο τερµατικών συµβόλων Τ Ένα σύνολο µη-τερµατικών συµβόλων Ν Ένα σύνολο παραγωγών P Ένα αρχικό σύµβολο σєν G=(T,N,P,σ) Μη Τερµατικά σύµβολα Ν={σ,S} Τερµατικά Σύµβολα Τ={a,b} Παραγωγές P={σ bσ, σ as, S bs, S b} Γραµµατική G=(N,T,P,σ) σ bσ bbσ bbbσ b m as b m abs b m ab n 23 24

Μηχανές Πεπερασµένων Καταστάσεων & Γλώσσες Τα γράµµατα εισόδου γίνονται τα τερµατικά σύµβολα Οι καταστάσεις γίνονται τα µη τερµατικά σύµβολα Τα τµήµατα των κατευθυνόµενων γραφηµάτων γίνονται οι παραγωγές Αν υπάρχει ένα τµήµα µε επιγραφή x από την S στην S γράφουµε S xs Παράδειγµα Τότε: Μη τερµατικά σύµβολα Ν={Ε,Ο} ΑΠΚ που αποδέχεται µόνο τις ακολουθίες µε περιττό αριθµό a Επιπλέον για κάθε κατάσταση αποδοχής γράφουµε την παραγωγή S λ Τερµατικά Σύµβολα Τ={a,b} Παραγωγές P={ b, ao, O a, O bo, O λ} Αρχικό σύµβολο H γραµµατική G=(N,T,P,) δηµιουργεί τη γλώσσα L(G) που είναι το ίδιο σύνολο ακολουθιών µε εκείνο που γίνονται αποδεκτές από το ΑΠΚ 25 26 Παράδειγµα (αντίστροφο) Έστω η γραµµατική Τ={a,b}, N={σ, } µε παραγωγές σ bσ, σ a, b, b Και αρχικό σύµβολο σ Μη αιτιοκρατικό αυτόµατο πεπερασµένων καταστάσεων Η παραγωγή b είναι ισοδύναµη µε τιςδύοπαραγωγές bf και F λ Η παραγωγή F λ δηλώνειότιηκατάστασηf είναι κατάσταση αποδοχής Τα µη τερµατικά σύµβολα γίνονται οι καταστάσεις της µηχανής πεπερασµένων καταστάσεων µε αρχική κατάσταση τη σ. Για κάθε παραγωγή φτιάχνουµε µια γραµµή στο κατευθυνόµενο γράφηµα Υπάρχουν 2 τµήµατα µε την εγγραφή b από την κατάσταση. Η ακόλουθη ΜΠΚ χαρακτηρίζεται σαν µη αιτιοκρατικό αυτόµατο πεπερασµένων καταστάσεων 27 28

Μη αιτιοκρατικά αυτόµατα Μη αιτιοκρατικά αυτόµατα και ακολουθίες χαρακτήρων Αυτόµατο Α={Ι,S,f,σ,A} Ι={α,b} S={σ,,F} A={F} (Σύνολο καταστάσεων αποδοχής) Συνάρτηση Μετάβασης f: I S σ F α {} b {σ} {,F} Μία ακολουθία γραµµάτων θα λέµε ότι είναι αποδεκτή από ένα µη αιτιοκρατικό αυτόµατο αν υπάρχει µια τουλάχιστον διαδροµή στο κατευθυνόµενο γράφηµα που να οδηγεί σε κατάσταση αποδοχής Η ακολουθία χαρακτήρων bbαbb είναι αποδεκτή από το αυτόµατο γιατί η διαδροµή (σ,σ,σ,,,f) οδηγεί σε κατάσταση αποδοχής Προσέξτε ότι υπάρχει ακόµη µία διαδροµή, η (σ,σ,σ,,,) που αναπαριστά την ίδια ακολουθία γραµµάτων, χωρίς να οδηγεί σε κατάσταση αποδοχής 29 3 Αιτιοκρατικό αυτόµατο ισοδύναµο του µηαιτιοκρατικού S={σ,,F} Καταστάσεις του αιτιοκρατικού είναι όλα τα υποσύνολα του S:, {σ}, {}, {F}, {σ,}, {σ,f}, {,F}, {σ,,f} Αρχική Κατάσταση: {σ} Καταστάσεις αποδοχής : {F}, {σ,f}, {,F}, {σ,,f} Όλα τα υποσύνολα που περιέχουν την κατάσταση αποδοχής του µηαιτιοκρατικού Μια διαδροµή απότηνχστηνυσχηµατίζετε µε δείκτη x αν Χ= =Υ ή U f ( S, x) = Y SeX Αιτιοκρατικό Ισοδύναµο αυτόµατο Καµιά ακολουθία γραµµάτων δεν είναι δυνατό να φέρει τη µηχανή στις καταστάσεις: {σ,f}, {σ,}, {σ,,f}, {F} 3 32

Αιτιοκρατικό Ισοδύναµο αυτόµατο Παράδειγµα Απλοποιηµένη µορφή της προηγούµενης µηχανής πεπερασµένων καταστάσεων: Αν x x 2 x 3.x n είναι µια ακολουθία γραµµάτων (της γλώσσας L) που γίνεται αποδεκτή από το ακόλουθο αυτόµατο Α, κατασκευάστε ένα αυτόµατο που δέχεται την ακριβώς αντίστροφη ακολουθία L R ={x n x n- x x x 2 x n є L} 33 34 Παράδειγµα (συνέχεια) Παράδειγµα (συνέχεια) Αν ξεκινήσουµε από την σ 3 ακολουθώντας ακριβώς την αντίστροφή πορεία προς την σ η ακολουθία γραµµάτων του L R είναι αποδεκτή. Άρα: Μετατρέπουµε την κατάσταση αποδοχής σε αρχική κατάσταση και την αρχική σε αποδοχής Αντιστρέφουµε όλα τα βέλη στο κατευθυνόµενο διάγραµµα Το ισοδύναµο αιτιοκρατικό αυτόµατο είναι: Είναι ένα µη αιτιοκρατικό αυτόµατο 35 36

Παράδειγµα 2 Αν x x 2 x 3.x n είναι µια ακολουθία γραµµάτων (της γλώσσας L) που γίνεται αποδεκτή από το ακόλουθο αυτόµατο Α, κατασκευάστε ένα αυτόµατο που δέχεται την ακριβώς αντίστροφη ακολουθία L R ={x n x n- x x x 2 x n є L} Παράδειγµα 2 (συνέχεια) Φτιάχνουµε ένα µη αιτιοκρατικό αυτόµατα ισοδύναµο µε το προηγούµενο εισάγοντας µια ακόµη κατάσταση σ 5 που θα είναι η µόνη κατάσταση αποδοχής. Επιτρέπουµε τις διαδροµές που τερµάτιζαν στις σ 3 ή σ 4 να τερµατίζουν στην σ 5 Τελικά: Υπάρχουν 2 καταστάσεις αποδοχής 37 38 Παράδειγµα 2 (συνέχεια) Ακολουθώντας όµοια διαδικασία µε το Παράδειγµα, βρίσκοµαι: 39